
SoK: Eternal War in Memory

László Szekeres†, Mathias Payer‡, Tao Wei∗‡, Dawn Song‡
†Stony Brook University

‡University of California, Berkeley
∗Peking University

Abstract—Memory corruption bugs in software written in
low-level languages like C or C++ are one of the oldest problems
in computer security. The lack of safety in these languages
allows attackers to alter the program’s behavior or take full
control over it by hijacking its control flow. This problem has
existed for more than 30 years and a vast number of potential
solutions have been proposed, yet memory corruption attacks
continue to pose a serious threat. Real world exploits show that
all currently deployed protections can be defeated.

This paper sheds light on the primary reasons for this
by describing attacks that succeed on today’s systems. We
systematize the current knowledge about various protection
techniques by setting up a general model for memory corrup-
tion attacks. Using this model we show what policies can stop
which attacks. The model identifies weaknesses of currently
deployed techniques, as well as other proposed protections
enforcing stricter policies.

We analyze the reasons why protection mechanisms imple-
menting stricter polices are not deployed. To achieve wide
adoption, protection mechanisms must support a multitude of
features and must satisfy a host of requirements. Especially
important is performance, as experience shows that only
solutions whose overhead is in reasonable bounds get deployed.

A comparison of different enforceable policies helps de-
signers of new protection mechanisms in finding the balance
between effectiveness (security) and efficiency. We identify some
open research problems, and provide suggestions on improving
the adoption of newer techniques.

I. INTRODUCTION

Memory corruption bugs are one of the oldest problems
in computer security. Applications written in low-level lan-
guages like C or C++ are prone to these kinds of bugs. The
lack of memory safety (or type safety) in such languages
enables attackers to exploit memory bugs by maliciously
altering the program’s behavior or even taking full control
over the control-flow. The most obvious solution would be to
avoid these languages and to rewrite vulnerable applications
in type-safe languages. Unfortunately, this is unrealistic not
only due to the billions of lines of existing C/C++ code, but
also due to the low-level features needed for performance
critical programs (e.g. operating systems).

The war in memory is fought on one side by offensive
research that develops new attacks and malicious attack-
ers, and on the other side by defensive researchers who
develop new protections and application programmers who

*Corresponding author.

try to write safe programs. The memory war effectively
is an arms race between offense and defense. Accord-
ing to the MITRE ranking [1], memory corruption bugs
are considered one of the top three most dangerous soft-
ware errors. Google Chrome, one of the most secure web
browsers written in C++, was exploited four times during
the Pwn2Own/Pwnium hacking contests in 2012.

In the last 30 years a set of defenses has been devel-
oped against memory corruption attacks. Some of them are
deployed in commodity systems and compilers, protecting
applications from different forms of attacks. Stack cook-
ies [2], exception handler validation [3], Data Execution
Prevention [4] and Address Space Layout Randomization [5]
make the exploitation of memory corruption bugs much
harder, but several attack vectors are still effective under all
these currently deployed basic protection settings. Return-
Oriented Programming (ROP) [6], [7], [8], [9], [10], [11],
information leaks [12], [13] and the prevalent use of user
scripting and just-in-time compilation [14] allow attackers
to carry out practically any attack despite all protections.

A multitude of defense mechanisms have been proposed
to overcome one or more of the possible attack vectors. Yet
most of them are not used in practice, due to one or more
of the following factors: the performance overhead of the
approach outweighs the potential protection, the approach
is not compatible with all currently used features (e.g., in
legacy programs), the approach is not robust and the offered
protection is not complete, or the approach depends on
changes in the compiler toolchain or in the source-code
while the toolchain is not publicly available.

With all the diverse attacks and proposed defenses it
is hard to see how effective and how efficient different
solutions are and how they compare to each other and
what the primary challenges are. The motivation for this
paper is to systematize and evaluate previously proposed
approaches. The systematization is done by setting up a
general model for memory corruption vulnerabilities and
exploitation techniques. The defense techniques are clas-
sified by the exploits they mitigate and by the particular
phase of exploit they try to inhibit. The evaluation is based
on robustness, performance and compatibility. Using this
evaluation, we also discuss common criteria that need to
be fulfilled for successful deployment of a new software
defense.

Some related work already covers different memory cor-
ruption attacks [15], provides historical overview [16] or lists
different protection mechanisms [17]. This systematization
of knowledge paper extends the related survey papers by
developing a new general model for memory corruption
attacks and evaluating and comparing proposed defense
mechanisms using a new set of criteria that incorporates real-
world adoption as well. The paper does not aim to cover
or refer every proposed solution, but rather identifies and
analyzes the main approaches in a systematical way, sorts
out the most promising proposals and points out fundamental
problems and unsolved challenges.

With this systematization of knowledge paper we make
the following contributions:

• develop a general model of memory corruption at-
tacks and identify different enforceable security policies
based on the model;

• clarify what attack vectors are left unprotected by
currently used and previously proposed protections by
matching their enforced polices with separate phases of
different exploits;

• evaluate and compare proposed solutions for perfor-
mance, compatibility, and robustness;

• discuss why many proposed solutions are not adopted
in practice and what the necessary criteria for a new
solution are.

The paper is organized as follows. Section II sets up the
main model of attacks and classifies protections based on
the policies they enforce. Section III discusses currently
deployed protections and their main weaknesses. Our evalu-
ation criteria are set up in Section IV, and are used through
the analysis of defense approaches covered by the following
four sections. Section IX summarizes with a comparative
analysis and Section X concludes the paper.

II. ATTACKS

To solve the problem of memory error based attacks, we
first need to understand the process of carrying out such
an exploit. In this section we set up a step-by-step memory
exploitation model. We will base our discussion of protection
techniques and the policies they enforce on this model.
Figure 1 shows the different steps of exploiting a memory
error. Each white rectangular node represents a building
block towards successful exploitation and the oval nodes
on the bottom represent a successful attack. Each rhombus
represents a decision between alternative paths towards the
goal. While control-flow hijacking is usually the primary
goal of attacks, memory corruption can be exploited to carry
out other types of attacks as well.

A. Memory corruption

Since the root cause of all vulnerabilities discussed in this
systematization of knowledge paper is memory corruption,
every exploit starts by triggering a memory error. The first

two steps of an exploit in Figure 1 cover the initial memory
error. The first step makes a pointer invalid, and the second
one dereferences the pointer, thereby triggering the error.
A pointer can become invalid by going out of the bounds
of its pointed object or when the object gets deallocated.
A pointer pointing to a deleted object is called a dangling
pointer. Dereferencing an out-of-bounds pointer causes a so
called spatial error, while dereferencing a dangling pointer
causes a temporal error.

As Step 1, an attacker may force a pointer out of bounds
by exploiting various programming bugs. For instance, by
triggering an allocation failure which is unchecked, the
pointer can become a null pointer (in kernel-space null-
pointer dereferences are exploitable [18]). By excessively
incrementing or decrementing an array pointer in a loop
without proper bound checking, a buffer overflow/underflow
will happen. By causing indexing bugs where an attacker has
control over the index into an array, but the bounds check is
missing or incomplete, the pointer might be pointed to any
address. Indexing bugs are often caused by integer related
errors like an integer overflow, truncation or signedness
bug, or incorrect pointer casting. Lastly, pointers can be
corrupted using the memory errors under discussion. This
is represented by the backward loop in Figure 1.

As an alternative, the attacker may make a pointer “dan-
gling” by, for instance, exploiting an incorrect exception
handler, which deallocates an object, but does not reinitialize
the pointers to it. Temporal memory errors are called use-
after-free vulnerabilities because the dangling pointer is
dereferenced (used) after the memory area it points to has
been returned (freed) to the memory management system.
Most of the attacks target heap allocated objects, but pointers
to a local variable can “escape” as well from the local scope
when assigned to a global pointer. Such escaped pointers
become dangling when the function returns and the local
variable on the stack is deleted.

Next, we show how either an out-of-bounds or a dangling
pointer can be exploited to execute any third step in our
exploitation model when the invalid pointer is read or
written in Step 2. The third step is either the corruption
or the leakage of some internal data.

When a value is read from memory into a register by
dereferencing a pointer controlled by the attacker, the value
can be corrupted. Consider the following jump table where
the function pointer defining the next function call is read
from an array without bounds checking.

func_ptr jump_table[3] = {fn_0, fn_1, fn_2};
jump_table[user_input]();

The attacker can make the pointer point to a location under
his or her control and divert control-flow. Any other variable
read indirectly can be vulnerable.

Besides data corruption, reading memory through an
attacker specified pointer leaks information if that data is

Non-executable Data /
Instruction Set Randomization

VII.A.
Data Integrity

V.B.
Data Space

Randomization

VII.B.
Data-flow Integrity

VIII.B.
Control-flow Integrity

V.A.
Address Space

Randomization

Code Integrity
VIII.A.

Code Pointer Integrity

Instruction Set
Randomization

VI.
Memory Safety

Information
leak

Make a pointer go
out of bounds

Make a pointer
become dangling

Use pointer
to write (or free)

Use pointer
to read

Modify a
code pointer ...

Output data
variable

… to the address of
shellcode / gadget

Use pointer by
indirect call/jump

Execute injected
shellcode

Execute available
gadgets / functions

Control-flow
hijack attack

Modify
code ...

Code corruption
attack

Modify a
data pointer

Modify a data
variable ...

Data-only
attack

… to the attacker
specified value

Use corrupted
data variable

Use pointer by
return instruction

… to the attacker
specified code

Interpret the
output data

1

2

3

4

5

6

Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

included in the output. The classic example of this attack is
the printf format string bug, where the format string is
controlled by the attacker. By specifying the format string
the attacker creates invalid pointers and reads (and writes)
arbitrary memory locations.

printf(user_input); // input "%3$x" prints the
// 3rd integer on the stack

If an attacker controlled pointer is used to write the
memory, then any variable, including other pointers or even
code, can be overwritten. Buffer overflows and indexing
bugs can be exploited to overwrite sensitive data such as
a return address or virtual table (vtable) pointer. Corrupting
the vtable pointer is an example of the backward loop in
Figure 1. Suppose a buffer overflow makes an array pointer
out of bounds in the first round that is exploited (in Step 3)
to corrupt a nearby vtable pointer in memory in the second
round. When the corrupted vtable pointer is dereferenced (in
Step 2), a bogus virtual function pointer will be used. It is
important to see that with one memory error, more and more
memory errors can be raised by corrupting other pointers.
Calling free() with an attacker controlled pointer can also
be exploited to carry out arbitrary memory writes [19]. Write
dereferences can be exploited to leak information as well.

printf("%s\n", err_msg);

For instance, the attacker is able to leak arbitrary mem-
ory contents in the above line of code by corrupting the
err_msg pointer.

Temporal errors, when a dangling pointer is dereferenced
in Step 2, can be exploited similarly to spatial errors. A
constraint for exploitable temporal errors is that the memory
area of the deallocated object (the old object) is reused by
another object (new object). The type mismatch between
the old and new object can allow the attacker to access
unintended memory.

Let us consider first reading through a dangling pointer
with the old object’s type but pointing to the new object,
which is controlled by the attacker. When a virtual function
of the old object is called and the virtual function pointer is
looked up, the contents of the new object will be interpreted
as the vtable pointer of the old object. This allows the
corruption of the vtable pointer, comparable to exploiting
a spatial write error, but in this case the dangling pointer
is only dereferenced for a read. An additional aspect of
this attack is that the new object may contain sensitive
information that can be leaked when read through the
dangling pointer of the old object’s type.

Writing through a dangling pointer is similarly exploitable
as an out of bounds pointer by corrupting other pointers
or data inside the new object. When the dangling pointer
is an escaped pointer to a local variable and points to
the stack, it may be exploited to overwrite sensitive data,
such as a return address. Double-free is a special case of
the use-after-free vulnerability where the dangling pointer
is used to call free() again. In this case, the attacker
controlled contents of the new object will be interpreted
wrongly as heap metadata, which is also exploitable for
arbitrary memory writes [19].

Memory errors in general allow the attacker to read and
modify the program’s internal state in unintended ways. We
showed that any combination of the first two steps in our
memory exploitation model can be used both to corrupt
internal data and to leak sensitive information. Furthermore,
more memory errors can be triggered by corrupting other
pointers. Programming bugs which make these errors possi-
ble, such as buffer overflows and double-frees, are common
in C/C++. When developing in such low-level languages,
both bounds checking and memory management are fully
the programmers responsibility, which is very error prone.

The above described errors are a violation of the Memory
Safety policy. C and C++ are inherently memory unsafe.
According to the C/C++ standards, writing an array be-
yond its bounds, dereferencing a null-pointer, or reading
an uninitialized variable result in undefined behavior. Since
finding and fixing all the programming bugs is infeasible,
we need automatic solutions to enforce Memory Safety in
existing programs or stop attacks in their later phases. The
policy mitigating a given set of attack steps is represented
in the figure by a colored area surrounding the white boxes.
The section number which discusses approaches enforcing
a given policy is also indicated in the figure, above the
policy names. We discuss approaches that try to stop any
exploit in the first (two) steps by enforcing Memory Safety in
Section VI. In the following subsections we discuss the steps
of different exploit paths and identify the policies mitigating
the given step. As shown in the figure, some policies include
other, weaker policies.

B. Code corruption attack

The most obvious way to modify the execution of a
program is to use one of the abovementioned bugs to
overwrite the program code in memory. A Code Integrity
policy enforces that program code cannot be written. Code
Integrity can be achieved if all memory pages containing
code are set read-only, which is supported by all modern pro-
cessors. Unfortunately, Code Integrity does not support self-
modifying code or Just-In-Time (JIT) compilation. Today,
every major browser includes a JIT compiler for JavaScript
or Flash. For these use-cases, Code Integrity cannot be fully
enforced because there is a time window during which the
generated code is on a writable page.

C. Control-flow hijack attack

Most often, memory corruption exploits try to take control
over the program by diverting its control-flow. If Code
Integrity is enforced then this alternative option tries to use
a memory error to corrupt a code pointer in Step 3. Code
Pointer Integrity policies aim to prevent the corruption of
code pointers. We discuss the potential code pointer targets
and limitations of this policy in Section VIII-A.

Suppose the attacker can access and modify a return
address due to a buffer overflow. For a successful exploit,
the attacker needs to know the correct target value (i.e., the
address of the payload) as well. We represent this as a
separate fourth step in Figure 1. If the target of the control-
flow hijack (the code address to jump to) is not fixed, the
attacker cannot specify the target and the attack fails at this
step. This property can be achieved by introducing entropy
to memory addresses using Address Space Randomization.
We discuss techniques randomizing the address space in
Section V-A.

Suppose a code pointer (e.g., a function pointer) has
been successfully corrupted in the first four steps. The
fifth step is that the execution needs to load the corrupted
pointer into the instruction pointer. The instruction pointer
can only be updated indirectly by executing an indirect
control-flow transfer instruction, e.g., an indirect function
call, indirect jump or function return instruction. Diverting
the execution from the control-flow defined by the source
code is a violation of the Control-flow Integrity (CFI) policy.
In Section VIII-B, we cover protections that enforce different
CFI policies by detecting corruption at indirect control
transfers.

The final step of a control-flow hijack exploit is the
execution of attacker specified malicious code. Classic at-
tacks injected so-called shellcode into memory, and diverted
execution to this piece of code. This kind of exploitation
is prevented by the Non-executable Data policy which can
be enforced using the executable bit for memory pages
to make data memory pages, like the stack or the heap,
non-executable. A combination of Non-executable Data and
Code Integrity results in the W⊕X (Write XOR Execute) [4]
policy, stating that a page can be either writable or exe-
cutable, but not both. Practically all modern CPU support
setting non-executable page permissions, so combined with
non-writable code, enforcing W⊕X is cheap and practical.
However in the case of JIT compilation or self-modifying
code, W⊕X cannot be fully enforced. For the sake of
completeness, we note that another randomization approach,
Instruction Set Randomization (ISR) can also mitigate the
execution of injected code or the corruption of existing code
by encrypting it. But due to the support for page permissions,
the much slower ISR has become less relevant and because
of the limited space we will not cover it in more detail in
this paper.

To bypass the non-executable data policy, attackers can
reuse existing code in memory. The reused code can be
an existing function (“return-to-libc” attack) or small in-
struction sequences (gadgets) found anywhere in the code
that can be chained together to carry out useful (malicious)
operations. This approach is called Return Oriented Pro-
gramming (ROP), because the attack chains the execution
of functions or gadgets using the ending return instructions.
Jump Oriented Programming (JOP) is the generalization
of this attack which leverages indirect jumps as well for
chaining. There is no policy which can stop the attack at this
point, since the execution of valid and already existing code
cannot be prevented. Recent research focuses on mitigating
techniques against code reuse only. Researchers propose
techniques to eliminate useful code chunks (for ROP) from
the code by the compiler [20], or by binary rewriting
[21]. While these solutions make ROP harder, they do not
eliminate all useful gadgets, and they do not prevent re-using
complete functions. For these reasons we will not cover these
techniques in more detail.

We classify a control-flow hijacking attack successful as
soon as attacker-specified code starts to execute. To carry
out a meaningful attack, the attacker usually needs to make
system calls, and may need high level permissions (e.g., file
access) as well. We will not cover higher-level policies
which only confine the attacker’s access, including per-
missions, mandatory access control or sandboxing policies
enforced by SFI [22], XFI [23] or Native Client [24]. These
policies can limit the damage that an untrusted program (or
plugin) or an attacker can cause after compromising a trusted
program. Our focus is preventing the compromise of trusted
programs, typically with extensive access (e.g., an ssh/web
server).

D. Data-only attack

Hijacking control-flow is not the only possibility for
a successful attack. In general, the attacker’s goal is to
maliciously modify the program logic to gain more control,
to gain privileges, or to leak information. This goal can be
achieved without modifying data that is expliclity related to
control-flow. Consider, for instance, the modification of the
isAdmin variable via a buffer overflow after logging into
the system with no administrator privileges.

bool isAdmin = false;
...
if (isAdmin) // do privileged operations

These program specific attacks are also called “non-control-
data attacks” [25] since neither code nor code pointers
(control data) are corrupted. The target of the corruption can
be any security critical data in memory, e.g., configuration
data, the representation of the user identity, or keys.

The steps of this attack are similar to the previous one
except for the target of corruption. Here, the goal is to

corrupt some security critical variable in Step 3. Since
security critical is a semantic definition, the integrity of all
variables has to be protected in order to stop the attack in
this step. We call this policy Data Integrity, which naturally
includes Code Integrity and Code Pointer Integrity. Data
Integrity approaches try to prevent the corruption of data
by enforcing only some approximation of Memory Safety.
We cover techniques enforcing such policies under VII-A.

As in the case of code pointers, the attacker needs to know
what should replace the corrupted data. Acquisition of this
knowledge can be prevented by introducing entropy into the
representation of all data using Data Space Randomization.
Data Space Randomization techniques extend and general-
ize Address Space Randomization, and we cover them in
Section V-B.

Similar to code pointer corruption, data-only attacks will
succeed as soon as the corrupted variable is used. Using the
running example, the if (isAdmin) statement has to be
successfully executed without detecting the corruption. As
the generalization of Control-flow Integrity, the use of any
corrupted data is the violation of Data-flow Integrity. We
cover enforcing this policy under Section VII-B.

E. Information leak

We showed that any type of memory error might be
exploited to leak memory contents, which would otherwise
be excluded from the output. This is typically used to cir-
cumvent probabilistic defenses based on randomization and
secrets. Real-world exploits bypass ASLR using information
leaks [13], [26]. The only policy beyond Memory Safety
that might mitigate information leakage is full Data Space
Randomization. We will discuss in Section V how effective
Data Space Randomization is and how information leakage
can be used to bypass other probabilistic techniques which
build on secrets.

III. CURRENTLY USED PROTECTIONS AND REAL WORLD
EXPLOITS

The most widely deployed protection mechanisms are
stack smashing protection, DEP/W⊕X and ASLR. The
Windows platform for instance, also offers some special
mechanisms e.g., for protecting heap metadata and exception
handlers (SafeSEH and SEHOP).

Stack smashing protection [2] detects buffer overflows of
local stack-based buffers, which overwrite the saved return
address. By placing a random value (called cookie or canary)
between the return address and the local buffers at function
entries, the integrity of the cookie can be checked before the
return of the function and thus the overflow can be detected.
SafeSEH and SEHOP also validate exception handler point-
ers on the stack before they are used, which makes them,
together with stack cookies, a type of Control-flow Integrity
solution. These techniques provide the weakest protection:
they place checks only before a small subset of indirect

jumps, focusing checking the integrity of only some specific
code pointers, namely saved return addresses and exception
handler pointers on the stack. Furthermore, the checks can be
bypassed. Cookies, for instance, can detect a buffer overflow
attack but not a direct overwrite (e.g., exploiting an indexing
error).

DEP/W⊕X can protect against code injection attacks, but
does not protect against code reuse attacks like ROP. ROP
exploits can be generated automatically [27], and large code
bases like the C library usually provide enough gadgets
for Turing-completeness [10], [11]. ASLR provides the
most comprehensive protection as the most widely deployed
Address Space Randomization technique. It can randomize
the locations of various memory segments, including data
and code, so even if the attacker wants to reuse a gadget its
location will be random. While some ASLR implementa-
tions have specific weaknesses (e.g., code regions are left in
predictable locations, de-randomization attacks are possible
due to the low entropy), the fundamental attack against it is
information leakage [12].

As described in the attack model of the previous section,
any memory corruption error can be converted into an
information leak vulnerability, which can be used to obtain
current code addresses. The leaked addresses are needed to
construct the final exploit payload. When attacking remote
targets (i.e., servers), getting back this information used to
be very challenging. Today, however, it is not a problem for
a number of client targets. Web browsers, PDF viewers and
office applications run user controlled scripts (JavaScript,
ActionScript, VBScript), which can be used to dynamically
construct exploit payloads at run-time on the target machine.
Table I lists some recent exploits published by VUPEN [28],
which use information leaks and ROP to bypass ASLR and
W⊕X. In all examples, the control flow is hijacked at an
indirect call instruction (after corrupting a function pointer or
the vtable), so stack cookies are not an issue. In all cases, the
address leakage is done by exploiting an arbitrary memory
write in order to corrupt another pointer which is read later
(the fourth column gives more hints). One common way of
leaking out memory contents is by overwriting the length
field of a (e.g., JavaScript) string object before reading it
out (in the user script). As shown in the last column, in
case of browser targets, user scripting is used to leak current
addresses and to construct the exploit, while in case of
ProFTPD, the leaked information is sent back on the network
by corrupting a pointer to a status message.

IV. APPROACHES AND EVALUATION CRITERIA

The previously identified protection techniques can be
divided into two main categories: probabilistic and deter-
ministic protection. Probabilistic solutions, e.g., Instruction
Set Randomization, Address Space Randomization, or Data
Space Randomization, build on randomization or encryption.
All other approaches enforce a deterministic safety policy

by implementing a low-level reference monitor [29]. A
reference monitor observes the program execution and halts
it whenever it is about to violate the given security policy.
Traditional reference monitors enforce higher level policies,
such as file system permissions, and are implemented in the
kernel (e.g., system calls).

Reference monitors enforcing lower level policies, e.g.,
Memory Safety or Control-flow Integrity, can be imple-
mented efficiently in two ways: in hardware or by embed-
ding the reference monitor into the code. For instance, the
W⊕X policy (Code Integrity and Non-executable Data) is
now enforced by the hardware, as modern processors support
both non-writable and non-executable page permissions.
Hardware support for a security policy results in negligible
overhead. The alternative to hardware support is adding the
reference monitor dynamically or statically to the code.

Since adding new features to the hardware is unrealistic,
from this point we focus only on solutions which transform
existing programs to enforce various policies. Dynamic
(binary) instrumentation (e.g., Valgrind [30], PIN [31],
DynamoRIO [32], or libdetox [33]) can be used to dy-
namically insert safety checks into unsafe binaries at run-
time. Dynamic binary instrumentation supports arbitrary
transformations but introduces some additional slowdown
due to the dynamic translation process. Simple reference
monitors, however, can be implemented with low overhead
(e.g., a shadow stack costs less than 6.5% performance
for SPEC CPU2006 in [33]). More sophisticated reference
monitors like taint checking [34] or ROP detectors [35]
result in overheads that exceed 100% and are unlikely to be
deployed in practice. Static instrumentation inlines reference
monitors statically. This can be done by the compiler or
by static binary rewriting. Inline reference monitors can
implement any safety policy and are usually more efficient
than dynamic solutions, since the instrumentation is not
carried out at run-time.

Next, we discuss the main properties and requirements
for solutions enforcing low-level policies. These properties
determine the practicality of a proposed method, more
precisely, whether or not it is suitable for wide adoption.
We set up our requirements for practicality while discussing
a given property.

A. Protection

Enforced policy. The strength of the protection is deter-
mined by the policy it enforces. The exact policy that
a solution enforces determines its effectiveness. Different
techniques enforce different types of policies (e.g., Memory
Safety or Data-flow Integrity) and at different levels. The
practical utility of a policy can be described by the attacks
it can protect against, out of the four we have identified.
Subtle differences in the policies allow or prevent individual
attacks. The accuracy of an approach is determined by the
relation between false negatives and false positives.

CVE ID Software Vulnerability Address leakage User scripting
CVE-2011-0609 Adobe Flash JIT type confusion Read an IEEE-754 number ActionScript
CVE-2012-0003 Windows Multimedia

Library (affecting IE)
Heap buffer overflow Read a string after overwriting

its length
JavaScript

CVE-2011-4130 ProFTPD Use-after-free Overwrite the “226 Transfer
Complete” message

none

CVE-2012-0469 Mozilla Firefox Use-after-free Read a string after overwriting
its length

JavaScript

CVE-2012-1889 Microsoft Windows
XML Core Services
(affecting IE)

Uninitialized pointer Read as a RGB color JavaScript

CVE-2012-1876 Internet Explorer 9/10
(Pwn2Own 2012)

Heap buffer overflow Read a string after overwriting
its length

JavaScript

Table I
EXPLOITS THAT DEFEAT BOTH DEP AND ASLR USING ROP AND INFORMATION LEAKS

False negatives. The possibility of false negatives (pro-
tection failures) depends on the definition of the policy.
For probabilistic approaches, the probability of a successful
attack is always > 0 while it is ≥ 0 for deterministic
solutions. As shown in Section III, secrets that the protection
relies upon can not only be guessed, but also leaked.

False positives. The avoidance of false alarms (e.g., unnec-
essary crashes) is a very strict requirement for any practical
solution. Causing faults in normal operation is unacceptable
in production environments. In addition, compatibility issues
should not cause any false alarms.

B. Cost

Performance overhead. The cost of a solution is primar-
ily determined by the performance overhead it introduces.
Beside security, the most important requirement is speed.

To measure performance, both CPU-bound and I/O-bound
benchmarks can be used. CPU-bound benchmarks, such
as SPEC [36], are more challenging, because I/O-bound
programs spend more time in the kernel, relatively reducing
the impact of the user-space CPU overhead. Although some
proposals report good scores with selected benchmark pro-
grams or with I/O-bound server applications, their overheads
are much higher if measured using CPU-bound benchmarks.
We recommend that protection approaches considered for
wide adoption target CPU-bound client-side programs as
well, these being primary targets of today’s attacks.

Our comparison analysis in Section IX shows that tech-
niques introducing an overhead larger than roughly 10% do
not tend to gain wide adoption in production environments.
Some believe the average overhead should be less than
5% in order to get adopted by industry, e.g., the rules
of the Microsoft BlueHat Prize Contest [37] confirm this
viewpoint.

Memory overhead. Inline monitors often introduce and
propagate some kind of metadata, which can introduce
significant memory overhead as well. Some protection mech-
anisms (especially the ones using shadow memory) can even

double the space requirement of a program. In case of most
applications, however, this is much less of an issue than
runtime performance.

C. Compatibility

Source compatibility. An approach is source compatible
(or source agnostic) if it does not require application source
code to be manually modified to profit from the protection.
The necessity of even minimal human intervention or effort
makes a solution not only unscalable, but too costly as well.
Most experts from the industry consider solutions which
require porting or annotating the source code impractical.

Binary compatibility. Binary compatibility allows compat-
ibility with unmodified binary modules. Transformed pro-
grams should still link with unmodified libraries. Backward
compatibility is a practical requirement to support legacy
libraries. Using unprotected libraries may leave parts of
the program exploitable, but allows incremental deployment.
Also, for instance on the Windows platform, system libraries
are integrity protected and thus cannot be easily changed.

Modularity support. Support for modularity means that
individual modules (e.g. libraries) are handled separately. A
compiler based solution should support separate compilation
of modules, while a binary rewriter should support hardening
each file (main executable or library) separately. Because
dynamic-link libraries (.dll and .so) are indispensable for
modern operating systems, all practical protections must
support them as well.

V. PROBABILISTIC METHODS

Probabilistic methods rely on randomization and se-
crets. There are three main approaches: Instruction Set
Randomization, Address Space Randomization, and Data
Space Randomization. Figure 1 shows that Instruction Set
Randomization (ISR) [38] mitigates attacks based on code
corruption and injection of shellcode. Code corruption is
prevented by read-only page permissions, and shellcode
injection is prevented by non-executable page permissions.
Due to hardware improvements, ISR has become obsolete.

Address Space Randomization (ASR) mitigates control-flow
hijacking attacks by randomizing the location of code and
data and thus the potential payload address. Data Space
Randomization (DSR) probabilistically mitigates all attacks
by randomizing (encrypting) the contents of the memory.

A. Address Space Randomization

Address Space Layout Randomization (ASLR) [5], [39]
is the most prominent memory address randomization tech-
nique. ASLR randomly arranges the position of different
code and data memory areas. If the payload’s address in the
virtual memory space is not fixed, the attacker is unable to
divert control-flow reliably. ASLR is the most comprehen-
sive currently deployed protection against hijacking attacks.

The diverted jump target can be some injected payload in
a data area or existing code in the code section. This is why
every memory area must be randomized, including the stack,
heap, main code segment, and libraries. The protection can
always be bypassed if not all code and data sections are
randomized. On most Linux distributions, for instance, only
library code locations are randomized but the main module
is at a fixed address. Most programs are not compiled as
Position Independent Executables (PIE) to prevent a 10%
on average performance degradation [40].

Furthermore, on 32 bit machines the maximum possible
entropy allowed by the virtual memory space is ineffective
against brute-force or de-randomization attacks [41]. De-
randomization is often carried out by simply filling the
memory with repeated copies of the payload, which is called
heap-spraying or JIT-spraying [14], [42]. Another potential
attack vector is partial pointer overwrites. By overwriting
the least significant byte or bytes of a pointer, it can be
successfully modified to point to a nearby address [43].

Even if everything is randomized with very high entropy
(e.g., on x64 machines), information leaks can completely
undermine the protection. Information leaks are the primary
attack vector against probabilistic techniques, and as Fig-
ure 1 shows, they are always possible if (some level of)
Memory Safety is not enforced.

Since the wide deployment of W⊕X the focus of ran-
domization has become code. As illustrated by Step 6 of
Figure 1, code reuse attacks became the primary threat. To
increase the entropy in code locations, researchers proposed
the permutation of functions [44] and instructions inside
functions [45] as well. Self-Transforming Instruction Relo-
cation (STIR) [46] randomly re-orders the basic blocks of
a binary at launch-time. While these techniques make ROP
attacks harder, they usually do not protect against return-
to-libc attacks. These techniques also assume that a code
reuse (ROP) exploit needs several gadgets, in which case
the provided entropy is high enough. However, sometimes
a single gadget is enough to carry out a successful attack.
The address of a single instruction, gadget, or function is
relatively easy to acquire via an information leak.

A technique in the border-land between Address Space
and Data Space Randomization is pointer encryption. Cowan
et al. [47] proposed PointGuard, which encrypts all pointers
in memory and only decrypts them right before they are
loaded into a register. This technique can be considered the
dual of ASLR, since it also introduces entropy in addresses,
but in the “data space”: it encrypts the stored address,
i.e., pointers’ values. To encrypt the pointers PointGuard
uses the XOR operation with the same key for all pointers.
Since it used only one key, by leaking out one known
encrypted pointer from memory, the key can be easily
recovered [12]. However the primary reason what prevented
PointGuard from wide adoption was that it was neither
binary nor source code compatible.

B. Data Space Randomization

Data Space Randomization (DSR) [48] was introduced
by Bhatkar and Sekar to overcome the weaknesses of
PointGuard and to provide stronger protection. Similarly
to PointGuard, DSR randomizes the representation of data
stored in memory, not the location. It encrypts all variables,
not only pointers, and using different keys. For a variable v,
a key or mask mv is generated. The code is instrumented
to mask and unmask variables when they are stored and
loaded from memory. Since several variables can be stored
and loaded by the same pointer dereference, variables in
equivalent “points-to” sets have to use the same key. The
computation of these sets requires a static pointer analysis
prior to the instrumentation. The protection is stronger,
because encrypting all variables not only protects against
control-flow hijacks, but also data-only exploits. Also, the
use of multiple keys prevents the trivial information leak
described in PointGurad’s case, but not in all cases [12].

The average overhead of DSR is 15% on a custom
benchmark. The solution is not binary compatible. Protected
binaries will be incompatible with unmodified libraries.
Also, whenever points-to analysis is needed, modularity will
be an issue. Different modules cannot be handled separately,
because the points-to graph has to be computed globally.
To overcome this issue the authors propose computing
partial points-to graphs for separate modules and leave the
computation of the global graph to the dynamic linker.

VI. MEMORY SAFETY

Enforcing Memory Safety stops all memory corruption
exploits. For complete Memory Safety, both spatial and
temporal errors must be prevented without false negatives.
Type-safe languages enforce both spatial and temporal safety
by checking object bounds at array accesses and using
automatic garbage collection (the programmer cannot de-
stroy objects explicitly). Our focus is transforming existing
unsafe code to enforce similar policies by embedding low-
level reference monitors. The instrumentation may be in the
source code, intermediate representation, or binary level.

A. Spatial safety with pointer bounds

The only way to enforce complete spatial safety is to
keep track of pointer bounds (the lowest and highest valid
address it can point to). CCured [49] and Cyclone [50]
use “fat-pointers” by extending the pointer representation
to a structure which includes the extra information. Un-
fortunately these systems need source-code annotations and
are therefore impractical for large code bases. Furthermore,
changing the pointer representation changes the memory
layout, which breaks binary compatibility.

SoftBound [51] addresses the compatibility problem by
splitting the metadata from the pointer, thus the pointer
representation remains unchanged. A hash table or a shadow
memory space is used to map pointers to the metadata.
The code is instrumented to propagate the metadata and to
check the bounds whenever a pointer is dereferenced. For
new pointers, the bounds are set to the starting and ending
address of the object it is pointed to. Runtime checks at
each pointer dereference ensure that the pointer stays inside
bounds. These checks stop all spatial errors in the second
step of our exploit model.

Pointer based bounds checking is capable of enforcing
spatial safety completely without false positives or false
negatives if and only if every module is protected. Soft-
Bound is formally proven to provide complete spatial vi-
olation detection. Unfortunately, the performance overhead
of SoftBound is high, 67% on average. While pointer based
approaches, e.g., SoftBound, provide a limited compatibility
with unprotected libraries, full compatibility is hard to
achieve. Consider, for instance, a pointer created by the pro-
tected module. If that pointer is modified by an unprotected
module, the corresponding metadata is not updated, causing
false positives. We summarize the properties of the main
approaches we cover at the end of the paper in Table II.

B. Spatial safety with object bounds

Because of the compatibility issues caused by pointer
based approaches, researchers proposed object based alter-
natives. Instead of associating the bounds information with
pointers, these systems associate the information with the
objects. Knowing only the bounds of allocation regions is not
enough information to catch errors at pointer dereferences,
because we do not know if the pointer points to the right
object. Hence, object based techniques focus on pointer
arithmetic (Step 1 in the model) instead of dereferences
(Step 2) to protect the bounds of pointers. Binary compatibil-
ity is possible because the metadata is only updated at object
creation and deletion. Consider the previous example. The
metadata this time is associated with the object rather than
with the pointer. If a pointer is updated in an unprotected
module, then the metadata will not go out-of-sync.

One problem with this approach, however, is that pointers
can legitimately go out of bounds as long as they are not
dereferenced. For instance, during the last iteration of a loop

over an array, a pointer typically goes off the array by one,
but it is not dereferenced. The first binary compatible object
based solution to enforce spatial safety is a GCC patch by
Jones and Kelly (J&K) [52], which solved this problem
by padding allocated objects with an extra byte. This still
caused false alarms when a pointer legitimately went out of
bounds more than one byte. A more generic solution to this
problem was later provided by CRED [53].

The main problem with object based approaches is that
they cannot provide complete spatial safety. False nega-
tives can occur, because memory corruption inside objects
or structures remains undetected. This is because the C
standard allows pointer arithmetic within struct fields.
E.g., for memset(&strct,0,sizeof(strct)); the
pointer needs to be allowed to iterate through the whole
structure.

J&K suffers a large performance overhead of 11-12x.
CRED decreased this overhead to around 2x, but by reducing
the checked data structures to character arrays only. Dhurjati
et al. [54] extend J&K’s work by building on a technique
called “automatic pool allocation” [55]. Automatic pool
allocation partitions the memory based on a static points-
to analysis. Partitioning allows using a separate and much
smaller data structures to store the bounds metadata for each
partition, which can decrease the overhead further to around
120%.

Baggy Bounds Checking (BBC) [56] is currently one
of the fastest object based bounds checkers. BBC trades
memory for performance and adds padding to every object
so that its size will be a power of two and aligns their
base addresses to be the multiple of their (padded) size.
This property allows a compact bounds representation and
an effective way to look up object bounds. The authors of
BBC claim that their solution is around twice as fast than the
previously mentioned Dhurjati’s automatic pool allocation
based optimization. BBC’s average performance overhead is
60% on the SPECINT 2000 benchmark. PAriCheck [57] was
developed concurrently with BBC. It pads and aligns objects
to powers of two as well for efficient bounds checking. It
has slightly better performance cost and memory overhead
than BCC.

The motivation for object based approaches is to remain
compatible with unprotected libraries to reduce false posi-
tives. If an allocation or de-allocation happens in an unpro-
tected library, the metadata is set by intercepting malloc
and free. For every other object created in an unprotected
library, default values are used, allowing arbitrary arithmetic.

C. Temporal safety

Spatial safety alone does not prevent all vulnerabilities.
Use-after-free and double-free vulnerabilities remain unde-
tected by the previously discussed bounds checkers. Nu-
merous approaches have been proposed to enforce temporal
safety.

1) Special allocators: A naı̈ve (but overly wasteful)
approach to protect against use-after-free exploits is to
never reuse the same virtual memory area. Special memory
allocators, like Cling [58], are designed to thwart dangling
pointer attacks without significant memory or performance
overhead. Cling is a replacement for malloc, which allows
address space reuse only among objects of the same type and
alignment. This policy does not prevent dereferences through
dangling pointers, but enforces type safe memory reuse, pre-
venting the described use-after-free attack. DieHard [59] and
DieHarder [60] are safer replacements for the original malloc
implementation. These allocators protect the internal heap
management data structures and randomize the allocation
sites for heap objects with the drawback of 20% performance
overhead compared to the standard OpenBSD allocator.

Dynamic memory allocator replacements of course cannot
prevent unsafe reuse of local, stack allocated objects.

2) Object based approaches: Perhaps the most widely
used tools to detect memory errors in practice is Valgrind’s
Memcheck [30] tool and AddressSanitizer [61]. These tools
try to detect use-after-free bugs by marking locations which
were de-allocated in a shadow memory space. Accessing
a newly de-allocated location can be detected this way.
This approach, however, fails to detect errors after the area
is re-allocated for another pointer: the area is registered
again and the invalid access remains undetected. The object
based bounds checkers described in the previous subsection
offer the same protection, since de-allocation invalidates the
object in the metadata table. Valgrind, being a dynamic
translator, causes a 10x slowdown in average, while Ad-
dressSanitizer causes 73% slowdown by instrumenting code
at compile time. The only way to detect a use-after-free
attack reliably is to associate the temporal information with
the pointer and not with the object.

3) Pointer based approaches: Maintaining not only
bounds but also allocation information with pointers allows
enforcing full Memory Safety. Allocation information tells
if the pointed to object is still valid. It is not enough to just
keep an extra bit associated with each pointer indicating
the object’s validity, because all pointers pointing to it
have to be found and updated when the object is freed.
CETS [62] extends SoftBound and solves the problem by
eliminating the redundancy of the above described naı̈ve
idea. The validity bit is stored only at one place in a global
dictionary. Each new object gets a unique identifier used as
the key to the dictionary and pointers are associated with
this unique ID. A special data structure for the dictionary
allows the quick and easy invalidation of objects and also
fast lookups to check object validity. CETS is formally
proven to enforce temporal safety, if spatial safety is also
enforced. In other words, together with SoftBound, CETS
enforces Memory Safety. The average execution overhead
of the instrumentation enforcing temporal safety alone is
48%. When coupled with SoftBound to enforce complete

Memory Safety, the overhead is 116% on average on the
SPEC CPU benchmark. As a pointer based solution, CETS
suffers the same binary compatibility issues as SoftBound
when it comes to unprotected libraries.

VII. GENERIC ATTACK DEFENSES

Data Integrity and Data-flow Integrity are weaker policies
than Memory Safety. They aim to protect against both control
data (hijacking) and non-control data attacks, but not against
e.g., information leaks. While the former policy prevents
data corruption, the latter detects it.

A. Data Integrity

Data Integrity solutions enforce an approximation of spa-
tial memory integrity. These techniques focus on the most
common attacks, which start by writing through an out of
bounds pointer. They do not enforce temporal safety, and
they only protect against invalid memory writes, not reads.
Furthermore, they only approximate the spatial integrity
enforced by the previously covered bounds checkers in order
to minimize the performance overhead. In all cases the
approximation is due to a static pointer analysis carried out
prior to the instrumentation.

1) Integrity of “safe” objects: The technique proposed
by Yong et al. [63] first identifies the subset of “unsafe
pointers”. A pointer is considered unsafe if it might go out
of bounds, e.g., because it is a computed value (p[i]). A
static pointer analysis identifies the unsafe pointers together
with their points-to sets, i.e., their potential target objects.
Let us call the union of the identified points-to sets unsafe
objects. The code is instrumented to mark each byte of
an unsafe object in a shadow memory area at its creation
and clear it at deallocation. Checks are inserted before each
write dereference of an unsafe pointer to check whether the
location is marked in the shadow memory. This prevents the
corruption of any data in a memory area that does not belong
to an unsafe object.

This policy is sufficient to protect not only variables
which are never accessed through pointers, but, for instance,
saved return addresses as well. However, sensitive variables
can still be identified as unsafe objects and thus remain
unprotected. The authors also mention that out of 101
function pointers in their benchmark suite, two ended up
in the set of unsafe objects, which means that in case of a
memory error, these values can be corrupted. Since reads are
left unchecked, any value can be corrupted when read into
a register via a bad pointer. This allows certain control-flow
hijack attacks, program specific attacks, and information leak
attacks as well.

The reported runtime overhead of Yong’s system varies
between 50-100% on the SPEC 2000 benchmark. Uninstru-
mented libraries raise compatibility issues. If a pointer is
dereferenced in the transformed module, accessing an object
created by an unprotected module, then a false alarm is

triggered. This problem can be mitigated in case of heap
objects by wrapping memory allocating functions to mark
every allocated area in the shadow memory.

2) Integrity of points-to sets: The previous technique
restricts pointer dereferences to write only unsafe object.
Write Integrity Testing (WIT) [64] further strengthens the
above policy by restricting each pointer dereference to write
only objects in its own points-to set. Naturally, the pointer
analysis only results in a conservative approximation of the
set of objects a pointer may point to. The calculated distinct
points-to sets are associated with different ID numbers,
which are used to mark the objects in the shadow memory
area. While Yong’s approach only uses two IDs: 1 for
unsafe objects and 0 for everything else, WIT marks objects
belonging to separate points-to sets with different IDs.

Furthermore, WIT checks indirect calls as well to stop
hijacking attacks, which the previous policy left possible.
It protects indirect calls by calculating the points-to set
of pointers used by indirect call instructions and associate
them with IDs as well. The IDs are placed in the shadow
memory for valid code target addresses and, as in case
of indirect writes, before each indirect call the IDs are
checked. Functions associated with the same ID are still
interchangeable.

The policy enforced by WIT is stronger than Yong’s
approach due to distinguishing different points-to sets, but
objects assigned to the same ID remain vulnerable. Since
WIT does not protect reads, data can be corrupted when
read into a register, and information leaks are possible as
well. Due to the missing read checks function pointers
can be corrupted, too. This is why WIT checks indirect
calls instead in order to detect the corruption. Checking the
target of indirect control transfers makes WIT a Control-
flow Integrity approach, which is covered in Section VIII-B.
Notice that while calls are checked, returns are not. This is
because returns can only be corrupted via writes, as they
are never read by dereferencing a pointer, and thus they are
considered protected. Since WIT does not deal with temporal
errors either, overwriting a return address via an escaped
dangling pointer is still possible, however such bugs are rare
in practice.

The reported performance overhead of WIT is around 5-
25% for the SPEC benchmark. The approach is not binary
compatible. Using uninstrumented libraries can create false
alarms, because they do not maintain the object IDs at
allocations. Like in case of DSR, or other solutions dealing
with distinct points-to sets, modularity is also an issue, since
the resulting IDs depend on the global points-to graph. While
WIT works at compile time, BinArmor [65] aims to enforce
a similar policy with binary rewriting. Since the pointer
analysis the policy requires is infeasible to do in binaries,
the system tries to identify potentially unsafe dereferences
and their valid targets dynamically, by running and tracing
the program with various inputs. This approach can neither

guarantee the lack of false negatives, nor false positives, and
its performance overhead can go up to 180%.

B. Data-flow Integrity

Data-Flow Integrity (DFI) as proposed by Castro et
al. [66] detects the corruption of any data before it gets used
by checking read instructions. DFI restricts reads based on
the last instruction that wrote the read location. In program
analysis terms, DFI enforces the reaching definition sets.
The reaching definition set of an instruction is the set of
instructions which might have last written (defined) the
value that is used by the given instruction based on the
control-flow graph. For instance, the policy ensures that the
isAdmin variable was last written by the write instruction
that the source code defines and not by some rogue attacker-
controlled write. Or it ensures that the return address used by
a return was last written by the corresponding call instruc-
tion. DFI also builds on static points-to analysis in order
to compute the global reaching definition sets. Similarly to
WIT, the resulting reaching definition sets are assigned a
unique ID. Each written memory location is marked in the
shadow memory with the writing instruction’s ID. Before
each read, this ID is checked whether it is the element of
the statically computed set of allowed IDs.

The previously discussed solutions checked every indirect
memory write, so the shadow memory area was automat-
ically protected. Contrarily, the Data-flow Integrity policy
dictates the instrumentation of only reads. Unfortunately, in
order to protect the integrity of its metadata, DFI has to
check all indirect writes as well, and make sure that their
target addresses are outside of the shadow memory area.

The performance overhead of the technique varies be-
tween 50-100% on the SPEC 2000 benchmark. Similarly
to previous solutions, it is not binary compatible, since false
alarms can be caused by the lack of metadata maintenance
in unprotected libraries.

VIII. CONTROL-FLOW HIJACK DEFENSES

The following two policies focus only on hijacking at-
tacks. While the Code Pointer Integrity aims to prevent the
corruption of code pointers, Control-flow Integrity detects it.

A. Code Pointer Integrity

While the integrity of some code pointers can and should
be protected, enforcing Code Pointer Integrity alone is
infeasible. Immutable code pointers, such as the ones in the
Global Offset Table or in virtual function tables (vtable), can
be easily protected by keeping them in read-only memory
pages. Most code pointers however, such as programmer
defined function pointers or saved return addresses, must
remain writable. Furthermore, even if the integrity of all
code pointers in memory could be enforced, the hijacking
attack would still be possible, by exploiting an erroneous
indirect memory read to load the wrong value into the

register. Most use-after-free exploits, for instance, divert
the control-flow by reading the “wrong” virtual function
table through a dangling pointer, which does not involve
overwriting code pointers in memory at all. It follows from
this discussion that detecting a code pointer corruption
before its usage would be better.

B. Control-flow Integrity

Control-flow Integrity (CFI) solutions enforce some policy
regarding indirect control transfers, mitigating the hijacking
attack in Step 5. Note that direct control transfers cannot be
diverted, and hence they need no protection.

1) Dynamic return integrity: The most well known
control-flow hijacking attack is the “stack smashing” at-
tack [67]. Stack smashing exploits a buffer overflow in
a local variable to overwrite the return address on the
stack. Stack cookies or canaries [68] are the first proposed
solution against this attack. A secret value (cookie/canary)
is placed between the return address and the local variables.
If the return address is overwritten by a buffer overflow,
the cookie changes as well, what is detected by the check
placed before the return instruction. Stack cookies do not
protect indirect calls and jumps, and they are vulnerable
to direct overwrite attacks and information leaks. However,
stack cookies are popular and widely deployed, because the
performance overhead is negligible (less than 1%) and no
compatibility issues are introduced.

Shadow stacks [69] can solve some of the problems of
canaries, like information leaks and direct overwrites. To
eliminate the reliance on a secret, the saved return addresses
are pushed to a separate shadow stack as well, so upon
function return, the shadow copy can be compared with
the original return address. Simply making a copy and
checking if it still matches before the return makes the
attack much harder, even when the shadow stack is not
protected, since the attacker has to corrupt the return address
in two separate locations. To protect the shadow stack itself,
RAD [70] proposes the use of guard pages or switching
write permission to protect the shadow stack area. While
the former does not protect against direct overwrites, the
latter causes 10x slowdown. To estimate the performance
overhead of an unprotected shadow stack mechanism, we
implemented one as an LLVM plugin, which has an average
overhead of 5% on the SPEC2006 benchmark. Shadow
stack mechanisms also has to deal with compatibility issues,
e.g., to handle exceptions. However, we believe that false
positives can be avoided by a careful implementation.

2) Static control-flow graph integrity: To prevent all
control-flow hijacks, not only returns, but indirect calls and
jumps have to be protected as well. Section VII covers
how WIT identifies and enforces the set of valid targets
(i.e., the points-to set) of each call instruction. This idea,
together with the term Control-flow Integrity was originally
introduced by Abadi et al. [71]. Their work focuses on

statically determining the valid targets of not only calls, but
also function returns, and thus enforcing the resulting static
control-flow graph. Unlike WIT, which stores the IDs in a
protected shadow memory, the CFI authors propose storing
them inside the code itself, by placing the ID right to the
target location, so it can be protected by Code Integrity.
To avoid compatibility issues, the IDs can be encoded into
instructions, which, if inserted, will not affect the semantics
of the code. Calls and returns are instrumented to check the
target address whether it has the right ID before jumping
there. Note, that this requires Non-executable Data as well,
to prevent forging valid targets.

As for returns, enforcing any statically predetermined
set of valid targets is a weaker policy than enforcing the
dynamic call stack enforced by a shadow stack. At run-time,
there is always exactly one correct target of a function return,
but since a function can be called from multiple call sites,
the statically determined set will include all of them as valid
targets.

Another issue with enforcing the unique points-to sets
of indirect control transfers is modularity support, as in
the case of all previously covered pointer analysis based
solutions. The precise points-to sets can only be determined
globally, which makes modularity and dynamic library reuse
challenging. This the main reason why this solution works
great with monolithic kernels [72] or hypervisors [73], where
every module is statically linked together, but has not been
deployed for dynamically linked applications. A weaker, but
more practical policy is restricting indirect control transfers
to the union of all their points-to sets (cf. Yong et al. in
Section VII-A). The original CFI implementation also uses
this approach, meaning that all indirectly callable function
is marked by the same ID. The advantage of this policy is
that it does not even need pointer analysis, because it is
enough to enumerate all functions whose address is taken.
This is a much more conservative policy, but it allows the
modular transformation and interchanging of libraries. For
many functions, this policy means that the allowed set of
return targets has to include all call sites in a program.
Since this is overly permissive, the authors suggest using
a shadows stack mechanism instead for checking returns.

The average performance overhead of the Abadi imple-
mentation is 15%, while the maximum measured is as high
as 45%. The implementation which uses a shadow stack
mechanisms for returns has an additional 10% overhead.
This solution is not binary compatible either, and since it
relies on the W⊕X policy, it can not be enforced in case of
JIT compilation.

IX. DISCUSSION

We summarize the properties of a selected set of solutions
in Table II, grouped by the policy categories identified
in Section II, except the following two: (i) Code Pointer
Integrity, because enforcing it is infeasible without any

Policy type (main approach) Technique Perf. % (avg/max) Dep. Compatibility Primary attack vectors
G

en
er

ic
pr

ot
.

Memory Safety
SofBound + CETS 116 / 300 × Binary —
SoftBound 67 / 150 × Binary UAF
Baggy Bounds Checking 60 / 127 × — UAF, sub-obj

Data Integrity WIT 10 / 25 × Binary/Modularity UAF, sub-obj, read corruption
Data Space Randomization DSR 15 / 30 × Binary/Modularity Information leak
Data-flow Integrity DFI 104 / 155 × Binary/Modularity Approximation

C
F-

H
ija

ck
pr

ot
.

Code Integrity Page permissions (R) 0 / 0 X JIT compilation Code reuse or code injection
Non-executable Data Page permissions (X) 0 / 0 X JIT compilation Code reuse

Address Space Randomization ASLR 0 / 0 X Relocatable code Information leak
ASLR (PIE on 32 bit) 10 / 26 × Relocatable code Information leak

Control-flow Integrity

Stack cookies 0 / 5 X — Direct overwrite
Shadow stack 5 / 12 × Exceptions Corrupt function pointer
WIT 10 / 25 × Binary/Modularity Approximation
Abadi CFI 16 / 45 × Binary/Modularity Weak return policy
Abadi CFI (w/ shadow stack) 21 / 56 × Binary/Modularity Approximation

Table II
THIS TABLE GROUPS THE DIFFERENT PROTECTION TECHNIQUES ACCORDING TO THEIR POLICY AND COMPARES THE PERFORMANCE IMPACT,

DEPLOYMENT STATUS (DEP.), COMPATIBILITY ISSUES, AND MAIN ATTACK VECTORS THAT CIRCUMVENT THE PROTECTION.

level of Memory Safety; (ii) Instruction Set Randomization,
because the same attack vectors can be defeated with page
permission enforcing Code Integrity and Non-executable
data. The comparison neither covers overly specific Data
Integrity protections like heap metadata protection or ca-
nary/redzone/guards based protections, nor too special cases
of Control-flow Integrity, like exception handler validation.
It does not include dynamic binary instrumentation solutions
due to their high performance cost, or others which are not
fully automatic (e.g., needs source code modification). The
upper half of the table covers protections aiming to protect
against memory corruption in general and thus mitigate all
four different attacks identified in Section II. The lower half
covers approaches which aim to protect against control-flow
hijacks only.

The performance is represented as the average and maxi-
mum overhead using either the SPEC CPU 2000 or 2006
benchmarks. We rely on the numbers reported by the
developers of the tools, since several of them are not
publicly available. We stress that since the values represent
measurements in different environments, different config-
urations, and sometimes with different sets of programs,
they only provide rough estimates. We present some of the
fastest solutions for enforcing Memory Safety and Data-
flow Integrity but even those can double the execution
time. WIT and DSR report much lower overhead then
other general protection techniques and even smaller then
the Abadi CFI system under the hijacking protections. The
deployment status column represents whether a solution is
used in practice. The case of enforcing full ASLR on Linux
shows that even a 10-25% overhead prevents deployment.
This is the overhead that Position Independent Executables
(relocatable executables) cause on 32-bit machines and the
reason why ASLR is enforced only for libraries by default
on most distributions. As the table shows, only solutions
with negligible overhead are adopted in practice.

Not only performance but also compatibility issues pre-

vent the deployment of many proposed techniques. In the ta-
ble, “binary” represents binary compatibility issues, meaning
interfacing with unmodified binaries (e.g., legacy libraries).
This will not only cause false negatives, but false positives
as well, which contradicts with our practical requirements.
All solutions which build on points-to analysis have “mod-
ularity” issues, because the enforcement of stricter policies
require consideration of the dependencies between modules,
which makes re-usable libraries challenging.

None of the shown policies are perfect regarding robust-
ness, except enforcing complete Memory Safety with pointer
based techniques. Protections enforcing weaker Memory
Safety policies have more attack vectors, like use-after-free
(UAF), corruption of sub-objects (sub-obj) or corrupting
values in registers via read dereferences. DSR and ASLR
provide the most comprehensive solutions as a generic and
hijacking protection respectively, but both of them can be
circumvented by information leaks. The protection level
of DFI (as a generic protection) and CFI (as a hijack
protection) is only bounded by the “approximation” due
the static analysis. This means (i) enforcing a static set
of valid reaching definitions or jump targets, and not the
single dynamically valid ones, and (ii) the conservativeness
of the analysis establishing those sets. WIT is shown twice
in the table as a generic protection and as a control-flow
hijacking protection. As a generic protection, it enforces
an “approximation” of Memory Safety, i.e., Data Integrity,
which has some weaknesses, but protects against most of
the attacks, including program specific data-only attacks as
well. As a control-flow hijacking protection, it enforces the
same policy as Abadi CFI with a shadows stack, but with
less overhead. Unfortunately, neither the Abadi CFI nor
the WIT approach has been adopted in practice, although
their overhead can be considered low. We attribute this to
the beforementioned compatibility and modularity problems
raised by points-to analysis.

X. CONCLUSION

Both academia and industry have been fighting memory
corruption bugs for decades. From time to time, pundits
have proclaimed that the problem had finally been solved,
only to find their assertions falsified by subsequent attacks.
With the wide deployment and hardware support for Non-
executable Data, research has been focusing on ROP attacks
within hijack protections. The latest solution seemed to be
randomization, such as fully enforced, high entropy, 64-
bit ASLR or other in-place randomization techniques. But
the increased use of JIT compilation limits the usability
of a W⊕X policy, while the prevalence of user scripting
simplifies defeating randomization. The ability of running
attacker provided scripts helps leaking secrets and on-the-
spot dynamic exploit construction. Researchers have to step
back, and instead of focusing on specific attacks, we need
to look at the big picture. Hopefully, this paper helps in this
regard by setting up its general attack model and by placing
different policy types in this model.

This systematization suggests that stronger policies are
needed, such as Data Integrity; or, when only hijacking
attacks are considered a valid threat, Control-flow Integrity.
While the research direction of enforcing such policies
is promising, existing solutions are still impractical. Our
requirement analysis and the summarization of current tech-
niques show that performance, and especially compatibility
problems, are the main barriers of wide adoption. We remind
researchers in the security area to recognize the significance
of these properties in the real world.

There is a pressing need for research, development, and
deployment of better publicly available software protection
techniques, especially built into commonly used compilers,
such as LLVM and GCC. These open-source platforms can
be of great value, where some of the compatibility problems
can be solved by the community so researchers can release
their robust but possibly slow protections to interested users.
Such experiments interacting mutually with real applications
will improve research further, and they might be able to lift
the performance threshold people impose on security. We
hope that this systematization of knowledge will help other
researchers in finding new ways to make progress in this
area. The war is not over.

Acknowledgments. We thank the anonymous reviwers,
Prof. R. Sekar, Stephen McCamant, and Dan Caselden
for their insightful reviews, helpful comments and proof-
reading. This work was supported in part by ONR grants
N000140710928 and N000140911081; NSF grants CNS-
0831298, 0842695, 0831501 and CCF-0424422; an AFOSR
grant FA9550-09-1-0539; a DARPA award HR0011-12-2-
005; and the National Natural Science Foundation of China
grant No. 61003216.

REFERENCES

[1] MITRE, “CWE/SANS Top 25 Most Dangerous Software
Errors,” 2011, http://cwe.mitre.org/top25.

[2] H. Etoh and K. Yoda, “Protecting from stack-smashing at-
tacks,” 2000, http://www.trl.ibm.com/projects/security/ssp.

[3] Microsoft, “/SAFESEH (Safe Exception Handlers),” 2003,
http://msdn2.microsoft.com/en-us/library/9a89h429.aspx.

[4] A. van de Ven and I. Molnar, “Exec shield,” 2004, http://
www.redhat.com/f/pdf/rhel/WHP0006US Execshield.pdf.

[5] T. PaX, “Address space layout randomization,” 2001.
[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt

[6] Nergal, “The advanced return-into-lib(c) exploits: PaX case
study,” Phrack, vol. 11, no. 58, Dec 2001.

[7] H. Shacham, “The geometry of innocent flesh on the bone:
return-into-libc without function calls,” in CCS’07.

[8] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented program-
ming without returns,” in CCS’10.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-
oriented programming: a new class of code-reuse attack,” in
ASIACCS’11.

[10] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and
P. Ning, “On the expressiveness of return-into-libc attacks,”
in RAID’11.

[11] R. Roemer, E. Buchanan, H. Shacham, and S. Savage,
“Return-oriented programming: Systems, languages, and ap-
plications,” ACM Trans. Inf. Sys. Sec.’12.

[12] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lach-
mund, and T. Walter, “Breaking the memory secrecy assump-
tion,” in EUROSEC’09.

[13] F. J. Serna, “CVE-2012-0769, the case of the perfect info
leak,” 2012.

[14] D. Blazakis, “Interpreter exploitation,” in WOOT’10.
[15] U. Erlingsson, Y. Younan, and F. Piessens, “Low-level soft-

ware security by example,” in Handbook of Information and
Communication Security, 2010.

[16] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos,
“Memory errors: the past, the present, and the future,” in
RAID’12.

[17] Y. Younan, W. Joosen, and F. Piessens, “Runtime countermea-
sures for code injection attacks against C and C++ programs,”
ACM Comp. Surv.’12.

[18] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis,
“kguard: lightweight kernel protection against return-to-user
attacks,” in USENIX Security’12.

[19] jp, “Advanced Doug Lea’s malloc exploits,” Phrack, vol. 11,
no. 61, Aug 2003.

[20] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda, “G-Free: defeating return-oriented programming
through gadget-less binaries,” in ACSAC’10.

[21] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smash-
ing the gadgets: Hindering return-oriented programming using
in-place code randomization,” in IEEE SP’12.

[22] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” in SOSP’93.

[23] U. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu,
and G. C. Necula, “XFI: software guards for system address
spaces,” in OSDI’06.

[24] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A
sandbox for portable, untrusted x86 native code,” in IEEE
SP’09.

[25] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer,
“Non-control-data attacks are realistic threats,” in USENIX
Security’05.

[26] huku and argp, “Exploiting vlc: A case study on jemalloc
heap overflows,” Phrack, vol. 14, no. 68, Apr 2012.

[27] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy,” in USENIX Securty’11.

[28] VUPEN, “Vulnerability research team blog,” 2012, http://
www.vupen.com/blog/.

[29] F. B. Schneider, “Enforceable security policies,” ACM Trans.
Inf. Sys. Sec.’00.

[30] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in PLDI’07.

[31] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in PLDI’05.

[32] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastruc-
ture for adaptive dynamic optimization,” in CGO ’03.

[33] M. Payer and T. R. Gross, “Fine-grained user-space security
through virtualization,” in VEE’11.

[34] E. Bosman, A. Slowinska, and H. Bos, “Minemu: the world’s
fastest taint tracker,” in RAID’11.

[35] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: a
detection tool to defend against return-oriented programming
attacks,” in ASIACCS’11.

[36] C. D. Spradling, “SPEC CPU2006 benchmark tools,”
SIGARCH Comp. Arch. News’07.

[37] Microsoft, “The BlueHat prize contest official rules,” 2012,
http://www.microsoft.com/security/bluehatprize/rules.aspx.

[38] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering
code-injection attacks with instruction-set randomization,” in
CCS ’03.

[39] M. Chew and D. Song, “Mitigating Buffer Overflows by
Operating System Randomization,” Tech. Rep., 2002.

[40] M. Payer, “Too much PIE is bad for performance,” 2012.
[41] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and

D. Boneh, “On the effectiveness of address-space randomiza-
tion,” in CCS’04.

[42] T. Wei, T. Wang, L. Duan, and J. Luo, “Secure dynamic code
generation against spraying,” in CCS’10.

[43] T. Durden, “Bypassing PaX ASLR protection,” Phrack,
vol. 11, no. 59, Jul 2002.

[44] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address
space layout permutation (ASLP): Towards fine-grained ran-
domization of commodity softwar,” in ACSAC’06.

[45] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson, “ILR: Where’d my gadgets go?” in IEEE SP’12.

[46] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code,” in CCS’12.

[47] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard:
protecting pointers from buffer overflow vulnerabilities,” in
USENIX Security’03.

[48] S. Bhatkar and R. Sekar, “Data Space Randomization,” in
DIMVA’08.

[49] G. C. Necula, S. McPeak, and W. Weimer, “CCured: type-safe
retrofitting of legacy code,” in POPL’02.

[50] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang, “Cyclone: A safe dialect of C,” in USENIX
ATC’02.

[51] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“SoftBound: highly compatible and complete spatial memory

safety for C,” SIGPLAN Not.’09.
[52] R. Jones and P. Kelly, “Backwards-compatible bounds check-

ing for arrays and pointers in C programs,” Auto. and Algo.
Debugging’97.

[53] O. Ruwase and M. S. Lam, “A practical dynamic buffer
overflow detector,” in NDSS’04.

[54] D. Dhurjati and V. Adve, “Backwards-compatible array
bounds checking for C with very low overhead,” in ICSE’06.

[55] C. Lattner and V. Adve, “Automatic pool allocation: improv-
ing performance by controlling data structure layout in the
heap,” in PLDI’05.

[56] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy
bounds checking: an efficient and backwards-compatible de-
fense against out-of-bounds errors,” in USENIX Security’09.

[57] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens,
and W. Joosen, “PAriCheck: an efficient pointer arithmetic
checker for C programs,” in ASIACCS’10.

[58] P. Akritidis, “Cling: A memory allocator to mitigate dangling
pointers,” in USENIX Security’10.

[59] E. D. Berger and B. G. Zorn, “DieHard: probabilistic memory
safety for unsafe languages,” in Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’06. New York, NY, USA: ACM,
2006, pp. 158–168.

[60] G. Novark and E. D. Berger, “DieHarder: securing the heap,”
in Proceedings of the 17th ACM conference on Computer
and communications security, ser. CCS ’10. New York,
NY, USA: ACM, 2010, pp. 573–584. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866371

[61] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in USENIX
ATC’12.

[62] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“CETS: compiler enforced temporal safety for C,” in
ISMM’10.

[63] S. H. Yong and S. Horwitz, “Protecting C programs from
attacks via invalid pointer dereferences,” in ESEC/FSE-11’03.

[64] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro,
“Preventing memory error exploits with WIT,” in IEEE
SP’08.

[65] A. Slowinska, T. Stancescu, and H. Bos, “Body armor for
binaries: preventing buffer overflows without recompilation,”
in USENIX ATC’12.

[66] M. Castro, M. Costa, and T. Harris, “Securing software by
enforcing data-flow integrity,” in OSDI’06.

[67] A. One, “Smashing the stack for fun and profit,” Phrack,
vol. 7, no. 49, Nov. 1996.

[68] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “Stack-
Guard: automatic adaptive detection and prevention of buffer-
overflow attacks,” in USENIX Security’98.

[69] Vendicator, “Stack Shield: A ”stack smashing” technique
protection tool for linux,” 2000.

[70] T. Chiueh and F.-H. Hsu, “RAD: A compile-time solution to
buffer overflow attacks,” in ICDCS’01.

[71] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in CCS’05.

[72] J. Li, Z. Wang, T. K. Bletsch, D. Srinivasan, M. C. Grace, and
X. Jiang, “Comprehensive and efficient protection of kernel
control data,” IEEE Trans. Inf. Forencics and Sec’11.

[73] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity,” in IEEE
SP’10.

