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Abstract

Protecting running applications is a hard problem. Many applications are written
in a low-level language and are prone to exploits. Bugs can be used to exploit the
application and to run malicious code. A rigorous code review is often not possible
due to the size and the complexity of the applications. Even a detailed code review
does not guarantee that all bugs in the application are found.

This thesis presents a model for the secure execution of untrusted code. The
model assumes that the application code contains bugs but that the application is
not malicious (i.e., malware). The application is safe if the model protects from all
attack vectors through code-based or data-based exploits in the untrusted code. The
model verifies all code prior to execution and ensures that no unchecked control flow
transfers are possible. An important design decision is to use a dynamic approach for
the implementation with minimal impact on the original applications. Binary only
applications are executed without static recompilation or changes to the compiler
toolchain (e.g., no recompilation is needed and features like dynamically loaded
libraries, lazy binding, or hand written assembly code are still usable).

A dynamic, transparent sandbox in user-space loads and verifies code using bi-
nary translation. A secure loader starts the sandbox and bootstraps the application
and all needed libraries in the sandbox. The sandbox checks the application code
before it is executed and adds security guards during the translation. The combi-
nation of the secure loader and the sandbox protects from code-oriented exploits.
System calls are redirected by the sandbox to a policy-based system call authoriza-
tion layer that verifies every system call towards a policy. Every control flow transfer
in the application code is verified using a dynamic control flow model. Control flow
transfers to illegal locations or instructions that are not legal in the application stop
the program. The combination of a system call policy and control flow integrity
protects the application from code-based and data-based exploits.

A prototype implementation is used to evaluate the performance and effectiveness
of the proposed model. We show that the overhead for our prototype implementa-
tion is low and that the model protects from all code-based exploits. The control
flow model restricts the attack space for data-based attacks and restricts control
flow transfers of the application to well-known and valid locations. The small and
modular trusted computing base enables code reviews and allows additional security
modules (e.g., a module that detects file-based race conditions).
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Zusammenfassung

Der Schutz von laufenden Anwendungen ist ein komplexes Problem. Viele An-
wendungen wurden in einer systemnahen Sprache geschrieben und sind fehleranfäl-
lig. Diese Programmierfehler können ausgenützt werden um eine Anwendung anzu-
greifen und schadhafte Befehle auszuführen. Eine detaillierte Überprüfung des Quell-
codes ist, wegen der Grösse und Komplexität der Applikationen, oft nicht möglich.
Ausserdem garantiert eine detaillierte Überprüfung nicht, dass alle Fehler in der
Applikation gefunden wurden.

Diese Doktorarbeit präsentiert ein Modell für die sichere Ausführung von un-
gesichertem Programmcode. Das Modell trifft die Annahme, dass der Programm-
code der Anwendung Fehler enthalten kann, die Anwendung selbst jedoch nicht
bösartig ist (d.h. die Anwendung ist selbst keine Malware). Die Anwendung gilt
als gesichert, falls das Modell vor allen Angriffsvektoren durch Code-basierte und
Daten-basierte Angriffe im ungesicherten Programmcode schützt. Das Modell stellt
sicher, dass jede Codesequenz geprüft wird, und garantiert, dass keine ungeprüfte
Verzweigung möglich ist. Eine wichtige Designentscheidung ist es, einen dynamis-
chen Ansatz für die Implementierung zu wählen, welcher nur minimalen Einfluss auf
die Anwendung hat. Ausführbare Programme ohne Quellcode werden ohne statische
Kompilierung oder Veränderungen des Kompilierers ausgeführt. Dieser Ansatz er-
möglicht die Ausführung von geschützten Programmen ohne erneute Kompilierung
und erlaubt Funktionen wie dynamische Bibliotheken, verzögertes Laden und han-
doptimierten Assemblercode.

Eine dynamische, transparente Sandbox im Userland lädt und verifiziert den
Programmcode mittels binärer Übersetzung. Ein abgesichertes Programm startet
die Sandbox und initialisiert die Anwendung und alle benötigten Bibliothekten in-
nerhalb der Sandbox. Die Sandbox überprüft den Programmcode bevor er ausge-
führt wird und fügt während der Übersetzung dynamische Sicherheitschecks hinzu.
Die Kombination von sicherem Startprogramm und der Sandbox schützt vor allen
Code-orientierten Angriffen. Systemaufrufe werden von der Sandbox zu einer regel-
basierten Autorisierung für Systemaufrufe umgeleitet. Jede Verzweigung im Pro-
grammcode wird anhand eines Kontrollflussmodells verifiziert. Verzweigungen zu
illegalen Zielen oder Instruktionen beenden die Anwendung. Die Kombination einer
regelbasierten Autorisierung für Systemaufrufe mit den Kontrollflusstests schützt
die Anwendung vor Code-basierten und Daten-basierten Angriffen.
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Die Effektivität und Effizienz des Modells wird anhand einer Prototypenimple-
mentierung evaluiert. Wir zeigen, dass der zusätzliche Berechnungsaufwand klein
ist und dass das Modell vor allen Code-basierten Angriffen schützt. Das Kon-
trollflussmodell verringert die Angriffsmöglichkeiten von Daten-basierten Angriffen
und beschränkt die möglichen Verzweigungen auf bekannte und gültige Ziele. Der
kleine und modulare Prototyp ermöglicht eine detaillierte Überprüfung des Quell-
codes und erlaubt ausserdem zusätzliche Sicherheitsmodule (z.B. ein Modul, welches
zeitliche Angriffe auf das Dateisystem erkennt).
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1
Introduction

Secure execution of applications in user-space is a hard problem. Several statistics
show that the number of lines of code is proportional to the number of bugs in
a program [PCC+96, Sch00, McC04]. Some bugs are security relevant. A bug is
security relevant if it can be exploited to gain access to a system or to escalate
privileges of an attacker (e.g., if the bug enables an attacker to redirect control flow
to alternate code, or to inject new code into the process that is then executed).

In addition, the number of lines of code in applications usually increases from
one release to another (e.g., bugs that are fixed, added functionality, and other
changes). Code reviews can reduce the number of bugs and especially for critical
sections it is important to review the code rigorously. Nevertheless, the Trusted
Computing Base (TCB) 1 includes the complete code (i.e., the application and all
used shared libraries) that is running inside a process plus the privileged kernel code.
It is not practical to rigorously review or verify large code bases due to the state
and complexity explosion.

The current security practice is reactive. Exploitable bugs are analyzed by the
vendor after detection. The vendor releases a patch after the exploit is reproduced
and a fix is constructed. This patch is then distributed to the clients. The clients
then apply the patch after local testing. All running instances of the software are
vulnerable until the patch is applied. Other related approaches prohibit specific
patterns (e.g., system call combinations, control flow transfers, or input data) in the
application. These patterns must be predefined and the detection mechanisms are
limited, e.g., techniques like return-oriented programming [PB04, Sha07, Ner07], or
jump-oriented programming [PB04,BJFL11] are hard to detect.

A limitation of current operating systems is that privileges are given based on a
per-user basis. Every user can run multiple (different) applications. Every running
application has the same privileges as the user. A specific application does not
need all privileges of a specific user but rather only a subset. In general different
applications need different subsets of privileges. For example, a web-browser should
be able to access the Internet but should not be able to access private files, while
a text editor should be able to open documents but should not be able to transfer
data to a different host on the Internet.

1The Trusted Computing Base is the set of software that is critical for the security of the system.
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2 Chapter 1. Introduction

Many partial solutions to protect the execution of applications (e.g., Address
Space Layout Randomization (ASLR) [PT03,BDS03,BBSD05], Data Execution Pre-
vention (DEP) [vdVM04], stack canaries [CPM+98,HK01], Software-based Fault Iso-
lation (SFI) [WLAG93, SD01, SD02, KBA02, FC08, PG11], and policy-based system
call authorization [GWTB96,KBA02,Pro03,GPR04,Bau06,FS08,WALK10,PG11])
exist and protect from specific attack vectors. But all these techniques have their
weak points and can be circumvented by targeted attacks.

SFI has been embraced by many projects to address the problem of the trusted
computing base. SFI is a technique that executes untrusted application code2 in a
sandbox. This sandbox controls every executed instruction and dynamically adds
new security guards into the executed code. These guards can protect from code
injection attacks (stack-based and heap-based code injection) that place new code
in the address space of a running application.

User-mode SFI is restricted to code that is executed in user-space and does not
restrict individual system calls. Many dynamic interception tools [SD02, KBA02,
BGA03,SSNB06] rely on the standard loader to gain control of the execution flow,
yet the loader is not part of the sandbox. This mismatch can be exploited by a
potential attacker.

The dynamic loader is the first piece of code that is executed when a new process
is created. The dynamic loader maps the application into memory and resolves all
symbols that are used in the different shared libraries. These relocations and symbol
lookups enable a program to use libraries and to implement different techniques like
position independent code. After the program is prepared for execution (i.e., after
the loader has finished with the initial relocation and loading), the program turns
into a process and the initialization code (i.e., the main function) of the application
is executed.

The loader has access to all symbols and relocated objects at runtime and
shares this information with the executed program, e.g., to resolve new symbols
dynamically, or to dynamically load additional libraries. The standard dynamic
loader offers a broad functionality, e.g., debugging primitives, library overwrites,
symbol overwrites, or alternative paths. The combination of the rich function-
ality that the standard loader provides and the fact that all applications (e.g.,
privileged applications, applications reachable over the network, or local appli-
cations) use the same loader make it a promising attack vector. Recent at-
tacks [Dan10,Orm10b,Orm10a,Ros10,Bro11] illustrate the problem. This problem
can be solved by adding the loader to the trusted computing base and making the
loader part of the security framework.

A limitation of an SFI-based sandbox (without a special secure loader) is that
the sandbox treats application code as a black box. The black box approach enables
control flow-based attacks that use return and jump instructions to redirect control

2Untrusted application code is code that can contain vulnerabilities, but that is not malicious
code.



1.1. Attack model 3

flow to alternate code locations that are already available in the application. A
clever combination of multiple such control flow redirects enables the construction
of a chain of gadgets that executes malicious code without injecting new code into
the application. Applications need a model that enumerates all allowed control flow
transfers that is enforced by the sandbox. The enforcement of such a model is called
control flow integrity.

1.1 Attack model

The attack model defines the constraints for an attack, the properties of a successful
attack, and the limitations of the secure execution platform. The execution model
explains which applications can be protected and describes changes to the original
memory layout of the application. The flow of execution in an application can
be seen as an explicit graph where control flow transfers are the edges and the
nodes are individual basic blocks, i.e., a dynamic control flow graph. The execution
model describes how a safe user-mode sandbox transforms this control flow graph
at runtime to ensure that no “unwanted” locations are reached.

A potential attacker tries to escalate privileges by executing injected or con-
structed code. A local user escalates the available privileges to a higher privileged
account (e.g., by triggering an exploit in a “Set User ID upon execution (SUID)”
application to gain super-user access). A remote user (without the ability to execute
arbitrary commands, e.g., using a web service) gains user-level access by escalating
the available privileges to a local user account. Attackers use the application and
maliciously crafted input that triggers security relevant bugs in the application.

1.2 Requirements for a secure execution platform

A platform for the secure execution of untrusted application code must ensure that
no code-oriented3 or data-oriented4 exploits are possible in the running application.
Such a platform is implemented as a dynamic sandbox that precisely controls the
executed code. Mandatory factors for such a secure execution platform are:

1. The loader is part of the secure platform and ensures that no untrusted code
is executed during the initialization of the application.

2. All application code is executed in an uncircumventable sandbox.

3. Security guards extend the sandbox and stop code-based intrusion vectors.

4. A fine-grained execution model controls the application code and limits illegal,
or unintended control transfers of the application.

3Code-oriented exploits inject new executable code into a process and execute it.
4Data-oriented exploits reuse existing code with alternate and malicious data.
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5. The application can only execute system calls that are needed to fulfill the
purpose of the application.

The security guards of the sandbox protect the application from all code injection
attacks. A code injection attack is an exploit form that places new (malicious) code
in the memory space of an application and redirects control flow to that injected
code. Code can be injected (as data) through, e.g., a buffer overflow, but the sandbox
never executes the injected code. The sandbox either detects an illegal code region
that contains code when a“control flow instruction”5 attempts to transfer control to a
data region or the kernel generates a protection fault if the application tries to write
to a code region. A shadow stack [FS01, PcC03] in the sandbox domain ensures
that return-oriented programming [Sha07] attacks are not possible. The sandbox
dynamically removes indirect control flow transfers whenever possible to reduce the
opportunities for jump-oriented programming [BJFL11]. The sandbox uses per-
application system call policies to protect from remaining attack vectors. Data-based
attacks and jump-oriented programming attacks are stopped whenever an illegal
system call is executed. Attacks against the sandbox are limited by protecting
internal data. All data structures of the sandbox domain (including the secure
loader) are write-protected during the execution of translated code.

The sandbox kills the application if an attack is detected. Denial of service
attacks (e.g., an attacker can repeatedly kill an application by trying to exploit
a vulnerability) are outside of the scope of the attack model. Several mitigation
techniques exist to restart failed services but they are not the topic of this thesis.

1.3 The foundation of a secure dynamic execution

platform

This thesis presents a novel model-driven approach to application security that fulfills
the requirements presented in Section 1.2. The secure platform for the execution of
untrusted application code combines a secure loader, a user-space sandbox, and a
user-space policy enforcement mechanism for system calls and arguments. Figure 1.1
gives a high-level overview of the secure execution platform.

Our approach replaces the standard loader with a security-aware loader. The
secure loader is a part of the secure execution platform and offers a restricted secure
API to the application. The secure loader is the foundation for a secure separation
of the sandbox and the (translated) application in user-space by ensuring that no
untranslated code is executed in the startup phase of the application. The secure
loader ensures that the sandbox is initialized before any application code is loaded
and runs all application code in the sandbox.

5A control flow instruction is any instruction that changes the control flow of the program, e.g.,
jump instructions, indirect jump instructions, call instructions, indirect call instructions, or return
instructions.
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Figure 1.1: Overview of the secure execution platform. The complete application is
executed in the secure execution platform.

The sandbox realizes SFI through dynamic binary translation. All application
code is translated before it is executed. SFI adds dynamic guards during the trans-
lation process and ensures that no invalid code (e.g., code in data regions or stack
regions) can be translated. Invalid instructions, malicious instructions, or errors
during the translation (e.g., illegal library imports, or illegal targets for control flow
transfers) terminate the application. The sandbox ensures that no code injection
exploits are possible. Attempted code injection exploits are detected and the appli-
cation is terminated.

An extension of the control flow transfer checks verifies all target locations ac-
cording to a given control flow model. The model contains a set of all valid targets
for each source location. The control flow transfer is only allowed if the current
target is in the set of valid target locations for the current source location. The dy-
namic verification of the model implements a form of dynamic control flow integrity.
These extended control flow transfer checks extend the protection of the sandbox
from code injection exploits to any code-oriented exploits. Data-oriented exploits
reuse already existing code in a way that was not intended by the programmer,
e.g., by combining multiple short instruction sequences into malicious code using
unintended control flow transfers. If a data-oriented exploit is detected then the
application is terminated with a security exception.

The tight integration of a secure loader into the sandbox is used to dynamically
generate the model used for the control flow transfer checks. The loader shares
information about all loaded symbols (e.g., functions) with the sandbox and con-
structs a control flow transfer model that lists all valid targets for each control flow
transfer. Targets of function calls are limited to symbols in the same shared object
or to symbols imported from other shared objects. Jump instructions are limited
to the region of the current symbol. The security model peeks into the application
black-box and uses third-party information (symbol information from the linker)
to verify all control structures of the process image. The additional information
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Figure 1.2: Detailed overview of the secure execution platform.

offers a fine-grained and detailed view of the application and the used interfaces.
This model-driven approach combined with SFI allows fine-grained control of the
executed code.

All system calls of the application are treated as special instructions. System
calls are redirected to an authorization layer that checks the system call and all
arguments of the system call. For each system call the sandbox verifies that the
system call and all its parameters are allowed according to a given per-application
policy. The policy limits the system calls (and arguments) that an application can
execute. The system call authorization layer protects from data-based exploits.
Data-based exploits overwrite data structures of the application. These changed
data structures are later used by legit code and result in an illegal operation, e.g., a
system call with malicious parameters.

Figure 1.2 gives a detailed overview of individual modules for the secure exe-
cution platform including the secure loader. All application code is wrapped and
executed in a sandbox layer. The sandbox controls all interactions of the translated
application code with the operating system. The application can load additional
libraries only using the secure loader. System calls are executed only through the
system call interposition API. This API checks that the arguments correspond to a
well-defined policy. Our approach uses compiler techniques to dynamically rewrite
machine code. The translated code is checked for potentially malicious instructions.
All control flow transfers are hardened using additional translation-time or runtime
checks. Using this isolation layer all system calls are redirected to a policy-based
authorization framework.

An extension of this framework implements a check for dangerous patterns in
system calls (e.g., policy violations) and is also used to check the program state
(e.g., an extension of the secure execution framework protects running applications
from file-based race conditions).



1.4. Thesis statement 7

This comprehensive technique extends different fields of system-based security
research (SFI, security guards, system call policies, policy enforcement, and race-
detection in file accesses). Only such a holistic approach enables the protection from
all known attack vectors, whether control flow-based or data-based.

1.4 Thesis statement

This thesis presents different building blocks of a secure execution platform for unsafe
or untrusted applications. A binary translation-based sandbox enables SFI that is
used to isolate traps and confine programming errors in the application. A novel
secure loader that is part of the trusted computing platform forwards additional
information to the secure execution platform. This additional information is used
to construct an execution model for the application that encodes valid targets for
all control flow transfers.

The observation that vital guards for the secure execution of untrusted code are
missing in current platforms leads to the thesis statement:

“A secure dynamic execution platform that combines dynamic control
flow integrity, a secure loader mechanism, and a sandbox to run un-
trusted code enables full protection from code-oriented and data-oriented
exploits.”

The rest of the thesis presents the different building blocks to prove the thesis
statement. The following chapters introduce the different security layers and present
an evaluation of the security features.

1.5 Libdetox

Libdetox is a prototype implementation of the concepts presented in Section 1.3 for
the Linux kernel. Libdetox is used to validate the thesis statement in Section 1.4.

Libdetox provides a secure loader as an alternative to the standard libc loader.
The secure loader initializes the sandbox first, with dependences of the application
being resolved afterward. The sandbox then uses dynamic binary translation to
rewrite the application code before it is executed. During the translation process
dynamic guards are added to the application code. The libdetox platform uses
information from the secure loader to construct a detailed model of allowed control
flow transfers similar to a control flow graph. This model is then checked in the
control flow transfer guards in the translated code. The combination of the secure
loader, the sandbox, and the control flow transfer checks using the detailed model
enables protection from all code-oriented exploits.

A second line of defense uses a per-application policy to check every single system
call and all arguments. This mechanism protects from data-based exploits.
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The interaction between a secure loader and an extended sandbox enables a novel
model for program instantiation. Security is a first class citizen and is provided right
from the start.

1.6 Contributions

The contribution of this thesis is the design of a platform for the secure execution of
untrusted application code. This platform follows a modular design that builds on
a loader module, a sandbox module, and a system call policy module. The different
modules share and exchange information and are all part of the trusted computing
platform. We evaluate an implementation prototype to prove the practicability of
the proposed design. A detailed list of contributions follows:

1. The design of a platform for the secure execution of untrusted code.

(a) The design of a secure loader module that controls the startup of the
execution platform. The secure loader ensures that the application cannot
execute unchecked code during the startup phase and forwards crucial
control flow information to the sandbox.

(b) The design of a sandbox module that verifies all application code and
adds security guards to the executed application code.

(c) A system call policy that checks the communication between the appli-
cation and the operating system by verifying every system call and the
corresponding arguments.

2. An extensive evaluation of a prototype implementation of the secure platform.
The complete platform and individual modules are evaluated in both perfor-
mance and security aspects.

3. A case study that shows the extensibility and flexibility of the secure execution
platform by adding a dynamic file-based race detection toolkit to the platform.

1.7 Publications

Portions of this work have been published at different conferences. The basic struc-
ture of the binary translator is published at AMAS-BT 2009 [PG09] and Systor
2010 [PG10]. The basic binary translator is called fastBT. The paper presented
at 26c3 [Pay09] focuses on security implications for binary translators. A discus-
sion of attack vectors through the eyes of SFI is presented at 27c3 [Pay10]. The
paper in VEE 2011 presents libdetox [PG11] which extends the basic binary trans-
lator fastBT with additional security modules that protect the sandbox from attacks
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against the sandbox itself and provide an additional policy-based system call inter-
position layer. The design of the secure loader and the integration into the secure
execution framework is published at IEEE S&P 2012 [PHG12]. The combination
of libdetox and secure loader builds the secure execution platform. The dynamic
race detection module dynaRace [PG12] extends libdetox with a detection engine
for file-based race conditions. DynaRace is published at VEE 2012 [PG12].

1.8 Outline

The thesis is organized as follows. Chapter 2 presents background information and
different exploit classes that one needs to understand the context of this thesis.
Chapter 3 discusses related work. Chapter 4 explains the design of the platform
for the secure execution of untrusted code and the three modules that build up the
platform. Chapter 5 describes the implementation of libdetox. Chapter 6 evaluates
the security design and the prototype implementation of the execution platform.
Chapter 7 shows a case study that extends the execution platform and implements
a dynamic race detection toolkit that protects unaware applications from file-based
race conditions. Chapter 8 presents future directions for research that extend the
execution platform and shows different optimization opportunities. Last but not
least Chapter 9 concludes this thesis.





2
Background information

This chapter presents background information that describes material needed to
follow the design decisions of this thesis and presents details to put this work into
context.

The ideas and concepts of this thesis apply in general and do not depend on
a specific platform. The implementation prototype, some specific attack classes,
and some low-level optimizations use specific features of the x86 Instruction Set
Architecture (ISA) described in Appendix A.

Successful exploits on running applications require an attack vector, e.g., a bug in
an application and typically specially crafted input data. Section 2.1 and Section 2.2
describe different attack vectors and possible exploit classes. Section 2.3 offers a
comparison between Erlingsson’s attack classification and the different exploit classes
introduced in Section 2.2.

All dynamic applications use the standard loader to bootstrap the process image.
The standard loader on regular Linux systems has several security weaknesses, as
discussed in Section 2.4.

Binary translation, the art of rewriting code, is used as a transparent way of
rewriting code before its execution. Our virtualization system uses binary trans-
lation to implement an additional abstraction layer between the application and
the operating system where our security features are enforced. Section 2.5 lists the
design criteria for binary translation. The concepts in this thesis apply for all operat-
ing systems but the prototype implementation assumes a Linux-based environment.
The important details of the Linux loader and the Executable and Linkable Format
(ELF) are listed in Appendix B. A Linux-oriented implementation must use the
specific low-level Linux system calls. Appendix C describes the interface to these
system calls.

2.1 Attack vectors

Exploits interact with a running application to trigger bugs or vulnerabilities. Ex-
ploits generate specially crafted input data that force the program to reach alternate
locations and cause unintended behavior. Exploits are used to gain control of an

11
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application, to escalate privileges, or to start a denial of service attack.

An exploit is implemented in two stages: (i) inject alternate code that will be ex-
ecuted or data that will be interpreted in an unintended way, (ii) redirect the control
flow of the program to execute the injected code or to interpret the injected data.
An attack vector describes a way how an exploit can attack a running application.

This section explains various different attack vectors. Exploits are enabled
through unchecked and unvalidated assumptions on input data, e.g., the program-
mer expects that the user always passes less than 20 characters in the name field. If
the maximum length of the name is neither enforced by the programmer nor by the
runtime system then the missing bound check can be used to exploit the application.

An attack vector is a prerequisite for an exploit, being used to prepare the later
stages of an exploit. Examples of possible attack vectors are:

Buffer overflow: A buffer overflow is the result of an operation that copies data
into a buffer that is not large enough to hold that data. A buffer overflow
overwrites data structures following or preceding the buffer location. Buffers
can be located either on the stack of a thread or on the heap of the application.

User-controlled format string: If an unchecked user-controlled string is passed
to any printf function of the standard libc then malicious format characters
in the user string are interpreted which can lead to random memory reads and
random memory writes.

Dangling pointer: A dangling pointer in a data structure is used to read or write
unintended memory locations. An attacker can carefully plan the allocation
and deallocation sequences and use a dangling pointer to overwrite data.

Arithmetic overflow: The precision of integer numbers is limited when using low
level instructions. If the result of an arithmetic operation is larger or smaller
then the largest or smallest representable number an overflow occurs. The ISA
usually flags an overflow and the operation wraps around. Missing overflow
checks can lead to incorrect results that are used in future computations.

2.2 Exploit classes

This section introduces the different exploit classes and discusses the necessary re-
quirements for successful exploitation. All exploit classes have in common that they
redirect control flow to new or alternate locations that would not be reached in an
unaltered run. Control flow can be altered through buffer overflows, format string
attacks, or data attacks.

All exploits use the fact that the programmer and/or the runtime system are
unable to check the bounds of a buffer or to detect a type overflow (e.g., integer
overflow) to overwrite either data structures or code.
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2.2.1 Code injection

Code injection attacks place new machine code in the running application and redi-
rect the control flow to the newly placed code. A code injection attack writes
additional code into an executable region of the application’s memory image and
transfers control to that injected code [Ale96]. Code injection attacks often use a
buffer overflow (e.g., for a C-based string or array) to inject the code and to over-
write a stored instruction pointer in one step. The injected code carries the malicious
payload.

Code injection is one of the oldest attack vectors and has been used for many
years. Until recently Intel IA32 did not support the separation of code and data.
The CPU tried to interpret any memory region as executable, enabling code injec-
tion attacks into data regions. The 64-bit extension x64 includes the PAE feature
that enables separation of data and code. Only code on pages that have the exe-
cutable flag set is executed by the CPU. If an exploit redirects control flow to a data
page then an exception is triggered. Nowadays most systems support W ⊕ X1; a
memory page is either writeable or executable. Due to W ⊕ X this attack vector
is only applicable under special circumstances (e.g., executable trampolines on the
stack, shared memory regions with wrong permissions, or exploitable just-in-time
compilers).

Stack-based code injection

This attack exploits missing or incomplete bound checks of a local array on the stack.
The array is filled with user-controlled code. Because the stack grows downwards
it is possible to overwrite the variables that are higher up on the stack, including
the base pointer and the return instruction pointer. The attack adjusts the return
instruction pointer so that it points to the code that was placed in the buffer. The
function therefore does not return to the caller but to the code on the stack.

1W ⊕X is also called Data Execution Prevention (DEP) [vdVM04]

int is_foobar(char *cmp) {

// assert(strlen(cmp) < MAX_LEN)

char tmp[MAX_LEN ];

strcpy(tmp , cmp); // no bound check

return strcmp(tmp , "foobar ");

}

...

// user_str is > MAX_LEN

if (is_foobar(user_str ))

...

Listing 2.1: A potential stack-based overflow
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Figure 2.1: Stack before and after a stack-based code injection exploit.

Listing 2.1 shows a simple code sequence that is prone to a stack-based overflow
where code injection is possible. Figure 2.1 shows the stack layout before and after
an overflow. The length of the user supplied input overflows the length of the variable
on the stack and overwrites the base pointer and the return instruction pointer. The
new return instruction pointer then points to the beginning of the temporary array
on the stack. The exploit code is executed when the function returns.

Constraints for this attack are that code on the stack must be executable, a
bound check for a buffer on the stack must be missing or faulty, and the runtime
system must not verify the return instruction pointer.

Heap-based code injection

This form of attack places the malicious code in an array on the heap and redirects
control flow to the injected code. The control flow redirection is achieved through
overwriting the return instruction pointer, overwriting a function pointer (or vtable
entry for C++), adjusting standard libc destructors, or fiddling with the memory
allocator data structures.

Listing 2.2 shows a simple code sequence with a vulnerable struct and a code
sequence that is prone to a heap-based code injection. Figure 2.2 shows the vulner-
able struct before and after an exploit. The buffer in the vulnerable struct is filled
with a user supplied nop-slide2 and exploit code. The function pointer is overwritten
and points somewhere into the nop-slide of the struct’s buffer. The exploit code is

2A sequence of nop instructions is used if the exact address of the buffer is not known but only
the region of the target buffer. The exploit transfers control somewhere into the nop-slide.
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typedef struct vuln_struct {

char buf[MAX_LEN ];

int (*cmp)(char *);

};

int is_foobar_heap(vuln_struct *s, char *str) {

// assert(strlen(cmp) < MAX_LEN)

strcpy(s->buf , str); // no bound check

return s->cmp(s->buf , "foobar ");

}

...

vuln_struct *st = \

(vuln_struct *) malloc(sizeof(vuln_struct ));

// user_str is > MAX_LEN

if (is_foobar_heap(st, user_str ))

...

Listing 2.2: A potential heap-based overflow
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Figure 2.2: Vulnerable struct before and after a heap-based code injection exploit.

executed when the function pointer is called.

The location where the code is placed must be executable and a bound check for
a buffer must be faulty or missing. Additionally, the control flow must be redirected
to the code placed on the heap.

2.2.2 Return-oriented programming

Return-oriented programming (ROP) [PB04, Sha07, Ner07] uses pre-existing code
sequences to execute malicious computation. A return-oriented attack constructs
a set of stack invocation frames that are executed one after the other. Each stack
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Figure 2.3: Stack before and after a stack-based ROP injection.

invocation frame prepares a set of parameters on the stack and targets a gadget3

that uses the parameters and executes arbitrary computation. ROP is a code-reuse
technique that reuses the stack pointer as an indirect instruction pointer.

A stack-based buffer overflow as shown in Listing 2.1 can be used to prepare
the stack for an ROP attack. Figure 2.3 shows a simple ROP attack that uses
a buffer overflow on the stack. The buffer and the base pointer are overwritten
with garbage data, the return instruction pointer is redirected to a function in the
standard libc (system() in this case). On the stack the function pointer is followed
by the overwritten ebp and the arguments to the function.

This attack relies on a stack-based overflow and works only if the return instruc-
tion pointer is not verified before it is dereferenced.

2.2.3 Jump-oriented programming

Jump-oriented programming [PB04, BJFL11] (JOP) is a generalization of return-
oriented programming. Return-oriented programming relies on the control of the
stack pointer and of the return instruction pointer. Jump-oriented programming
relies on the control of the instruction pointer and any other register. Both pro-
gramming styles inject data to modify the control flow of the application using
gadgets. Jump-oriented data is not limited to stack overflows but uses modified
indirect control flow transfers to construct a chain of gadgets.

3A gadget is a code snippet (not necessarily a function) that already exists in the memory image
of the application.
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Figure 2.4: A generic JOP attack.

Just like return-oriented programming jump-oriented programming relies on a set
of gadgets that are located in legacy code (e.g., the standard libc). These gadgets
are chained using a dispatcher gadget that reads an attacker controlled table with
a set of gadget locations. For example, the dispatcher can be implemented as an
indirect jump through an attacker-controlled register. Figure 2.4 shows a generic
JOP attack with a scratch space somewhere on the application’s heap. A successful
exploit prepares the scratch space in a data region and redirects the control flow of
the application to the beginning of the scratch space.

Two forms of jump-oriented programming are described in related work. Check-
oway et al. implement return-oriented programming without return instruc-
tions [CDD+10] while Bletsch et al. [BJFL11] and Ping et al. [CXM+11] go one
step further with the definition of jump-oriented programming and the description
of the dispatcher gadget.

2.2.4 Format string attacks

A format string attack [OWA, Haa10, Pla10] exploits a user-controlled string that
is passed to a function of the printf-family. The printf-family parses the first
string argument for control tokens (of the form %T) to determine the number of
variable parameters that follow. Many programmers forget to check user-controlled
strings for these control tokens and pass the string directly to the function (e.g.,
printf(usr_str)). A safe implementation would use a static parameter to pass a
single string (e.g., printf("%s", usr_str)).

The %n token is a special control token that reverses the order of input. All other
tokens specify a format that is used to print the current argument. %n writes the
count of already printed characters to the address given by the current argument.
Any argument on the stack can be used as a target address for %n with careful



18 Chapter 2. Background information

void foo(char *arg) {

char text [1024];

if (strlen(arg) >= 1024) return;

strcpy(text , arg);

printf(text);

}

...

foo(user_str );

...

Listing 2.3: A potential format string attack

encoding of the format string. The format string itself can be used to store pointers
to specific addresses if it is placed on the stack. The number of written bytes can
be controlled with additional parameters (e.g., printf("%NNc"); prints NN bytes
and increases the counter used for %n).

The malicious format string can use other tokens like %p to read specific pointers
on the stack, and %s to read specific stack addresses as strings. An attacker uses
these parameters during the construction of the format string.

The combination of input tokens (e.g., %p, %s, and %x) are used to gather in-
formation about the stack layout (if the binary is not available). The gathered
information about the stack frame is then used to construct an exploit string that
consists of %NNc to set single byte values (i.e., to increase the number of written
bytes) and %hhn (hh represents a half half word and equals one byte) to write single
bytes to given memory addresses. The exploit string then writes arbitrary values to
arbitrary memory locations. These random writes are used to redirect control flow
to injected code. The injected code is often in the string itself.

Listing 2.3 shows code with a potential format string exploit. Using a
combination of %x to increase the count of printed characters and %n that
writes the number of already printed characters to a given location it is pos-
sible to read and write arbitrary memory locations. Assume that in List-
ing 2.3 the return instruction pointer is at 0xffffd37c and the text array is
11 words higher up on the stack relative to the printf call. An input string of
(0xffffd37c)(0xffffd37e)%12$2043x.%12 $hn%11$32102x%11$hn will overwrite
the return instruction pointer with 0x0804856a by writing two half words namely
0x0804− 9 = 2043, and 0x856a− 2043 = 32102.

Depending on the environment a format string exploit overwrites the return
instruction pointer, Global Offset Table (GOT), or the list of destructors. All of
these variations alter the control flow at some point in time.

The requirement is that the user string must contain escape sequences like %n or
%s that are then parsed and expanded by printf.



2.2. Exploit classes 19

void foo(int len , char *pack) {

char *response;

if (len > 0) {

response = malloc(len*sizeof(char *));

memcpy(response , pack , len);

}

}

...

foo(user_len , user_packet );

...

Listing 2.4: A potential arithmetic integer overflow

2.2.5 Arithmetic overflow

Arithmetic data types always have specific bounds. An 1 byte data type can only
store 256 different values. If an operation (e.g., an addition) exceeds these bounds
then the variable wraps around and continues on the other end (e.g., 127 + 1 =
−128 for an 1 byte, signed data type, or 255 + 1 = 0 for an unsigned 1 byte data
type). These overflows can be used to bypass bound checks (e.g., before memory is
allocated).

Listing 2.4 shows a potential arithmetic overflow. If len has the value
0x40000000 then len > 0 holds but the result of the multiplication in the mal-

loc call is 0. The following memcpy will overwrite data structures on the heap,
resulting in a heap-based overflow.

Requirements for an arithmetic overflow are lax or implicit type conversions, sign
errors, rounding errors, type overflows due to arithmetic operations, and pointer
arithmetic.

2.2.6 Data attacks

A data attack exploits a missing or faulty bound check to write data to an user-
controlled address. This random write is used to, e.g., redirect control flow to
injected code or to set up a secondary attack.

Listing 2.5 is prone to a potential data attack. The attacker controls the position
and the value that is written. A simple calculation relative to the position of the
data array enables a random write to (almost) any memory location. The target
location and possible values are often limited due to address calculation and range
checking in real-life programs.

Requirements for a data attack are unfiltered or only partially filtered user input
and missing or faulty bound checks.
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void foo(int pos , int value , int *data) {

data[pos] = value;

}

...

foo(user_pos , user_value , data);

...

Listing 2.5: A potential data attack

2.2.7 Mixing x86 64 and x86 code

Modern operating systems support 64-bit x86 64 and 32-bit x86 code. An applica-
tion can even use both modes interchangeably. Mixing x86 64 and x86 code is used
to trick static verifiers or to escalate privileges. Most static verifiers and system call
authorization frameworks are limited to either x86 64 or x86 code. An application
that uses both instruction sets to execute system calls or specific control transfers
can to escape the control of the guards [Eva09].

2.2.8 Overwriting other data structures

Other data structures (e.g., system call parameters, data structures of the memory
allocator, data structures of the dynamic loader, or destructors) can be overwritten
by random writes.

When these data structures are used later on in the program (e.g., when data is
freed or the destructor of a shared library is called) then the exploit can carry out
its malicious payload.

2.3 Comparison to Erlingsson’s attack classifica-

tion

Erlingsson describes a series of attacks and defenses in [Erl07]. According to Erlings-
son a successful attack discovers what assumptions were made by the programmer
and crafts an exploit outside those assumptions. We relate the following four at-
tacks to the attack vectors introduced in Section 2.1 and the exploit classes listed
in Section 2.2.

2.3.1 Return address clobbering

This attack uses a buffer overflow on the stack to overwrite the return instruction
pointer or the stack base pointer. This attack is equivalent to stack-based code
injection or return-oriented programming.
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Stack-based code injection relies on an executable stack and return-oriented pro-
gramming relies on available gadgets in loaded libraries. Both attacks rely on a
missing bound check and missing stack protection. See Section 3.6 for compiler
extensions that can protect the stack.

2.3.2 Corrupting heap-based function pointers

This attack corrupts data structures on the heap by using a heap-based buffer over-
flow. Exploited data structures are virtual tables of object-oriented languages (e.g.,
C++) or function pointers. A variant of this attack corrupts heap metadata (e.g.,
malloc’s data structures).

We differentiate between heap-based code injection, jump-oriented programming,
and overwriting other heap-based data structures.

2.3.3 Executing existing code via bad pointers

This attack is based on the knowledge of the position of specific code sequences.
We differentiate between return-oriented programming where the control structures
for the attack are on the stack and jump-oriented programming where the control
structures can be anywhere in the application’s memory.

2.3.4 Corrupting data that controls behavior

This type of attack does not rely on control-data and is a data-only attack. The
attack uses the boundaries of the legal control flow graph. Specific data is replaced
by using random writes or data attacks. These attacks use random writes to replace,
e.g., specific parameters for system calls. We classify these attacks as data attacks.

2.4 Security of the standard loader

The standard loader ld.so is the first code that is executed when an application
starts. This piece of code is used to load all the application and all used shared
libraries. The standard loader is not designed for security. This lack of design results
in several problems if the standard loader is used in a security-relevant context.
Bugs in the standard loader lead to direct privilege escalation. If the application
and the sandbox share the same loader then the sandbox can be attacked through
the loader. All dynamically loadable applications rely on features of the loader
to dynamically resolve references or to load additional modules. If the loader is
translated alongside the application then the application must have the privilege to
map code as executable. It is a security risk if (loader) code in the unprivileged
domain is allowed to map executable code.
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2.4.1 Exploiting the standard loader

The standard execution model uses the same loader for all applications, no matter
if they are regular user applications, privileged applications, or remotely accessible
applications.

The standard loader supports a wide range of dynamic functionality (e.g., de-
bugging, dynamic library replacement, and tracing of method calls) and a huge
feature-set (e.g., many different relocation types). Large parts of the functionality
are not needed or are even harmful for privileged programs. Extra checks in the
code ensure at runtime that it is not possible to (i) preload alternate libraries or to
(ii) replace the standard search path for libraries if an application uses the Set User
ID upon execution (SUID) flag.

Missing or faulty checks for privileged applications or other bugs in the stan-
dard loader [Dan10,Orm10b,Orm10a,Ros10] can therefore be exploited to escalate
privileges for SUID applications.

These problems can be mitigated or reduced if the functionality and feature-set
of the loader is restricted to the bare minimum of necessary features to execute
current applications.

2.4.2 The late interception problem

Many dynamic interception tools [KBA02, SD02, BGA03, SSNB06, FC08] use
LD_PRELOAD4 to gain control of the application. The application, the standard loader,
and the sandbox share the same memory space. The data structures of the loader
contain pointers to the sandbox as well as to the application. The loader is in the
application domain and the loader functionality can be used to gather information
about the sandbox (i.e., resulting in an information leak) or to break the integrity
of the sandbox. A potential exploit uses the data from the loader (e.g., the GOT
section of the sandbox) to compromise the sandbox itself and to redirect sandbox
functions to malicious code.

The standard loader treats a sandbox that uses LD_PRELOAD just like any other
shared object and enables the application to read information about the shared
object (e.g., address space, Procedure Linkage Table (PLT), and GOT sections).
The standard loader does not guarantee that the sandbox initialization function
is the first sequence of instructions that is executed after the loader finishes its
initialization. For example, the INITFIRST flag can be set by multiple libraries
but only the initialization code of one library is actually executed first. Preloaded
libraries are relocated first but the standard loader executes the initialization code
of the last loaded library that sets the INITFIRST flag first.

4LD_PRELOAD is an option for the dynamic loader that injects an additional library into the
process space of the application; this option executes the initialization code of the injected library
prior to the main function of the application.
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Another example is a symbol of the STT_GNU_IFUNC relocation type. The stan-
dard libc uses STT_GNU_IFUNC to select the fastest version of a function for the
current hardware at runtime. Such a scenario may trigger executing of code before
the LD_PRELOAD-based sandbox is initialized. The sandbox is deprived of control of
its environment if application code is executed before the sandbox is initialized.

2.4.3 The loader black box

In related work [KBA02, BGA03, SD02, SSNB06, PG11] the sandbox is either (i)
unaware of the standard loader and translates the code of the standard loader as
part of the application, or (ii) does not support dynamic loading [ABEL05,MM06,
EAV+06, YSD+09]. Solutions that are unaware of the loading process treat library
loading as a black box.

The loader plays a privileged part during the runtime of all applications that
use shared libraries. The dynamic loader manages information about all loaded
shared objects (libraries) and about all exported symbols that can be used in other
objects. The sandbox uses functionality of the loader to discover the loaded shared
objects and the exported functions. The sandbox also relies on information about
executable regions and data regions that is exported by the standard loader.

The loader is a crucial component of the application as it can load and map new
code into the running process. If the loader is translated as a black box then the
application must have the privileges to load and map any code (e.g., using the mmap

system call, or the mprotect system call to map memory regions as executable). On
the other hand if the sandbox provides a transparent and secure loader API then
the privilege to map executable memory regions can be abstracted into the trusted
sandbox domain. The sandbox can control the application and limit the loading
process to predefined libraries.

An extension of the secure loader can be used to implement a clear separation
between the different shared objects. Privileges and permissions (e.g., specific system
calls and parameters to the system calls) can be tuned and specified on a per-object
basis and are no longer enabled for all parts of an application.

2.5 Binary translation

Binary translation is a technique that translates code from a source ISA to the
destination ISA. Binary translation enables the emulation of a specific ISA. Possible
applications for binary translation are (i) debugging: additional logic is added to
the translated code; (ii) testing: assertions are evaluated during the execution of the
program; and (iii) security: additional checks are added to the translated code. The
source ISA and destination ISA can be the same.

There are two forms of binary translation, static, ahead-of-time binary transla-
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tion and dynamic, just-in-time binary translation. Static binary translation converts
the code of an application before execution into the target ISA and adds all instru-
mentation at compile time. Static binary translation does not incur translation
overhead during the execution of the application, but the generated code may intro-
duce overhead. Dynamic binary translation converts code during the execution of
the application (typically on the order of a basic block) and incurs a runtime trans-
lation overhead. Many dynamic binary translators use code caches to lower the
translation overhead: translated code is placed in a cache, and subsequent execu-
tions of the same region benefit from the already translated code. A key advantage of
dynamic binary translators over static binary translators is that they translate only
code that is executed. For example, a hotspot compiler reduces the execution time
of code that is executed frequently compared to static ahead-of-time translation.

The interception mechanism of dynamic binary translators uses specific features
of, e.g., the Linux loader to gain control of the application control flow. In addition,
the ELF format is used to gather information about the application.

Static binary translation is unable to translate dynamic code (e.g., dynamically
loaded libraries, dynamically generated code, and self-modifying code). Security-
related binary translation must therefore use dynamic binary translation to cover
all possible code locations.

Two key aspects in designing a fast binary translator are a lean translation tech-
nique and low additional runtime overhead for any translated code region. Indirect
control transfers are the source of most of the dynamic overhead [PG09]:

1. Indirect jumps: The target of the jump depends on dynamic information
(e.g., a memory address, or a register) and is not known at translation time.
Therefore a runtime lookup is needed.

2. Indirect calls: Similar to indirect jumps the target is not known and a run-
time lookup is needed for every execution.

3. Function returns: The target of this indirect control transfer is on the stack.
The stack contains untranslated addresses only and a runtime lookup is needed.

2.6 Summary

This chapter presents background information that is needed to understand the con-
text of this thesis. Information on attack vectors from Section 2.1 helps in under-
standing the different threats that Software-based Fault Isolation (SFI) must protect
against. Section 2.4 discusses the security of the standard loader. The loader in the
context of SFI faces two problems: the late interception problem where the loader
executes code before the sandbox is initialized, and the black box problem where
the SFI system is not aware of the loader. Section 2.5 introduces information about
binary translation in general.
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Related work

This chapter discusses related work for this thesis. The prototype implementation
of the secure execution platform relies on dynamic binary translation. Important
related work that lead to the development of a dynamic binary translator is described
in Section 3.1.

Software-based Fault Isolation (SFI) can be implemented using binary transla-
tion. Binary translation instruments the executed code and adds the specific security
guarantees. Section 3.2 discusses related work that implements SFI in user-space.
System call authorization described in Section 3.3, is a technique which implements
security profiles at the boundary between applications and the kernel. Section 3.4
discusses“full system virtualization”: a coarse-grained view that implements security
in a virtual machine monitor outside the operating system.

Static program verification in Section 3.5 is an alternative to dynamic SFI. A
static binary rewriter and a verifier ensure that the binary code is unable to cir-
cumvent the static sandbox. Control Flow Integrity (CFI) and XFI (an extension
of CFI) are static program rewriters with specific security guarantees.

Section 3.6 describes compiler approaches that mitigate several attack vectors
for system software. Many of these compiler extensions can also be implemented in
a dynamic protection system that builds on SFI.

Section 3.7 summarizes the different related work and highlights the most im-
portant security solutions in comparison to our approach. Different features are
evaluated based on general approaches, implementation techniques, and security
features.

3.1 Binary translation

Binary translation has a long history [Gil51,DS84,May87]. In this section we focus
on current binary translators that are similar to our basic binary translator described
in Section 5.2, the baseline binary translator of our prototype implementation. Dy-
namic binary translators can be separated into two groups. The first group uses a
rewriting scheme based on low-level translation tables (e.g., Mojo [WKCG00], HD-
Trans [SSNB06, SSB07], and our approach: libdetox [PG09, PG10, PG11]). The
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second group parses the machine code stream into an intermediate representa-
tion (IR) and uses common compiler techniques to work on that IR (e.g., Dy-
namoRIO [BGA03], PIN [LCM+05], and Valgrind [NS07]).

IR-based approaches offer the advantage of more sophisticated optimization pos-
sibilities, but the IR translation comes at a higher translation cost. IR-based trans-
lators can use profiles to generate runtime information but there is no structure or
type information at the machine-code level. Therefore it is hard to achieve good
performance with IR-based translation systems. Some binary translation systems
(e.g., [KF01, HKZ+06]) use a dual approach of profiling and adaptive optimization
to limit the dynamic compilation overhead. Fx!32 [CHH+98] uses emulation for in-
frequently executed code and profile generation and offline static recompilation of
hot code to speed up overall execution.

The most important overhead of dynamic binary translators is the handling of
indirect control transfers. Hiser et al. [HWH+07] cover different indirect branch
mechanisms like lookup inlining, sieves, and a translation cache.

3.1.1 HDTrans

HDTrans [SSNB06,SSB07] is a lightweight, table-based instrumentation system. A
code cache is used for translated code as well as trace linearization and optimizations
for indirect jumps. HDTrans resembles our basic binary translator most closely with
respect to speed and implementation, but there are significant differences.

HDTrans requires hand-coded low-level translation tables that specify transla-
tion properties and actions for every single instruction. This setup requires a deep
understanding of the translator and relations between different optimizations. Our
basic binary translator raises the level of interaction with the translation system.
Low-level translation tables are generated using a table generator that specifies
transformations on a high level. Transformations can be specified on the properties
of individual instructions (e.g., memory access, specific registers, or extension groups
like SSE and FPU), or on a specific instruction opcode.

HDTrans uses a hash table of jump code blocks called a “sieve” to make the
indirect jumps faster. The target is hashed and then a jump into the sieve is issued.
The code block in the sieve then takes care of the jump to the correct location
whereas our basic binary translator uses a simpler hash table and hand optimized
assembly code that is emitted into the code cache. Instead of a sieve, our basic binary
translator uses a lookup table that maps locations in the code cache to locations in
the original program.

Return instructions are handled differently from normal indirect control transfers
to take care of the call/ret relationship. HDTrans uses a (small) direct mapped
cache to speed up return instructions, with a fall-back to the sieve. Our basic binary
translator uses a similar approach with the return cache that uses a bidirectional
protocol.
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Compared to our basic binary translator, HDTrans translates longer chunks of
code at a time, stopping only at conditional jumps or return instructions. This strat-
egy can result in longer stalls for the program. Trampolines to start the translator
for not already translated targets are inserted into the basic blocks itself. There-
fore the memory regions for these instructions cannot be recycled after the target is
translated.

3.1.2 Dynamo and DynamoRIO

Dynamo is a dynamic optimization system developed by Bala et al. [BDB00]. Dy-
namoRIO [BDA01, BGA03, HS06] is the binary-only IA32 version of Dynamo for
Linux and Windows. The translator extracts and optimizes traces for hot regions.
Hot regions are identified by adding profiling information to the instruction stream.
These regions are converted into an IR, optimized and recompiled to native code.
DynamoRIO is also used in a project that includes a manager for bounded caches
that clears no longer needed blocks out of the code cache [HS06]. The main pur-
pose of the DynamoRIO project is shifting from a binary optimizer to a binary
instrumentation system.

Compared to our basic binary translator, DynamoRIO translates machine code
into an IR and uses a binary optimization framework and heavy-weight transfor-
mations to generate code. Our basic binary translator, on the other hand, uses a
lightweight table-based approach.

3.1.3 PIN

PIN [LCM+05] is a dynamic instrumentation system that exports a high-level in-
strumentation API that can be used during the runtime of a program. The system
offers an online high-level interface to the instruction-flow of the instrumented pro-
gram. A user program can define injections or alterations of the instruction stream
of a running application. PIN uses the user supplied definition and dynamically
instruments the running program. PIN employs code transformations like register
reallocation, inlining and instruction scheduling to make the instrumented code fast.
Nevertheless, the online high-level interface results in relatively high overhead. Un-
fortunately, the instrumentation system of PIN (except the library, which is available
as open source) is distributed in binary only.

In contrast to PIN, our basic binary translator offers a high-level interface at
compile time. A table-based translator that is then used at runtime is generated
using the high-level interface. The alteration possibilities at runtime are limited for
our basic binary translator, but arguably a security framework does not need this
flexibility.
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3.1.4 Valgrind

Valgrind is described in [NS07] as heavy-weight dynamic binary analysis tool. The
main applications are checkers and profilers. Machine code is translated into an IR,
which is instrumented using high-level plugins. Valgrind keeps information about
every instruction and memory cell that is used at runtime. This feature enables the
implementation of new and different instrumentation tools that are not possible in
other environments. Valgrind is designed primarily for flexibility and not for perfor-
mance. This makes Valgrind perfect for basic block profiling, memory checking and
debugging. Due to its high overhead, Valgrind is unsuited for large and performance
critical programs.

3.2 Software-based Fault Isolation (SFI)

Vx32 [FC08] implements a user-space sandbox built on binary translation that uses
segmentation to hide the internal data structures. Due to the use of segmentation
the Vx32 system is limited to 32-bit code. Interrupts, system calls, and illegal
instructions are translated to traps that call special handler functions. These design
decisions lead to high execution overhead as there are no optimizations for indirect
control transfers. The traps for system calls offered by Vx32 are targeted towards a
reimplementation of the system calls and are not intended for a policy-based system
call authorization framework.

Strata [SD01, SD02] is a safe virtual execution environment using software dy-
namic translation. It uses dynamic binary translation to isolate user-space programs
and implements a basic system call interposition API. This API is used to instru-
ment individual system calls. The translation framework is neither limited to a
single system nor to a single architecture. Strata uses binary translation to enforce
a non-executable stack but the current version has no security guards that mitigate
against return to libc attacks or heap-based overflows.

Program shepherding [KBA02] uses the DynamoRIO [BDA01, BGA03, HS06]
framework to safeguard running applications. A single policy is hardcoded and
enforced using binary translation. The binary translator adds additional checks to
restrict code origins and to control the targets of indirect control transfers.

Our approach implements a user-space sandbox and extends this sandbox with
additional security guards that check the execution of application code at runtime.
System calls in our approach are not replaced by software traps but are validated
through a policy-based system call authorization framework. Additionally, libdetox
does not depend on specific hardware features like segmentation, a feature that is
not present on x86 64 and hinders portability. The policies used in the sandbox can
be refined and changed without the need to recompile the safe execution platform.
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3.3 System call authorization

System call interposition uses either a kernel module or ptrace support to imple-
ment a control mechanism on the level of system calls. These systems share several
drawbacks. For one the protection mechanism is coarse-grained and does not detect
the execution of malicious code until a system call that is not part of the policy is
executed. These systems miss exploits that target opened files or use the policy’s
allowed system calls. In addition, these systems are often prone to Time Of Check
To Time Of Use (TOCTTOU) attacks. These attacks evade detection by security
systems that are only based on system call validation. A second concern is the
overhead introduced due to context switching (more than 60x overhead for simple
system calls according to [Pro03]). An expensive context switch has to be performed
whenever a policy rule is checked. A third drawback is that these systems rely on
trusted code in the kernel to stop the monitored program, and this setup poses an
additional security risk.

Janus [GWTB96] is a system call interposition framework that uses the Sun
Solaris process tracing facility (ptrace) to allow one user mode process to filter
the system calls of a second process. This framework builds on kernel support and
has two drawbacks: (i) the traced application is already in the kernel when it is
stopped, a situation that poses a potential security problem, and (ii) the overhead
of switching between an inspecting process and the corresponding application is high.
Consh [AKS99], SubDomain [CBKH+00], MAPbox [AR00], and AppArmor [Bau06]
extend the idea of a ptrace interposition framework by implementing policy-based
authorization. Tal Garfinkel analyzed practical problems of system call interposition
in [Gar03].

The Linux kernel offers an API for security modules [WCS+02] that can be
used to implement many kernel-based coarse-grained security extensions. Sys-
trace [Pro03] uses a kernel module to implement a system call policy. Some global
system calls are validated in the kernel with low overhead (around 1% according
to [Pro03]), but for all other system calls the program is stopped and a user-space
daemon decides based on the parameters if the system call is allowed or not. Switch-
blade [FS08] enforces a system call policy using an in-kernel system call model and
dynamic taint analysis. Capsicum [WALK10] offers capabilities and limits the set of
system calls that an application can execute. Ostia [GPR04] prevents TOCTTOU
attacks by using a proxy and a delegation model to delegate system calls to different
processes or threads. Alcatraz [LSVS09] is a hybrid isolation approach that offers
unrestricted read access to a sandboxed application but redirects all writes to a
buffer which can be examined before it is committed. Unfortunately, this approach
does not protect against data leaked over the network or processes that use local
root exploits to gain privileges.

Our sandbox uses a fine-grained level of control that checks individual instruc-
tions and makes it impossible to execute injected code. Each thread of an application
runs in its own sandbox. Each sandbox is secured against the execution of malicious
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code, and as a second thread cannot execute code that races between the system
call argument check and the execution of the system call; this restriction removes
the threat of TOCTTOU attacks.

3.4 Full-system virtualization

Full system translation virtualizes a complete physical system, including the op-
erating system and all hardware. QEMU [Bel05] offers full encapsulation with
relatively high overhead (4-10x according to [Bel05]), while other frameworks like
VMware [DBR02, Bug04] and Xen [BDF+03] rely on kernel or hardware support.
Livewire [GR03] extends VMware and builds an intrusion detection system on top
of the virtual machine monitor. Ho et al. [HFC+06] use a Xen-based virtualization
approach to implement taint analysis that falls back to QEMU to analyze individ-
ual instructions. Aftersight [CGC08] logs non-deterministic inputs to the virtual
machine and decouples analysis from normal execution.

The drawbacks of full system translation are the complexity of accessing shared
data and handling interactions between different applications. Additionally, since
the granularity of control for a checking system is coarse-grained (i.e., on the level
of a complete virtual machine instead of a process), an attacker might control the
complete virtual machine.

3.5 Static program verification

The Google Native Client [YSD+09] executes x86-code in a sandbox. The native
client uses the same instruction padding techniques as presented in the SFI system
by Wahbe et al. [WLAG93]. The instruction set is limited to a safe subset of the
IA32 Instruction Set Architecture (ISA), making illegal operations impossible. A
verifier checks if the program is valid before the program is executed without any
additional isolation. Such a system limits the possible range of used instructions, the
programs must be linked statically, and no dynamic libraries can be used. Programs
must be compiled with a custom-tailored compiler and special libraries.

PittSField [MM06] implements a static binary translation and checking tool used
for SFI. The static rewriting algorithm (i) aligns targets for control transfers on 16
byte boundaries, (ii) changes control transfer instructions so that targets are always
16 byte aligned, and (iii) separates data and code regions by adding additional in-
structions to force pointers to point to data or code. This static translation results
in moderate overhead of 13% for instruction alignment and 21% for data verifica-
tion [MM06].
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3.5.1 Control flow integrity

CFI [ABEL05] restricts a running application to a predefined Control Flow Graph
(CFG). A binary rewriter uses a whole-program analysis to statically detect the
CFG. This CFG is then enforced for all control flow transfers. The binary rewriter
adds dynamic checks to all dynamic control flow transfers using a canary concept
where the source location checks for a canary at the target location.

CFI protects against all possible exploits that redirect the control flow to alter-
nate locations. This approach requires that all possible target addresses are known
at translation time. The source and target locations are interlocked and any devia-
tion will stop the program. CFI is also combined with a shadow stack that verifies
the return addresses of the application. The shadow stack is in the same address
space as the program but only verified code is allowed to push and pop data from
the stack.

A drawback of the CFI approach is the knowledge about which locations are
reachable for dynamic control flow transfers. E.g., for jump tables or an array of
function pointers it is hard to specify the correct bounds using only information
that is available in the static binary. An additional problem is that CFI uses whole-
program analysis. Whole-program analysis requires that all libraries are available
at translation time, and the translation will produce an unmodifiable static binary.
The CFI-protected binary is unable to load dynamic code, e.g., shared libraries or
plugins. Another drawback of CFI is potential code duplication. If some code is a
potential target from multiple sources then either all sources must share the same
canary (which reduces security or the effectiveness of CFI) or the binary rewriter
must emit duplicate code with different canaries for each source location.

An alternative to CFI is a dynamic approach using a dynamic binary translator
to enforce CFI. This dynamic approach is not limited to statically identifiable target
locations as it discovers new targets on the fly and can adapt to newly loaded code.
An integration with the dynamic loader also enables the use of address space layout
randomization of the different shared libraries that is not possible for statically
compiled binaries.

3.5.2 Hacking control flow integrity

CFI protects from malicious changes of the control flow using specific static canaries
that are checked whenever a dynamic control flow is dispatched. These canaries
form a contract between the source and the target location.

A possible attack that circumvents CFI exploits the static behavior of CFI. Pre-
requisites to break CFI are control over a register for a dynamic control flow transfer,
an attack vector in the application that results in a random memory read and a ran-
dom memory write, and either a call to mprotect or a writeable code region (e.g.,
modifyable code of the dynamic linker, or a page sharing code and writeable data).
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The CFI paper assumes non-executable data but the application includes the
mprotect system call (if the standard libc library is used in the program). Mprotect
can be used to circumvent the non-executable data assumption.

The random memory read is used to read the canary. The canary and the
shellcode are then written to either the page with shared code and data or to a data
page. If the page has no execute permissions then the parameters to an mprotect

call must be forged to toggle the executable bit of the target page. At last the target
of the control flow transfer is changed to the newly generated valid target consisting
of the correct canary and the injected shellcode. The static control flow integrity
check verifies that the static canary matches (but not the actual target location)
and allows the control flow transfer. This attack breaks CFI.

3.5.3 XFI

XFI [EAV+06] is an extension of control flow integrity intended for kernels or kernel
drivers. CFI is combined with an extended shadow stack, a memory access checker,
and a verifier. Whenever a new XFI-protected module is loaded the verifier checks
that the code contains all the necessary guards. CFI and the shadow stack are used
to protect from any control flow-based attacks. These guards ensure that the control
flow of the kernel module cannot deviate from the statically defined CFG.

The memory access checker uses additional guards for all memory reads and
writes. This guard ensures that all accesses are in well-defined regions, e.g., writes
are only allowed to the heap or to the stack of the program. This memory access
checker comes at a cost: every group of memory accessing instructions using the
same register or the same pointer is rewritten using an additional bounds check.
Instead of a simple memory access there are multiple compare instructions and a
jump.

XFI solves some problems of CFI but shares similar drawbacks. All protected
code must be static and the complete CFG must be known during the translation.
In addition, the memory access checker relies on a static setup of all memory regions.
The static setup inhibits dynamic loadable code, relocatable code, and features like
address space layout randomization.

3.5.4 Hacking XFI

The strict programming model that XFI ensures removes all threats from code based
attack vectors. The control flow cannot be diverted to alternate code and no new
code can be injected into the memory image of the module. In addition, potential
attack vectors can only change the data of the application but not the code.

Return-oriented attacks or jump-oriented attacks are limited to the set of already
available locations. An attack may still change the register or pointer with the tar-
get location but the target must match a predefined target. Attacks can also write
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to the heap and to the stack. Random writes can be used to change parameters of
legitimate calls and system calls. For example, a switch statement that switches
between different functions (e.g., system calls) could be exploited to execute a dif-
ferent function out of the set with adapted parameters, or - in a user-space context
- the parameters of an execve system call could be swapped to some malicious
executable. This attack also applies to CFI.

3.6 Secure compiler extensions

Secure compiler extensions use the available type information or program structure
to add security checks to the generated code. Additional runtime checks are added
for, e.g., format strings [CBB+01], memory allocations [CBJW03], and checks for
return instructions [CPM+98,BST00,HK01]. WIT [ACR+08] uses points-to analysis
at compile time to generate a CFG of the application and sets of possible locations
for each memory write. The effectiveness of WIT is limited by the completeness of
the points-to analysis. The CFG and write set is enforced at runtime using addi-
tional checks. Byte-Granularity Isolation (BGI) [CCM+09] is a compiler extension
that implements multiple protection domains in a single address space. Every byte
belongs to a module and can only be accessed by a subset of all modules. The com-
piler adds additional write checks to enforce the write integrity. LXFI [MCZ+11]
implements SFI and kernel module separation by embedding additional checks into
the compiler generated code.

A naive version emits runtime checks in all cases; static verification in the com-
piler can reduce the amount of necessary runtime checks. Each of these systems
removes one attack vector or reduces the probability of one form of attacks. The
drawback of these approaches is that they have only a partial picture of the runtime
image of the application. They concentrate only on one attack form and leave other
attack vectors open.

3.7 Summary of different protection techniques

The research on a secure execution platform builds on ideas from different fields
of research. Security can be enforced at different levels of granularity and through
different approaches. This section summarizes approaches that are similar to SFI as
well as SFI itself.

The basic SFI framework must be fast, extensible, and secure. Many different
instrumentation frameworks exist, and one must be aware of the limitations that
several optimizations pose to security.

Apart from user-space isolation there exist other possibilities to secure running
systems. Dynamic systems add additional guards and checks to a running applica-
tion. These systems all work at different levels of granularity. Full system translation



34 Chapter 3. Related work

encapsulates a complete running system and works at a coarse-grained level of gran-
ularity; system call interposition encapsulates the application at the system call level
and works at the granularity level of individual applications and their system calls.

Static protection reduces the potential overhead but either restricts the instruc-
tion set or introduces complicated static analysis. Static verification allows only a
sub-set of the instruction set or imposes other additional checks. Compiler exten-
sions can be used as a quick fix to patch a specific static problem.

Table 3.1 presents a summary of related work and distinguishes features, design
and implementation details of these different approaches.
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libdetox [PG11] 1 x x x x x x x x x x x x
basic BT [PG09,PG10] 1 x x x (x) (x) (x) x x (x) x
Vx32 [FC08] 1 x c x x
Strata [SD01,SD02] 1 x ? ? ? x x
Prog. sheph. [KBA02] 1 x (x)d x x (x)e (x) x x x
Janus [GWTB96] 3 x x x x x x
AppArmor [Bau06]f 3 x x x x x
SysTrace [Pro03] 3 x x x x x
Switchblade [FS08] 3 x x
Capsicum [WALK10] 3 x x
Ostia [GPR04] 3 x x
NaCl [YSD+09] 2 x x x
PittSField [MM06] 2 x x x
CFI/XFI [ABEL05,EAV+06] 2 g x x x x
StackGuard [CPM+98] 4 x x (x) x
libverify [BST00] 4 x x (x) x
Propolice [HK01] 4 x x (x) x
PointGuard [CBJW03] 4 x (x) (x)
WIT [ACR+08] 4 x x x x

Possible feature classifications: x marks an existing feature, (x) marks a limited feature, a blank
marks a missing feature, a ? indicates that not enough information is available.

a1: dynamic BT; 2: static BT; 3: kernel module or kernel support; 4: compiler extension
bThe monitor uses a separate stack to, e.g., check permissions or translate new code.
cOnly a subset of IA32 ISA is implemented, FPU, MMX, SSE, and 3 byte opcodes are missing.
dStatic hard-coded policy in implementation, only open and execve system calls are intercepted.
eReturn instruction may only target instructions immediately after any call instruction.
fMAPbox [AR00], SubDomain [CBKH+00], and Consh [AKS99] use a comparable approach.
gAccording to the paper at least FPU, MMX, and SSE extensions are missing.

Table 3.1: Summary of related work.



4
Design and security guidelines

This chapter explains the design details and security implications of our secure
execution platform. We call the protection offered by the secure execution platform
user-space security without sacrifices. The proposed model implements multiple
layers of security that build on each other.

Figure 4.1 shows the different components of the secure execution platform. The
three layers are (i) a secure loader that is part of the trusted computing platform and
that loads application and libraries, (ii) a dynamic Software-based Fault Isolation
(SFI) layer that controls all executed code and enforces dynamic Control Flow In-
tegrity (CFI), and (iii) a policy-based system call authorization platform that checks
every system call of the application. These three layers form a sandbox in which all
application code is executed.

Our secure loader offers the foundation for the secure execution platform. The
secure loader enables a novel model for program creation. Instead of using the
standard Linux loader, we use a secure loader replacement that is part of the trusted
computing base. This loader offers the same core functionality as the standard loader
but is security hardened and tightly integrated into the libdetox security framework
(the code execution sandbox). The secure loader ensures that no application code
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Figure 4.1: Component-based overview of the secure execution platform.
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can be executed before the secure sandbox is set up and enables secure loading of
libraries and secure lazy binding of library functions.

All application code (including any dynamically loaded shared libraries) is ex-
ecuted under the control of a user-space virtualization environment. A small on-
line dynamic binary rewriting toolkit implements SFI and ensures that programs
cannot escape out of the virtual machine. Special guards in the SFI layer ensure
non-executable data regions and non-writable code regions. Another advantage of
dynamic SFI is that all direct and indirect control flow transfers can be checked
dynamically. These dynamic checks enable on-the-fly verification for all control flow
targets (dynamic CFI). The bare SFI layer ensures that all executed code is checked
and that the security guards are added before the code is executed.

We use the tight coupling between the loader and the application to extract a de-
tailed model of all control flow transfers. This model is then enforced using dynamic
control flow checks. These checks implement control flow integrity and prohibit
code-based attacks, return-oriented programming, and jump-oriented programming.

Process sandboxing through dynamic binary translation is the first line of defense
and ensures that (i) no injected code is translated or executed, (ii) application or
library code cannot be overwritten, (iii) all control flow transfers must adhere to
a predefined control flow graph, (iv) program code cannot escape or terminate the
sandbox, and (v) program code cannot overwrite any data structures owned by the
sandbox. Features (i) and (ii) are enforced by the non-executable data and non-
writable code security concepts. Feature (iii) implements control flow integrity. The
binary translation framework translates all code before it is executed and uses special
guards to ensure that the code conforms to the security specification and that, e.g.,
control transfers always target valid code. For performance reasons, target addresses
of individual translated instructions are not checked. This second layer enables
dynamic control flow integrity. Dynamic CFI is combined with non-executable data
regions and non-writable code regions.

A third layer of protection redirects all system calls to a system call authoriza-
tion framework that checks the system calls and their parameters according to a
tight user-defined per-application policy. This last line of defense protects from pos-
sible data exploits (e.g., integer overflows, type errors, format string attacks) where
parameters of system calls are changed to malicious values.

The remainder of this chapter is organized along the three layers that build
up our security concept. Section 4.1 describes the design decisions and features of
the secure loader that is used to bootstrap the secure sandbox and the application.
Section 4.2 explains the basic SFI layer that translates all code on the fly. Section 4.3
introduces a method to generate dynamic control flow graphs. These control flow
models are then used to implement dynamic CFI, and Section 4.4 describes how the
model for dynamic CFI is generated using readily available Executable and Linkable
Format (ELF) information and symbol tables. Section 4.5 introduces policy-based
system call interposition that checks all system calls in user-space.
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Figure 4.2: Comparison between a regular sandboxing approach and safe loading
as provided a secure loader. The left-hand side shows two problems: 1) the late
interception problem and 2) the loader black box problem.

4.1 Safe loading in a trusted runtime environment

The secure loader presents a new model for process creation (turning an executable
and all associated libraries into a running program) and is the first technique that
takes complete control over an application in user-space. The standard dynamic
loader is replaced by a secure loader that is part of the sandbox domain. As a
result the application domain no longer needs the permissions to map executable
code. A secure loader must be safe (the implementation is reviewed and bug-free)
and secure (the design does not provide attack vectors in the offered functionality).
This approach bridges programming languages and operating systems: a language-
independent loader is used to secure and confine binary-only applications in their
execution running on an operating system. Figure 4.2 provides a comparison between
the standard runtime environment and the secure execution platform.

The secure loader runs as part of the trusted computing base. The secure loader
is the only entity that is allowed to load new code, and the application is only allowed
to access loader functions through an API. The sandbox and the loader are tightly
coupled and share information about the program. The loader analyzes segment
and section information of the application and all dynamically loaded objects and
enables per object privileges. The loader resolves objects, symbols, and relocations
for the sandbox that then embeds resolved addresses in the translated code.
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The tight coupling of the loader and the sandbox enables module separation.
Control transfers between modules are inlined directly into the translated code.
The translated source object contains a direct reference (that is unreadable from
the application) to the target object and no call through the Procedure Linkage
Table (PLT) and Global Offset Table (GOT) is needed. The PLT data structure is
only kept for reference reasons.

The secure loader replaces the standard loader1 and solves the problems of the
standard loader that are discussed in Section 2.4. The secure loader ensures that
the SFI library is initialized first and treated specially so that symbols are neither
added to the global scope nor accessible through any API functions.

4.1.1 The sandbox

The secure execution platform defines two privileged domains in user-space. The
sandbox domain a trusted domain that contains the trusted computing base (the
loader and the sandbox) and the application domain an untrusted domain that
contains the application code and all needed libraries.

The sandbox domain ensures that no unchecked code is executed in the appli-
cation domain. Application code is examined by the sandbox before execution, and
additional security guards are added to ensure that the executed code cannot escape
out of the sandbox.

Binary translation is a key component for user-space SFI. A dynamic translation
system translates and checks every machine code instruction before it is executed.
Translated code is placed in a code cache. Every direct control transfer is resolved
during the translation. Every indirect control transfer is intercepted at runtime
and only translated branch targets are reached. The translator can change, adapt,
or remove any invalid instruction and can intercept system calls before they are
executed.

An important requirement of the sandbox is that return addresses on the stack
remain unchanged. This requirement adds additional complexity when handling
return instructions, as they are translated to a lookup in the mapping table2 and an
indirect control transfer. On the other hand, an unchanged stack ensures that the
original program can use the return instruction pointer on the stack for (i) exception
management, (ii) debugging, and (iii) return trampolines. Additionally, the user
program does not know and cannot discover that it runs in a sandboxed environment,
and the address of the code cache is only known by the binary translator.

1Usage of the secure loader is encoded on a per-application basis in the ELF information of the
application itself.

2The mapping table is a sandbox-internal data structure that relates translated and untranslated
code.
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4.1.2 Solving the loader’s security problem

Combining a secure loader and a safe sandbox to a trusted execution environment
solves the problems from Section 2.4. The loader must be separated from the ap-
plication, and the application may not access internal data structures directly. The
privileged sandbox domain is an optimal location for the secure loader. The secure
loader and the sandbox share information about all loaded shared objects and sym-
bols. The shared information enables the sandbox to restrict control flow transfers
between shared objects.

Restricting privilege escalation attacks

The secure loader implements a subset of the features of the standard loader. The
subset is complete enough to run in practice any programs compiled with a recent
version of the compiler toolchain.

The secure loader protects privileged programs (e.g., programs running with
“Set User ID upon execution (SUID)” privileges) and programs accessible from the
Internet (e.g., a web server). The secure loader does not read any environment
variables and has no user-configurable settings. Library paths, debugging features,
and loader settings can only be changed by modifying the source code. The secure
loader does not allow any changes in the production environment.

The removal of these user-settable features protects from attacks mentioned in
Section 2.4.1. Privileged applications do not need these features, and hence remov-
ing the features altogether is more secure than executing additional checks before
accessing the features (as done by the standard loader).

Protecting all executed application code

The initialization code of the secure loader is the first code that runs when an
application is started. This initialization code initializes the sandbox as well.

The secure loader can execute all application code under the control of the sand-
box because the loader is part of the privileged sandbox domain. The secure loader
tells the sandbox to translate an entry point to application code whenever the stan-
dard loader would pass control to application code. Whenever the application re-
quests an action from the loader (e.g., resolving symbols, loading additional modules,
or loading PLT entries) the secure loader switches into the sandbox domain, verifies
the correctness of the request, and returns the result to the application domain. The
secure loader cleans all references to internal data from any returned structures. The
application uses the loader features through a well-defined API and can no longer
read or write internal loader data.

This procedure ensures the safety of the secure loader, the sandbox, and the
internal data structures at all times. Consequently the problems mentioned in Sec-
tion 2.4.2 do not exist for the secure loader.
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Opening the loader black box

Placing the loader in the sandbox domain solves the loader black box problem from
Section 2.4.3. The sandbox and the loader are in the same trust domain and form
the trusted computing base. Loader and sandbox can share data structures and
exchange information about executable code regions, data regions, and symbol lo-
cations.

The loader is no longer translated by the sandbox as a part of the application
but is an integral part of the sandbox. The application no longer needs privileges
to map executable code into the application memory space but transparently uses
the loader API provided by the sandbox. All applications remain unchanged but
calls to the loader are redirected to the secure loader API in the sandbox domain.
Applications that do not use the standard loader to load modules and executable
code are not supported3.

4.1.3 PLT inlining

The tight integration of the secure loader into the trusted computing base enables
PLT inlining. In traditional systems, the PLT is used to enable position independent
code for shared libraries. The binary translator in the sandbox can remove the PLT
code and inline the resolved target addresses directly into the generated code.

This optimization reduces the number of indirect control flow transfers (these
control flow transfers account for the main overhead in dynamic binary translation)
and hides the location of other objects from the application.

The addresses are encoded directly in the code cache and the application has no
access to the instructions in the code cache. This feature enables module separation
and raises the bar for security exploits because a potential exploit is unable to
determine the locations of specific functions in other objects. Finally, the total
number of indirect control flow transfers is reduced, limiting the opportunities for
jump-oriented attacks.

4.2 Software-based fault isolation layer

The dynamic translation system uses binary translation to check every machine
code instruction before it is executed. Every direct control transfer is translated,
and every indirect control transfer is intercepted, and only translated branch targets
are reached. The translator can change, adapt, or remove any invalid instruction
and can intercept system calls before they are executed. During the translation
process code can be instrumented and augmented with additional security features.

3Hard-coded exceptions in the sandbox domain can be used to support applications that use
a non-standard way to load executable code. We are not aware of applications that need such
exceptions.
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Security features like non-executable stack, stack guards, control flow evaluation, or
argument checking for specific functions are added without the need to recompile
the application. Even patches can be applied at runtime to fix bugs in running
applications. Fault isolation detects code injections and terminates the program
before the data structures are corrupted. Data-based exploits, on the other hand,
are not detectable by fault isolation and are caught using policy-based system call
interposition.

The binary translator is the foundation of the security guarantees of the pre-
sented sandbox. The binary translator should be modular and small to keep the
trusted computing base small. This section presents design criteria for a modular
and flexible binary translation fault isolation layer that is needed to implement the
additional security guards and system call authorization. An important feature of
the binary translator is that return addresses on the stack remain unchanged. This
adds additional complexity when handling return instructions as they are translated
to a lookup and an indirect control transfer. On the other hand, an unchanged stack
ensures that the original program can use the return instruction pointer on the stack
for (i) exception management, (ii) debugging, and (iii) return trampolines. Addi-
tionally, the user program does not know that it runs in a virtualized environment,
and the address of the code cache is only known by the binary translator.

4.2.1 SFI security guards

Binary translation guarantees that only translated instructions will be executed but
does not prevent individual instructions from overwriting memory regions or execut-
ing specific system calls. Dynamic binary translation enables the implementation of
additional security guards by rewriting and encapsulating specific instructions.

An important requirement of the binary translator is that no pointers to internal
data structures are left on the stack. The binary translator therefore uses a hidden
stack in the sandbox domain that is separate from the application stack of the
translated user-program to dynamically translate new basic blocks and dispatch
indirect control transfers.

A custom tailored exploit could target the binary translator itself. If the program
were able to locate the internal data structures of the binary translator (e.g., the
code cache), it could modify the executed code by directly changing instructions in
the code cache and so break out of the isolation layer. Therefore any pointers to
internal data are only allowed on the secure stack, and no pointers are pushed to
the application stack. Additionally, the translator guarantees that application code
that tries to access internal data structures is not translated by virtualizing, e.g.,
addresses or registers.

The basic binary translator is extended by the following security guards that
harden the user-space isolation sandbox and to ensure that application code cannot
escape out of the sandbox:
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Non-executable data: implements a form of executable space protection for x86
on a section basis in user-space. This protection enforces the permissions for
regions defined in ELF headers of the programs and loaded libraries, even if
they are smaller than a page. The guard checks if the target area is defined in
the program or an imported library and if it actually contains code. If there
is a violation then the program is terminated. This guard ensures that data
regions cannot be executed and protects against the execution of code injected
through stack-based and heap-based buffer overflows.

Executable bit removal: this guard marks the code of the untranslated program
as non-executable (by using mprotect calls). The application does not know
the location of the internal code cache and therefore cannot overwrite parts
of the code cache with injected code. This guard ensures that only code from
the binary translator and translated code in the code cache can be executed.

Return address verification: This guard checks that the return address is not
modified by implementing a shadow stack that is only accessible in the pro-
tected sandbox domain where the return address is verified for each return in-
struction. The shadow stack contains pairs of addresses, the original location
and the translated counterpart. If the address on the original stack does not
correspond to the address on the shadow stack then the program is terminated.
This guard protects against stack-based overflows and return to libc attacks
and is comparable to solutions like StackGuard [CPM+98], libverify [BST00],
Propolice [HK01], and FormatGuard [CBB+01].

Signal handling: the binary translator keeps a mask of installed signals on a per-
thread basis. Whenever a new handler for a specific signal is installed, the
code of the handler is wrapped into a trampoline that guarantees the secure
execution of the signal and ensures that the signal processing code cannot
escape the binary translator. This guard protects against errors in the trap
handling and enables the sandbox to catch memory accesses to unmapped
memory regions (e.g., probing for the location of the code cache).

Secure context transfers: the control transfer from the binary translator to
translated code uses an indirect control flow transfer to ensure that no point-
ers to any internal data structures of the binary translator are exposed on the
stack. This guard hides the internal data structures of the sandbox from the
application.

Address Space Layout Randomization (ASLR): the binary translator allo-
cates all internal data structures on random addresses using an internal mmap
implementation. On IA32 the instruction pointer cannot be read directly (e.g,
through a register) and indirect control transfers (e.g., call instructions) are
replaced by a secure sequence of virtualized instructions during the trans-
lation process. All translated indirect control flow transfers point into the
original code region and are replaced with a lookup in the mapping table. The
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translated code is therefore unable to recover a pointer into the code cache
or any other internal data structure of the binary translator. The internal
mmap implementation uses the ASLR feature that is available in the Linux ker-
nel [PT03, BDS03, BBSD05]. The probabilistic security guarantees of ASLR
are limited if ASLR is used in isolation [SPP+04].

Dedicated sandbox stack: all code executed in the sandbox domain uses a ded-
icated secure stack. Application code has no access to the sandbox stack.
Execution switches to the sandbox stack whenever sandbox code is executed.
A dedicated stack helps separating the application domain and the sandbox
domain.

Protection of internal data structures: the sandbox adds an additional heavy-
weight guard that uses mprotect to disable write access to all internal data
structures (e.g., mapping table, code cache, internal translator data) of the
binary translator whenever translated code is executed. This way translated
code is unable to change translated code or any other internal data structures
of the binary translator. Even if this guard is not active, all pointers to the
internal data structures are pruned from the stack. An exploit is unable to
detect the internal data structures due to the virtualization guarantees of the
translator.

The current guard configuration does not allow applications with self-modifying
code. An application with, e.g., a JIT compiler could be handled by specifying
ahead of time exactly which regions the compiler will be emitting code and using an
additional guard for these regions; see Section 5.3.5 for more details.

4.3 Dynamic Control Flow Integrity (CFI)

Control flow transfers must transfer to valid targets as specified by the application.
No location that is not pre-existent in the application must be reached. Control
flow transfers must conform to a pre-existing Control Flow Graph (CFG). This
CFG defines an unmodifiable set of reachable targets for each source location.

As long as the control flow transfers correlate with the pre-defined CFG no code-
based attack took place. If the control flow of the application deviates from the CFG
then an exploit happened or is about to happen and the program must be stopped.

A dynamic instrumentation framework is in the unique position to check all
control flow transfers before they are executed. For each control flow transfer source
location a set of valid target locations is defined. The target array is then used in
the check; if the current target location is in the array then the transfer is valid and
can be executed, otherwise the program is terminated with a security exception.

The dynamic translator checks static control flow transfers (e.g., jmp and call

instructions) at translation time. For dynamic control flow transfers (e.g., jmp in-
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direct and call indirect instructions) the dynamic translator emits a trampoline
that checks the pair of source and target location whenever the control flow trans-
fer is executed. The dynamic control flow transfers result in additional overhead
for each execution. This verification overhead can be reduced by using, e.g., local
lookup caches.

4.3.1 Comparing dynamic and static CFI

Dynamic CFI shares one limitation with static CFI (see Section 3.5.2 and Sec-
tion 3.5.4), namely that a possible attack that controls a register can change the
control flow to an alternate location. This alternate location must also be in the set
of valid target locations for the source control flow transfer. This possible attack
vector can be used to set up data attacks. Static CFI/XFI is unable to detect these
data attacks. To be effective a data attack must change parameters of a system
call at one point in time. These changed system calls (and arguments) can then be
used to escalate privileges, or to launch additional attacks. Our framework includes
a policy-based system call authorization that detects data-based attacks in system
calls and terminates the application (see Section 4.5).

Dynamic CFI has two advantages compared to static CFI. First, ASLR is still
possible. ASLR enables random placement of code and data in the process image,
making it harder for an exploit to discover valid alternate target addresses. Second,
dynamic loading of libraries and lazy binding is also possible. These two facts enable
faster startup times because not all code must be relocated and loaded when the
application starts.

4.4 Model generation for dynamic CFI

Control flow integrity relies on an exact CFG that specifies every possible control
flow transfer. This CFG can be generated at different stages during the compila-
tion of the program. Compilers have complete information of all possible targets
for each location. A compiler can be extended to emit a CFG for each compiled
module along with the binary or assembly code that can be used for CFI (see “Fu-
ture Directions” in Section 8.1). If the source code is not available then a possible
alternative is to reverse engineer the CFG based on the available binary (as done by
CFI/XFI [ABEL05,EAV+06]). The reverse engineering approach has the limitation
that not all valid locations can be located statically (e.g., the size of static jump
tables is not known, dynamically computed and populated jump tables cannot be
statically detected, and the target address can be the result of complex computation.

We generate a model using an alternate approach. By reusing already available
information in the ELF headers of the application and the libraries we generate a
detailed execution model for an application which is basically a CFG of the complete
program. Appendix B describes the ELF format. The symbol table and the dynamic
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symbol table define all symbols (including name, location, and size) of a shared
object. The dynamic symbol table is a subset of the symbol table and contains only
imported and exported symbols.

Stripped objects only contain the dynamic symbol table and remove the symbol
table. This less fine-grained information reduces the accuracy of our model. For
maximum effectiveness of our model we assume that the shared objects are not
stripped and that both the symbol table and the dynamic symbol table are available.

The information about imported and exported symbols is used to implement a
CFI guard for function calls, while the information regarding the location and size
of individual functions is used to implement a section guard for jump instructions.

Section guard: only (direct and indirect) function calls and function returns are
allowed to transfer control to a function in a different code region. All other
control transfers (like jumps or indirect jumps) must target code in the same
function. This guard prohibits unintended control flow transfers.

Call guard: call instructions are verified to transfer control to an existing function
(symbol) that is either imported by the current object and exported by the
target object or defined in the same object. If the call does not target a symbol
defined in any of the loaded libraries or the program itself then the call is not
allowed. This guard prohibits ROP attacks and the redirection of function
pointers to unintended code.

The SFI sandbox checks all control flow transfers and ensures that they con-
form to the constructed runtime model. Static control flow transfers (e.g., direct
jumps, conditional jumps, direct calls) are checked when the code is translated. No
additional check is needed during the execution of the translated code (check once,
execute often). Dynamic control flow transfers (e.g., indirect jumps, indirect calls,
and return instructions) are translated into a runtime check. A control flow transfer
check is executed every time before the dynamic control flow transfer is executed.
Figure 4.3 shows a flow diagram for inter-module function calls and inner-module
function calls. These secure control flow transfers protect from undesired control
flow transfers (ROP attacks and code injection).

4.4.1 Inter-module function calls

Inter-module calls describe transitions from a method in one object to a method in
another object. Our execution model allows only call instructions to transfer control
between modules; jump instructions must stay inside the module.

Inter-module transfer checks ensure that the instruction is a call instruction and
that the target of the instruction is reachable from the current location according
to the fine-grained execution model. The target location must be imported in the
current object and the symbol must be exported in the target object. Failed checks
terminate the program.
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Figure 4.3: Control flow transfer check for call instructions. A DSO is a shared
library.

4.4.2 Intra-module function calls

Inner-module transfers describe transitions inside from one method to another
method in the same object.

Inner-module transfer checks ensure that the instruction is a call instruction
and that the target of the instruction is a function symbol inside the current object
according to the fine-grained execution model. If the current object has no complete
symbol table information (but only the dynamic symbol table of exported symbols)
and the target is not an exported symbol then a warning is emitted because our
approach is unable to detect inner-module method boundaries. The application is
terminated if the destination address is not in an executable section. If symbol
tables are available and the check fails then the program is terminated.

4.4.3 Jump instructions

Jump instructions (direct, indirect, and conditional) are allowed to transfer control
inside a method. If jump instructions transfer control into another object or method
then the program is terminated. Figure 4.4 shows the control flow transfer check.
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Figure 4.4: Control flow transfer check for jump instructions. A DSO is a shared
library.

If the shared object is stripped (and the resolution of function boundaries is
limited) then the control flow transfer check is limited to the boundaries of outer
exported functions or, more generally, the defined executable region.

This ensures secure control flow transfers but prohibits the use of functions like
setjmp, longjmp, and goto between functions. Failed checks terminate the appli-
cation.

4.4.4 Return instructions

Return instructions are secured using a shadow stack; this stack is in the protected
domain and not accessible from application code. The shadow stack contains in-
formation about call frames (return instruction pointer, location of the return in-
struction pointer on the original stack, and translated instruction pointer in the
code cache). Return instructions are translated into a check that ensures that the
return instruction pointer on the stack is equal to the return instruction pointer on
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the shadow stack. If these two pointers are equal then control is transferred to the
saved location on the shadow stack.

This ensures that stack overflows are unable to change the execution flow of the
application. The program is terminated if an illegal control flow transfer is detected.

4.4.5 Limitations of our model

A complete CFG knows the exact set of target locations for each instruction that
changes the control flow, whereas our model is less exact to enable dynamic com-
putation of function call targets and jump targets. The control flow transfer checks
validate every single control flow transfer but are limited by the breadth and ex-
actness of the model. See Section 5.4.2 for a discussion of possible limitations in
the current implementation due to potentially missing information, e.g., in the ELF
headers.

A call instruction can target any imported function that is exported in another
shared object, and all functions in the current object. The number of imported sym-
bols in a shared object is usually small. A potential exploit based on the redirection
of function calls can target any valid function that is imported or defined in the
source shared object. Control transfers to other functions must always target the
beginning of the function. It is not possible to transfer control somewhere into a
function. This guard limits the potential uses of function call redirection attacks to
alternate parameters for existing imported functions. All other possible redirects are
detected by the control flow transfer checks and the faulty application is terminated.

Jump instructions can target any valid instruction inside the same symbol. A
jump instruction can target any valid instructions of a function. Jump instructions
cannot transfer to or into a different symbol. This limits gadget search for, e.g.,
jump-oriented programming to the current function. For a potential exploit to be
successful the function would need to include a dispatcher gadget and all useful gad-
gets to carry out the exploit. CFI/XFI has a similar problem with, e.g., large switch
statements that can be used for a jump-oriented programming attack. The proba-
bility that such an exploit can be carried out is low. The dynamic translator can
flag a warning if an application contains code that would allow such an attack (e.g.,
by counting the number of indirect control flow transfers in a function correlated
with the number of individual jump targets).

On the other hand, it is an advantage of this model that not all possible targets
for a source location have to be known during the translation or at startup.

4.5 Policy-based system call interposition

All the potentially dangerous functionality of a program is performed by system
calls (e.g., I/O, network sockets, privilege escalation). A mechanism that restricts
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a program’s use of system calls is a useful and important extension to fault isola-
tion and dynamic CFI. Code-based exploits are handled by the SFI layer. Data
driven attacks where no malicious code is executed (e.g., integer overflows and type
errors) are caught whenever a system call is executed that does not conform to the
application’s policy.

Policy-based system call interposition relies on SFI and the rewriting and replace-
ment of system calls. All system calls through sysenter, and int 80 instructions
(Linux uses and supports both schemes [Gar06]) are rewritten by the binary transla-
tor to execute a validation function before the system calls are allowed. The sandbox
offers an extensible system call interposition framework that makes it possible to al-
low or disallow system calls based on the call stack, the system call number, and
the parameters.

The sandbox validates system calls through handler functions and by a policy
that is loadable at runtime. A policy has the advantage that combinations of allowed
and disallowed parameters can be specified in a simple way. Handler functions, on
the other hand, enable in-depth verification of arguments and can use state (e.g.,
a list of previous mmap calls, arguments, and call locations) to track application
behavior throughout the execution of different system calls. The combination of a
policy to handle simple and static combinations of system calls and handler functions
for complex system calls enables an even tighter and more dynamic security model
than policies alone.

4.5.1 Special handler functions

The privileges of a program can be managed by specific handler functions on a
per system call basis. Every system call can use a different handler function that
analyzes call stack and arguments. The handler functions are a part of the sandbox
domain and have full control over the application. Handler functions may allow the
system call, abort the program, or redirect the system call and return a fake value.

These redirected system calls can be used to implement different functionality
in user-space. If a system call is redirected then a user-space function is executed
whenever the system call is called. This function runs in the context of the sand-
box and can execute arbitrary other system calls (redirected system calls can, e.g.,
emulate or isolate vulnerable system calls). More generally redirected system calls
add additional validation of arguments that are passed to the kernel.

The sandbox uses additional handler functions to check all mmap, mprotect,
open, and openat system calls. For mmap and mprotect the sandbox checks if the
arguments overlap or touch any internal data structures that the binary translator
uses. If there is a conflict then the application is terminated. For the open and
openat system calls the sandbox uses stat to check if the file is in the black list
or tries to access protected files like /prof/self/maps that would leak information
about the sandbox.
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mode:whitelist /* deny unlisted syscalls */

open ("/dev/arandom", O_RDONLY ): allow

open ("/dev/urandom", O_RDONLY ): allow

time(null):allow

getuid32 (): return (0) /* return static uid=root */

close (*): allow /* close open files */

write (1,*,*): allow /* stdout */

access ("/etc /*" ,*): allow

// implicit: access ("*" ,*): deny

Listing 4.1: An example of a small white-listing policy

The handler functions are used as an extension of the policy system. Handler
functions enable additional control logic to guard and tighten the allowed actions of
the application.

4.5.2 Policy-based system call authorization

The system call authorization framework for policy-based system call authorization
builds on process sandboxing and extends the system call interposition framework.
The sandbox loads a user-defined per-application policy at startup to decide for each
individual system call if it is allowed or not.

If a system call and its arguments do not match the policy (e.g., the configu-
ration is not present in the policy for white-listing, or is present for black-listing),
the isolation system assumes that there is an error, bug, or security problem and
terminates the user process. Additionally, it can signal the system operator that an
authorization fault occurred.

The policy file contains a list of system calls and parameter-sets that are allowed
or denied. This setup allows a combination of white-listing and black-listing of dif-
ferent argument combinations per system call. Arguments are encoded as integers,
pointers, strings, paths, null, or asterisk for an unspecified value that matches any
input. Partial paths can be matched with an appended asterisk (e.g., "/etc/a-

pache2/*"). Effective path arguments can additionally be evaluated using stat

system calls. Possible actions for each combination are to allow the system call, to
abort the program, or to return a predefined integer value. See Listing 4.1 for an
excerpt from a policy file. This policy allows two specific files to be opened, and
execution of the time(), close(), and write() system calls. getuid() returns 0
(root), and access() is restricted to /etc/* only. See Figure 4.5 for an overview of
runtime data structures needed for the policy-based authorization.

The redirected system calls can be used to change and test the behavior of a
program if certain system calls return special values (e.g., many programs behave
differently if they are run as root, so returning a fake value for getuid is useful in
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5: open(string, int)
6: close(int)
.
.
.

System call definition:

("/etc/apache2/*", *): allow
("/var/www/*", *): allow
("*", *): deny

open:

(*): allow

close:

Figure 4.5: Runtime data structures for a given policy with examples for the open()
and close() system calls.

some cases). The current policy is limited to returning a static fake value, although
recall that the system call interposition framework can be used to call any user
supplied function to handle a specific system call. This functionality enables, e.g.,
additional stateful security checks, the emulation of (obsolete or unsafe) system
calls, virtualization or reimplementation of specific system calls in user space, or
even kernel emulation in user-space.

Depending on the first line of the policy file, either white-listing or black-listing is
used. Black-listing can be used, e.g., for testing or implementation of new features.
For security policies we assume that a white-listing approach is taken. An unmatched
combination of parameters for a specific system call either aborts the program if
white-listing is used, or is allowed if black-listing is used. White-listing specifically
allows system calls and implicitly denies all other system calls. Black-listing denies
or redirects specific system calls and implicitly allows all unspecified system calls.

4.6 Summary

This chapter presents the design of the secure execution framework that implements
two execution domains in user-space: the trusted sandbox domain and the untrusted
application domain. The secure execution framework consists of three components:
a secure loader, a SFI sandbox, and a policy-based system call interposition frame-
work.

The secure loader extracts detailed runtime information (e.g., location of sym-
bols, code regions, and import/export information of individual modules) about
the application and ensures that all untrusted application code is executed in the
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sandbox. Accesses to the loader API by the application trap into the privileged
domain.

The sandbox checks all application code before it is executed and weaves security
guards into the translated code. The information from the secure loader is used to
restrict control flow transfers inside the application.

The policy-based system call interposition framework restricts the interaction
between the application and the kernel. A per-application policy defines which
system calls and parameters can be executed by the application.



5
System architecture and

implementation

The system architecture of the secure execution platform is split into independent
modules. The implementation follows a Unix-like design concept that uses different
components that can be plugged together depending on the needs of the user.

Most components can be used as either a replacement for already existing prod-
ucts with additional security features (e.g., the secure loader) or as an alternative
runtime environment for applications (e.g., the user-space sandbox, or the policy-
based system call authorization layer).

The different components can be plugged together into a complete protection
mechanism. This system is then called the secure execution platform. Individual
components communicate through a well-defined API in the trusted domain.

The secure loader in Section 5.1 can be used as a secure replacement of the
standard loader. The loader can then be used to execute all application code under
the control of a user-space sandbox. Section 5.2 describes a generic table-based
user-space binary translator that is used as a basis for the Software-based Fault
Isolation (SFI) layer. The binary translator is hardened for security1 and is extended
by the security guards to enforce fine-grained user-space SFI; see Section 5.3 for
implementation details.

The user-space sandbox can then be used in combination with the secure loader.
The standard loader should not be used in a security related context because of the
problems mentioned in Section 2.4.

Section 5.4 discusses the implementation of the dynamic control flow integrity
checks. The control flow checks use a model of allowed targets for each source
location. This model can be generated using different approaches defined in Sec-
tion 5.4.1. If the secure loader is available then the loader forwards information
about individual loaded shared objects into the model used by the control flow
transfer checks.

1Security hardening is a process to reduce the vulnerability surface of a software system. Security
hardening techniques include removing unneeded external dependencies, removing unneeded code,
simplifying both the interface and the implementation, and adding validation for untrusted input.

53
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Policy-based system call authorization relies on an SFI system that redirects
all system calls to an interposition layer. This interposition layer is extended to
include a policy parser that enforces per-application policies. Section 5.5 presents
implementation details of the system-call interposition layer.

The code base of the secure execution platform is small; the secure loader consists
of around 5,400 lines of code (including 2,100 lines of comments) and the sandbox
platform consists of around 15,200 lines of code (including 3,200 lines of comments
and 4,900 lines for the full IA32 translation tables).

5.1 Secure loader

The security framework integrates the information from the loader into the security
guards. The secure loader initializes the sandbox before any application or library
code is loaded or executed. All application and library code is then executed in the
sandbox. The source code of the prototype implementation is available as open-
source.

The secure loader uses Executable and Linkable Format (ELF) information and
symbol table information [SCO96] and implements all needed functionality to load
most programs (e.g., OpenOffice, and the SPEC CPU benchmarks).

The SFI platform is tightly coupled with the secure loader. The loader first
maps libdetox into the address space and initializes the SFI platform. This special
treatment ensures that the SFI platform is initialized and that the application has
no access to or knowledge of the sandbox domain. The next steps are the relocation
of the application and all needed shared objects. The loader controls all data that
is passed to the application and runs all user code under the control of the SFI
platform.

5.1.1 Application and library loading

The secure loader implements the most common subset of features from the standard
loader. Some features (e.g., overwriting library search paths) are removed out of
security concerns. Unimplemented features result in an error message and graceful
termination of the program. The current implementation prototype covers the core
functionality needed to execute many programs of Ubuntu 11.042. Further options
(e.g., obscure relocation patterns, additional callbacks from the application into the
loader, and access to internal loader data3) can be added if needed.

The standard loader has no protection for internal data structures and leaks

2We executed a selected set of applications to demonstrate the practicality of this approach but
did not test the full set of applications run in our department’s infrastructure.

3E.g., GDB uses undocumented direct access to the internal data from the loader; this feature
can be implemented as a proxy that projects information out of the secure loader if needed.
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pointers to the internal data structures to the application. The API of the secure
loader that is accessible from the application (e.g., dlopen, dladdr, and dlsym)
ensures that no protected internal data is leaked to the application. The sandbox
write-protects all internal data whenever (translated) application code is executed.

The secure loader must handle the startup of new applications. First of all the
loader is completely independent from any libraries (even the standard libc) and
is just mapped into memory. This loader then examines the ELF headers of the
application and maps the runtime sections of the application to a fixed address in
memory. Then the list of needed libraries is examined and entries are added to a“to-
process-list”. The loader dequeues one entry at a time and loads and initializes this
library at random addresses. If the library depends on other libraries then they are
added at the end of the “to-process-list”. This algorithm conforms to a breadth-first
traversal of the dependence graph of the application starting with the application
as the root node.

References to needed libraries only contain the name of the library but not the
path. When the loader locates a new library several paths are examined: first a per-
Dynamic Shared Object (DSO) variable that specifies one or more search paths per
DSO, then the standard search paths defined in /etc/ld.so.conf. The standard
libc loader also supports additional search directories using the LD_LIBRARY_PATH

environment variable and the local cache file /etc/ld.so.cache. Out of security
reasons the secure loader does not support runtime-configurable paths; the search
path for libraries is restricted to the compile-time configuration.

5.1.2 Symbol resolving

The loader resolves symbols using the symbol tables in the different shared objects.
Every shared object contains the .dynsym table with all exported symbols. If the
loader needs to resolve an imported symbol then the loader checks different lookup
scopes. The loader defines three different lookup scopes that are checked one after
the other:

1. Loader scope: this scope contains the symbols that are exported by the secure
loader. The loader scope is checked first and symbols in this scope cannot be
overwritten.

2. Local scope: the local scope of a DSO contains its own symbols and the symbols
of all libraries that the DSO depends on. This scope is a (smaller) subset of
the global scope.

3. Global scope: shared objects that are in the initial set of objects loaded during
the startup of the application (e.g., all objects in the dependence graph) or
shared objects that are loaded at runtime with the RTLD_GLOBAL flag set are
in the global scope.
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A special feature is symbol versioning where symbols can be defined multiple
times with different versions. The correct symbol is then selected based on a match-
ing version.

The secure loader supports the GNU IFUNC relocation format (STT_GNU_IFUNC)
where a piece of code is executed to determine the correct location of the symbol.
This feature is, e.g., used in libc to select between multiple implementations of a
function. The test function checks if a specific CPU feature is available and returns
the most optimized version for the current environment. The loader then uses this
function pointer and forwards it to the requesting DSO where the function pointer
can be embedded in the Global Offset Table (GOT).

5.1.3 Memory protection

One of the advantages of a secure loader is that all loader-related data structures
can be write-protected. The secure loader manages two kinds of data structures:
internal data structures and application data structures.

Internal data structures contain information about the different relations between
shared objects, scope information, and other details about the loaded objects. This
information is updated by the secure loader whenever new shared objects (e.g.,
additional shared libraries) are loaded and initialized. The secure loader maps these
data structures read-only whenever application code is executed.

Shared objects contain data structures that are only changed by the loader
and are only read by the application. If we take the standard libc 2.1.3 as an
example we see in Table 5.1 that there are 34 ELF sections that are mapped to
memory. 11 sections are mapped writable (.tdata, .tbss, .fini_array, .ctors,
__libc_subfreeres, __libc_atexit, __libc_thread_sub, .data.rel.ro, .dy-

namic, .got, .got.plt, .data, .bss) and 1 section (.dtors) is marked read-only
but on the same memory page as .ctors and is therefore writeable as well. Most of
these sections are used only during the initialization of the shared object. The sec-
tions .data.rel.ro, .dynamic, .got, and .got.plt are critical for the loader and
can be used in attacks against a sandbox. The standard loader maps .data.rel.ro
as read-only after the initialization but the other sections remain writeable. Out of
the writeable set of sections only .data and .bss are used by the libc code.

The secure loader write-protects all sections except .data and .bss dynamically
to protect the application from modification attacks in these sections. If the secure
loader needs to update write-protected structures (e.g., a GOT entry) then the
write-permission is set temporarily during the update in the sandbox domain.

5.1.4 Loader optimizations

The secure loader currently implements two optimizations: lazy binding and Proce-
dure Linkage Table (PLT) inlining.
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Nr Name Type Size Flags
0 NULL 0
1 .note.gnu.build-i NOTE 24 R
2 .note.ABI-tag NOTE 0x20 R
3 .gnu.hash GNU HASH 0x3c38 R
4 .dynsym DYNSYM 9200 R
5 .dynstr STRTAB 005acd R
6 .gnu.version VERSYM 0x1240 R
7 .gnu.version d VERDEF 0x3d8 R
8 .gnu.version r VERNEED 0x40 R
9 .rel.dyn REL 0x2a20 R
10 .rel.plt REL 0x40 R
11 .plt PROGBITS 0x90 RX
12 .text PROGBITS 0x1088d4 RX
13 libc freeres fn PROGBITS 0xfc8 RX
14 libc thread fre PROGBITS 0x182 RX
15 .rodata PROGBITS 0x1b808 R
16 .interp PROGBITS 0x13be68 R
17 .eh frame hdr PROGBITS 0x333c R
18 .eh frame PROGBITS 0x132b4 R
19 .gcc except table PROGBITS 0x5c1 R
20 .hash HASH 0x3484 R
21 .tdata PROGBITS 0x8 RWT
22 .tbss NOBITS 0x38 RWT
23 .fini array FINI ARRAY 0x4 RW
24 .ctors PROGBITS 0x14 RW
25 .dtors PROGBITS 0x8 R
26 libc subfreeres PROGBITS 0x70 RW
27 libc atexit PROGBITS 0x4 RW
28 libc thread sub PROGBITS 0xc RW
29 .data.rel.ro PROGBITS 0x1afc RW
30 .dynamic DYNAMIC 0xf0 RW
31 .got PROGBITS 0x174 RW
32 .got.plt PROGBITS 0x2c RW
33 .data PROGBITS 0x97c RW
34 .bss NOBITS 0x3068 RW

...
68 not allocated

Table 5.1: These sections of the standard libc are mapped at runtime using the
given flags (X - execute, W - Writeable, R - Readable, T - Thread local storage).
Command used to get this information: readelf -S /lib32/libc-2.13.so.
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Lazy binding reduces the number of relocations that must be calculated when
a library is loaded. With this optimization active symbols in the data region are
relocated ad hoc; symbols in the PLT region are only resolved and relocated when
the function is first executed. This optimization is also implemented in the standard
loader.

The implementation of PLT inlining follows the design in Section 4.1.3 and uses
the close relationship between the secure loader and the sandbox. The sandbox
intercepts all call instructions and checks for each instruction if the call is a PLT
call. The secure loader then resolves the static target address of the PLT target.
The original call and indirect jump of the PLT call are then replaced by a translated
call instruction to the resolved target. This translation removes an indirect jump
including an indirect control flow check for every PLT call that is executed.

During the loading process weak symbols of prior DSOs can be overwritten by
symbols in the current DSO. If the weak symbol points to a function and this
function was inlined (through a PLT slot) then the sandbox flushes its code cache
and retranslates all code.

5.1.5 Handling of the sandbox

The secure loader handles the sandbox in a special way. The loader resolves the
additional sandbox code before any shared library or application code is loaded and
initialized. The symbols of the libdetox framework are also resolved in a protected
namespace that is only accessible by the secure loader and the sandbox.

Any application or library code that is then executed during the initialization
phase is executed under the control of the sandbox, enabling security right from the
start.

5.1.6 Integration of the secure loader into the sandbox

The SFI sandbox is based on the libdetox [PG11] open-source project. Changes to
the original implementation are an API for the secure loader, an alternate sand-
box stack for functions in the sandbox domain, and a new shadow stack to store
information about the application stack in the sandbox domain.

The sandbox uses the secure loader to lookup information on the different sec-
tions and hence decides if code is in an executable section of a shared object or
in some other region. The same information is used to implement PLT inlining as
described in Section 5.1.4.

Our sandbox uses specific entry and exit trampolines to simplify the transition
between the application domain and the sandbox domain. The entry trampoline
handles the transition from translated application code to privileged sandbox code.
The application stack remains unchanged, registers are spilled to a thread-local stor-
age area in the sandbox domain and the stack is swapped to a sandbox stack. Code
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running in the sandbox domain uses the sandbox stack to store local information.
The exit trampoline returns from the sandbox domain to the application domain.
The trampoline restores registers, switches back to the application stack, and con-
tinues the execution of the translated code.

Events that trigger a switch from the application domain to the sandbox domain
are:

Lookup misses in the mapping table: if an indirect control flow transfer can-
not be resolved with the inlined assembler code (e.g., a quick lookup in the first
entry of the mapping hash table) then the control flow transfer code escalates
to the sandbox domain and requests a slow-path lookup.

Untranslated code: if the translated application code branches to untranslated
code an exception is triggered and the sandbox either translates the untrans-
lated code and continues execution or faults.

Signals and exceptions: the sandbox installs special handlers to catch all signals
and exceptions. These handlers check the signal or exception, resolve the
original instruction pointer4, check if the signal or exception is legit, and pass
the information to the application.

System calls: system calls trigger a switch to the sandbox domain. A handler
copies the arguments of the system call into the sandbox domain and checks
the combination of system call and parameters using a per-application policy.
The system call is evaluated in the sandbox domain to protect from time of
check to time of use attacks by concurrent threads.

5.1.7 Implementation alternatives

We discuss two implementation alternatives that offer a similar level of security to
the combination of a secure loader with a sandbox. The first alternative uses static
recompilation. All libraries are compiled to a statically linked binary, guards are
added during the recompilation, and the loader is no longer needed. This approach
has several drawbacks: (i) there is no second protection domain; exploits can get
control of the user-space and then execute arbitrary system calls, (ii) static recom-
pilation is limited to statically known targets and code locations (e.g., handling
of dynamic jump-tables for switch statements is not possible), (iii) a secure static
runtime environment must restrict the Instruction Set Architecture (ISA) and the
dynamic control flow transfer instructions to limit the dynamic options of the IA32
ISA.

A second alternative implements a sandbox without changing the loader. The
sandbox is hidden from the application using loader tricks that alter the data struc-

4The kernel passes an instruction pointer to the code cache that must be resolved to a pointer
in the application domain before the signal or exception is passed to the application.
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tures of the loader, or the sandbox is added as a binary blob and injected into the
process image by an external process. This implementation approach has the dis-
advantage that it is hard to hide the sandbox from the loader/application and to
remove all traces from the sandbox in the loader data structures. A second disad-
vantage is that loader code is translated as well, including when new symbols are
resolved. This disadvantage results in an unsolved loader black box problem.

5.2 A generic dynamic binary translator

A generic dynamic binary translator processes basic blocks of input instructions,
places the translated instructions into a code cache, and adds entries to a mapping
table. The mapping table is used to map between addresses in the original program
and the code cache. Only translated code is executed. The translator is started
and intercepts user code whenever the user program branches to untranslated code.
The user program is resumed as soon as the target basic block is translated. See
Figure 5.1 for an overview of such a basic translator.

The user stack contains only untranslated instruction pointers. This setup is
needed to support exception management, debugging, and self-modifying code. Each
one of these techniques accesses the program stack to match return addresses with
known values. These comparisons would not work if the stack was changed, because
the return addresses on the stack would point into the code cache, instead of into the
user program. Every return instruction is replaced with an indirect control transfer
to return to translated code. This design decision enables a user-space virtualization

Translator

Opcode 
table

1'

2'

3'
Trampoline to 

translate 4

Code cache

0

1

2 3
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3    3'
1    1'
2    2'
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Figure 5.1: Runtime layout of the binary translator. Basic blocks of the original
program are translated and placed in the code cache using the opcode tables. The
mapping table maps addresses in the program code to translated addresses. Tram-
polines are used to dynamically invoke the translator for untranslated basic blocks.
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principle. User-space virtualization ensures that the program cannot easily discover
that it is executed in a virtualized environment.

5.2.1 Translation tables

The translation engine is a simple table-based iterator. The translator is invoked
with a pointer to an untranslated basic block, allocates space for the translated
instructions, adds an entry into the mapping table, and translates the basic block
one instruction at a time using the translation tables.

Instructions of the IA32 architecture have a variable length from 1 to 17 bytes.
These instructions are decoded using multidimensional translation tables. The trans-
lation tables contain extensive information about all possible encodings for all IA32
instructions and parameters. The decoding of a new instruction starts with the first
byte of the instruction, which is used as an index into the first translation table.
The indexed row contains information about the instruction or a forwarding pointer
to the next table with the next instruction byte if the instruction is not finished.
The decoding process continues until the instruction is decoded. The final indexed
row contains the information about the instruction. Table 5.2 shows an example.

· · · · · · · · ·
flags *next_tbl (or NULL) &action_func

· · · · · · · · ·

Table 5.2: Layout of an opcode table, the opcode byte is used as table offset. The
flags contain information about parameters, immediate bytes, and registers.

After the decoding of the instruction the instruction and parameters are passed
to the corresponding action function. The action function handles the transcription
of the instruction to the code cache. The function can alter, copy, replace, or remove
the instruction.

The translation process stops at recognizable basic block boundaries like con-
ditional branches, indirect branches, or return instructions. Backward targets are
not recognizable by a single-pass translator and multiple concatenated basic blocks
are translated as one long extended basic block. In this case the second part of
the extended basic block is translated a second time as a shorter basic block. The
additional translation overhead for these split basic blocks is negligible and smaller
than the overhead of a multi-pass translator.

At the end of a basic block the translator checks if the outgoing edges are al-
ready translated, and adds jumps to translated targets. For untranslated targets a
trampoline is constructed that starts the translation of the target. Trampolines are
short sequences of code that transfer control flow to a different location.
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5.2.2 Predefined actions

A translator needs various action functions even to support the identity transforma-
tion. The main challenge is to redirect control flow into the code cache but maintain
the illusion that the program is executed from the original location.

Several action functions remove individual instructions or copy an instruction
into the code cache. Other actions are needed to keep the execution flow inside the
code cache:

Jump: Translates a direct jump in the original program. This action uses the
mapping table to look up the translated target and encodes a branch to the
translated target into the code cache.

Call: This action emits code to push the original location onto the stack and emits
a branch to the translated call target.

Jump conditional: Translates a conditional jump. Code that branches to trans-
lated jump targets is emitted into the code cache. A trampoline is constructed
for untranslated targets.

Jump indirect: This action encodes a runtime lookup that translates the original
target into a target in the code cache and emits a branch to the translated
target.

Call indirect: Emits code that pushes the original location onto the stack followed
by a runtime lookup and dispatch of the indirect target into a location in the
code cache.

Function return: This action emits a translation of the return address on the
stack into a target in the code cache.

5.2.3 Code cache

It is likely that a code region is executed multiple times during the runtime of a
program. It makes sense to keep translated code in a code cache for later reuse.
Code is translated only once, minimizing the overall translation overhead.

As reported in [BA05] and [BKGB06], code sharing between threads is low for
desktop applications and moderate for server applications. We therefore propose a
per thread cache-strategy to increase code locality and to potentially extract better
thread local traces.

Important advantages of thread local caches are that (i) accesses to the code
cache need not be synchronized between threads, and the high overhead of locking
is avoided, and (ii) it is possible to emit hard-coded pointers to thread local data
structures which remove the need to call lookup functions. This feature is used in
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the translator itself for syscall and signal handling and to inline and optimize all
thread local accesses from the instrumented program.

A trampoline is a piece of code that triggers the translation of a basic block.
The binary translator places these trampolines in a separate code region where they
can be reused after the target’s translation. This keeps the code cache clean and
increases code locality.

The combination of the basic translator and the code cache leads to greedy trace
extraction and code linearization. Traces are formed as a side effect of the first
execution and placed in the code cache.

5.2.4 Mapping table

The mapping table is a hash map that maps addresses in the original program to
addresses in the code cache. The hash map contains all translated basic blocks.

The original program does not know that it is translated. All targets for indirect
control transfers (e.g., function returns, indirect jumps, and indirect calls) must be
handled through an online lookup and dispatch. These dispatch mechanisms use the
mapping table to get the corresponding translated target in the code cache. The
translator uses the mapping table to translate function calls, conditional branches,
and direct branches.

The hash function that is used in these lookup functions returns a relative offset
into the mapping table. This hash function is kept as simple as possible because (i)
perfect or near perfect hashing is not needed, (ii) the overhead for hashing should be
low, and (iii) it should be implemented in a few machine code instructions. In the
case of a collision the hash function loops through the mapping table until the entry
or NULL is found. Tests with SPEC CPU2006 benchmarks and various programs
showed that the simple hash function addr<<3 & (HASHTABLE_SIZE-1) results in
a low number of collisions, where the hashtable size is 2x bytes. The best size of
the hashtable is highly dependent on the amount of code that will be translated. A
reasonable value for x is 23, which results in an 8MB hashtable that holds up to 220

individual address mappings.

5.2.5 Basic translation of indirect control flow transfers

Relative control flow transfers and indirect control flow transfers are translated to
a sequence of instructions so that the control transfer targets translated code in the
code cache.

Relative control flow transfers are replaced with a static sequence of instructions
that redirects control flow to the translated counterparts as depicted in Table 5.3.
The target can be checked once during the translation of the instruction and no
dynamic runtime security check is needed for these static targets.
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jmp target call target

- push eip

jmp transl_target jmp transl_target

Table 5.3: Translation of relative jump and call instructions.

jmp (r/ma) call (r/m) ret

- push eip -

push (r/m) push (r/m) eip on stack
jmp indjmp_trm jmp indcall_trm jmp indcall_trm

Table 5.4: Translation of indirect jump, call, and return instructions.

ar/m specifies a register or memory address

Indirect control flow transfers are translated to a lookup in the mapping table so
that the control flow can be redirected to the translated target. Table 5.4 shows how
indirect control flow transfers are translated. The emitted code prepares the stack,
pushes the target pointer if needed, and dispatches the control flow to a thread local
indirect call or indirect jump trampoline. The trampolines handle the additional
security checks and verify the target.

5.2.6 Optimizations

The basic, simple binary translator uses hardcoded references in the code cache for
direct control transfers. The translator must emit an online lookup of the target
if the control transfer is indirect (e.g. indirect jump, indirect call, function return,
or newly translated block), and the target is not known at translation time. This
routine resolves the indirect target, issues a mapping table lookup, translates new
targets, and redirects the control flow to the specified target. This naive translation
results in high runtime overhead because the mapping table lookup is executed often.

The execution of translated indirect control transfers is the biggest contributor
to the overall overhead of binary translation. Different optimization strategies, e.g.,
function inlining, and indirect control transfer optimizations, are used to reduce the
overhead of indirect control transfers.

Function inlining

Function inlining is an effective way of reducing the overhead of indirect control
transfers. If a function is inlined then the return instruction can be translated as
an addition of 4 to the %esp register instead of an indirect jump. Function inlining
saves at least 12 instructions compared to a translated return instruction.
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pushl eip # current eip for call trampoline

pushl target # target of call instruction

pushfl

cmpl $cached_target , 4(%esp)

jne no_hit

popfl

leal 4(% esp), %esp

jmp $translated_target

no_hit: # recover and fix trampoline

movl fixup_locations , secure_stack

call indcall_fixup_trampoline

Listing 5.1: Indirect call instruction using a prediction

Indirect CALL optimization

Indirect calls are used for virtual methods in object-oriented languages as well as for
function pointers in C-like languages. The target is not known at translation time
and can vary upon successive calls. The translator pushes the callee’s address onto
the stack and adds a runtime lookup to handle these transfers. The basic binary
translator implements two different optimizations:

• The indirect call fast optimization compares the first entry in the mapping ta-
ble with the target. If it matches then control is transferred to the destination.
Otherwise the binary translator falls back to the slow path that uses a loop
to find the correct destination. This optimization is used if the indirect call
prediction has a low hit-rate. If the lookup in the mapping table is a direct hit
then an indirect call instruction is executed in 13 instructions (this happens in
the majority of the cases as the hit rate in the mapping table is above 99.9%
for the SPEC benchmarks).

• The indirect call prediction caches the last lookup target and destination (see
Listing 5.1). If the target is the same then the control can be transferred
without a mapping table lookup; otherwise the cache must be updated. This
optimization relies on the fact that the target of an indirect call instruction
does not change often. The binary translator uses this optimization for all in-
direct calls at the beginning. If there are more than MAX_NR_MISPREDICTIONS

(empirically set to 20) mispredictions then the prediction is replaced by a fast
indirect call. If the prediction is correct then an indirect jump is executed to
the cached target.
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Indirect JUMP optimization

Indirect jumps are used in, e.g., dynamically loaded libraries, jump tables, switch
statements, or dispatch functions. As with the indirect call instruction, the target
can vary and is not known at translation time. The binary translator implements
two different optimizations to handle these indirect control transfers:

• The indirect jump fast optimization is similar to indirect call fast, but without
pushing the EIP onto the stack.

• The indirect jump prediction follows the same principle as the indirect call
prediction, without pushing the EIP.

The action handling the indirect jumps selects the most promising optimization to
apply and emits corresponding machine code to the code cache.

5.2.7 Signal and syscall handling

User-space binary translation systems need special treatment for signals and system
calls. A task or thread can schedule individual signal handler functions and execute
system calls. The kernel transfers control from kernel-space back to user-space after
a system call or after the delivery of a signal. A user-space binary translator cannot
control these control transfers, but must rewrite any calls that install signal handlers
or execute system calls so that the binary translator regains control after the context
switch.

Our approach catches signal handlers and system calls and wraps them into
trampolines that return the control flow to translated code. We handle signals
installed by signal and sigaction and all system calls, covering both interrupts and
the sysenter instruction. The sysenter -handling is specific to the syscall handling of
the Linux kernel 2.6 [Gar06].

5.3 Software-based fault isolation layer

SFI extends the generic binary translator described in Section 5.2. An important
feature is that the binary translator covers the complete IA32 instruction set. To
offer an attractive alternative to full system translation the overhead for the binary
translation must be low, both for the translation of new instructions and for the
execution of translated code.

libdetox supports (i) the complete IA32 instruction set, (ii) the binary translator
is modular and expandable by new handler functions that control the low-level
translation of control instructions, and (iii) the trusted computing base is small;
libdetox consists of only a couple of thousand lines of code. The binary translator
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framework translates all control flow instructions and ensures that the execution
stays inside the thread-local code cache.

The combination of a binary translator with the additional security guards imple-
ments the code sandbox defined in Section 4.2. Illegal instructions and instructions
that redirect control flow to malicious code lead to a immediate abort of the program.

5.3.1 Thread and process handling

All system calls that create threads or new processes are handled in a special way.
If the arguments are allowed according to the policy then the system call is instru-
mented such that the new thread or process is started in a new libdetox instance.

System calls are redirected on the basis of either int $0x80 or sysenter in-
structions. These instructions are replaced by a check that redirects the system call
to the authorization framework. If the system call executes clone or fork to start
new processes or threads then the new thread or process is started under the control
of a new libdetox instance. The system call interposition framework rewrites the
arguments to ensure that libdetox keeps control of the application.

If an execve-like system call is used to replace the current runtime image of the
application with an alternate program then the system call interposition framework
ensures that the new program is started in a new (and independent) libdetox in-
stance. If the secure loader is available then the new program is executed using the
secure loader, otherwise the standard loader is instructed to use the LD_PRELOAD di-
rective to start the new program under the control of libdetox (with limited security,
see Section 2.4.3).

If the parameters do not match the policies, e.g., if the program is not allowed
to start new threads or processes or if the program is not allowed to execute any
other program, then the application is terminated.

5.3.2 Additional guards

libdetox reads all symbol and section information when the program or shared li-
braries are loaded. This information is imported into data structures of libdetox
that are used at runtime to implement the additional security guards.

The guards from Section 4.2.1 are executed either when new code is translated or
whenever the translated instruction is executed in the application. Non-executable
data, executable bit removal, and signal handling are implemented using static im-
plementations during the translation process. The section guard, call guard, and
return address verification need both a check during the translation and an addi-
tional dynamic check. The check during the translation process is used for fixed or
precomputed targets and the dynamic check is patched into the translated code for
all dynamic control flow transfers.
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/* 2 instructions needed to setup secure stack */

movl %esp , (tld ->stack -1) /* (1) save old SP */

movl tld ->stack -1, %esp /* (2) change SP */

/* from here on we use the secure stack */

# push arguments /* setup translation */

call translate /* call function */

leal 8(% esp), %esp /* cleanup stack */

movl %eax , tld ->ind_target /* save target */

popl %esp /* (3) restore SP */

/* back to regular application stack */

jmpl *(tld ->ind_target) /* return */

Listing 5.2: Transfer gate to secure stack for internal functions

Secure context transfers are implemented through changes in the binary trans-
lator. The optimizations for indirect control flow transfers are modified so that no
pointers to the code cache are left on the stack of the user-program. For example,
an indirect jump instruction is translated into code that (i) executes a lookup in the
mapping table, (ii) stores the translated target address in a local data structure, and
(iii) uses an indirect jump through that data structure to redirect the control flow
to the translated target. Using such trampolines guarantees that pointers to the
code cache are never left on the application stack and there is no need to overwrite
return addresses of the original application which would leak information about the
sandbox.

5.3.3 Secure Stack

The implementation of libdetox uses a dedicated stack for all internal functions.
No internal data is ever saved to the application stack. The switch to the secure
stack happens through a special gate that is used whenever internal functions (e.g.,
translating new code, updates to the control transfer lookup model, or system call
handling) are executed. This call gate stores the application state on the internal
stack and switches from the application stack to the internal stack. The second call
gate that transfers control back to the application uses the state on the internal
stack to switch back to the application stack.

Trampolines that transfer code from one translated block to another do not store
any internal data on the stack, thereby reducing the number of context switches.
Listing 5.2 shows that switching to a secure stack costs three additional instructions
(two instructions in the preamble, one instruction in the epilogue); this overhead is
tolerable for functions that, e.g., translate new application code.
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pushl %ebx

/* load RIP from shadow stack */

movl tld ->top_of_shadowstack , %ebx

movl -4(%ebx), %ebx

/* compare shadow stack RIP with actual RIP */

cmpl 4(% esp), %ebx

jne authorization_error

/* load translated target from shadow stack */

movl tld ->top_of_shadowstack , %ebx

movl -8(%ebx), %ebx

/* store target */

movl %ebx , (tld ->ind_target)

/* adjust stack */

subl $0x10 , tld ->top_of_shadowstack

popl %ebx

leal 4(% esp), %esp

jmpl *(tld ->ind_target)

:authorizarion_error

/* check for stack -based attack */

Listing 5.3: Translated return instruction

5.3.4 Shadow stack

The shadow stack is a separate secure stack that is hidden from the application.
Translated return instructions use this stack to verify the correct return targets. The
current implementation of the shadow stack uses pairs of addresses with original and
translated addresses.

Call instructions push the current instruction pointer to the original stack before
they transfer control to the new location. The translated call instructions push
the current instruction pointer and the translated instruction pointer to the shadow
stack as well.

Return instructions ensure that the return instruction pointer on the shadow
stack is the same as the return instruction pointer on the application stack. If both
pointers match then the top shadow stack frame is removed and control is transferred
to the translated target using the pointer on the shadow stack. Listing 5.3 shows a
translated return instruction.

5.3.5 Limitations of the current implementation

The current implementation does not support self-modifying code or just in time
(JIT) compilers. Code that is generated dynamically cannot be trusted, even if the
JIT compiler generates all needed symbol information. A simple approach handles
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the code region where all dynamically compiled code is emitted as one large symbol.
An attack could exploit the code generator and generate code that breaks the control
transfer rules in the JIT code region.

A possible extension raises the JIT compiler into the trusted computing base and
implements a (one-way) interface between the JIT compiler and libdetox to exchange
information about locations and properties of dynamically compiled methods.

A second limitation of the current approach is that jump-oriented programming
attacks [BJFL11] and data-only attacks (application data is over-written using a
malicious write to a memory page) are still possible if the sandbox is used in isolation
without control flow integrity as discussed in Section 4.3. Jump-oriented attacks
and data-only attacks can redirect the control flow to alternate locations in the code
but the attacks can never introduce new code or break out of the sandbox. Only
translated code is executable and all outgoing edges at the end of a basic block in the
code cache are either patched to other translated basic blocks or trigger a fallback
into the sandbox to translate previously untranslated code.

5.4 Dynamic control flow integrity

The control flow transfer guards are implemented in the core translator of the lib-
detox library. Every static control transfer must adhere to the model defined in
Section 4.4. The control flow transfer guards use hooks in the individual translator
functions that handle the translation of the different control flow transfer instruc-
tions. For static control flow transfers the verification of the rules happens during
the translation process. For indirect or dynamic control flow transfers the action
function that translates the indirect control flow transfer emits additional code that
invokes a dynamic check. The dynamic checks use the same model defined in Sec-
tion 4.4 to verify compliance with the control transfer rules. The dynamic check
pushes source location in the original program, dynamic target location, type of
control flow transfer (e.g., indirect jump, or indirect call), and the pointer to the
translator data onto the stack. This data is then used in the dynamic check to
determine if the transfer for the specified type is allowed.

5.4.1 Information gathering

The control transfer lookup model could be constructed through the LD_AUDIT hooks
from the standard libc dynamic loader, through the dl_iterate_phdr function of
the dynamic loader that allows a traversal of the loaded dynamic shared objects,
or using information from the secure loader. Whenever a new library is loaded or
closed the information in the per-application control transfer lookup model must be
updated on-demand.
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The LD AUDIT interface

LD_AUDIT offers an audit interface for the dynamic linker on Linux platforms. A
library can specify individual callback functions that are executed whenever the
application loads a new dynamically shared object (e.g., a library) or resolves a
symbol or function. Unfortunately, this approach leads to high overhead because
a dynamic function is executed whenever a symbol is resolved or an inter-module
function call is dispatched. Additionally, this approach does not work for all shared
libraries and DSOs. This solution is also prone to the loader black box problem from
Section 2.4.3. Therefore we reject this approach.

The dl iterate phdr interface

The dl_iterate_phdr interface allows a direct on-demand access to the information
of the dynamic linker. This interface implements an iterator over all loaded DSOs.
A user-definable callback function processes the information about each DSO. This
approach is stable and introduces low overhead. The libraries are only resolved once
when the virtualization platform starts. Unlike the LD_AUDIT approach, there is no
additional overhead, for inter-module function calls.

The dynamic linker resolves all shared libraries at runtime. When the dynamic
loader finishes it passes control to the libdetox startup routines. Libdetox uses the
dl_iterate_phdr interface to parse all loaded DSOs. The symbol information of
each library is loaded into the control transfer lookup model and additional infor-
mation (e.g., location and size of PLT and GOT) about each DSO is stored in a
general record table. Unfortunately, this solution is also prone to the loader black
box problem and hence is also rejected.

The secure loader approach

This approach changes the secure loader directly to export the needed information
in the correct data type. The secure loader already starts the sandbox whenever ap-
plication code is executed. This means that the loader has control over the sandbox
and knows where the data structures of the sandbox are located5.

The loader uses this information to inject an up-to-date information model about
all loaded shared objects and all available control flow targets into the sandbox. This
model is updated whenever loader code is executed to resolve or update any symbols
or when loader code is executed to dynamically load additional shared objects.

5The loader knows where the data structures are located because the loader relocated the
sandbox and resolved the internal symbols when the library was loaded.
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5.4.2 Limitations of the current implementation

The two biggest problems of the current implementation are (i) stripped binaries
and libraries and (ii) imprecise symbol definitions. Both problems result from the
(static) linking process of the applications.

The static linker can strip (remove) the symbol tables from libraries and binaries.
Stripped objects result in a less exact (and less fine-grained) execution model. A
solution to this limitation would be to keep the symbol table information in all
libraries and applications. The only penalty for this solution is increased on-disk
space usage for the (usually small) additional symbol table.

The second problem is due to imprecise symbol definitions in objects. Program-
mers can pass pointers to functions in other objects (e.g., registering callbacks in
libraries). If these function pointers do not point to global symbols then the transfer
checks will fail, because the function is called from outside of the module. These
functions should be exported as global symbols. Our prototype keeps a whitelist of
functions that can be used for such callbacks.

A last limitation is that the setjmp, longjmp feature is no longer supported if the
longjmp transfers control flow between different functions or modules. This feature
is not used often and if it is crucial for a program then an additional whitelist for
target locations of long-jumps could be implemented.

5.5 Policy-based system call authorization

All system calls through interrupts and the sysenter instruction are rewritten by
the binary translator. The system call interposition framework is implemented on
top of the binary translator to wrap all system calls into individual evaluation func-
tions. The system call interposition framework then checks the system call and its
arguments against the loaded policy. libdetox loads the policy and parses it into an
array of parameter lists. Per system call, a parameter list is generated with combi-
nations of valid parameters. If the user program wants to execute a system call then
the list is checked. If a parameter-set matches then the system call is either executed
or a fake value is returned. The process is terminated if no parameter-set matches.
Process termination ensures that no compromised data escapes the sandbox. Sand-
boxing ensures that no code-based attacks are possible and policy-based system call
authorization ensures that the application is confined to the per-application system
call policy. The combination of these two principles makes user-space isolation and
encapsulation possible and secure.

The system call interposition framework contains an array of function pointers
with handler function for each system call. These handler functions either point to a
special function for a specific system call (e.g., the handler for mmap or clone) or to
the general policy handler. See Section 4.5.1 for more details on intercepted system
calls with specific handler functions.
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struct syscall_policy_entry {

/** argument definitions for all syscall parameters */

struct syscall_argument *args [6];

/** what should we do if this policy rule matches? */

enum syscall_auth_response action;

ulong_t fake_value;

/** next argument combination in list */

struct syscall_policy_entry *next;

};

Listing 5.4: Policy entry for a single system call

enum syscall_auth_response {

/** syscall authorization granted , execute syscall */

SYSCALL_AUTH_GRANTED ,

/** syscall execution denied , return fake value */

SYSCALL_AUTH_FAKE ,

/** syscall rejected , app is terminated */

SYSCALL_AUTH_DENIED

} __attribute__ (( packed ));

Listing 5.5: Possible responses to a parameter set

The policy handler keeps a table with policy entries on a per-system call basis.
Individual policy entries for a specific system call are enqueued in a linked list. The
linked list is traversed until a policy entry matches or until the end of the list is
reached. If the end of the list is reached then the default action (e.g., terminate the
application with a security exception) is executed.

The implementation uses a table that contains policy entries for each system
call. The policy handler checks all entries for the specified system call using the
information in Listing 5.4. One such entry corresponds to a single line in the policy
file. System calls can have up to 6 arguments that must match and the policy line
can specify a single response action if the current entry matches. If the entry does
not match then the next pointer can be used to check the next entry.

A policy entry contains information about individual parameters (see Listing 5.5
and Listing 5.6). An individual argument can be either an integer, a pointer to some
application-local data structure, a 0-terminated string, or a path which is essentially
a string but interpreted by the kernel and resolved to a specific file.



74 Chapter 5. System architecture and implementation

enum syscall_argument_type {

/** an integer value */

SYSCALL_ARG_INT ,

/** pointer to unspecified data */

SYSCALL_ARG_POINTER ,

/** a string , \0 terminated */

SYSCALL_ARG_STRING ,

/** a path (used by file -related system calls) */

SYSCALL_ARG_PATH ,

/** ignored */

SYSCALL_ARG_IGNORE

} __attribute__ (( packed ));

struct syscall_argument {

/** type , e.g., int , pointer , or string data */

enum syscall_argument_type type;

union {

ulong_t int_value;

void *pointer_value;

char *string_value;

} data;

};

Listing 5.6: Struct for a single parameter in a policy entry

5.6 Discussion

The basic sandbox protects from all code injection-based attacks (on the stack and
on the heap). Regular code sections of the application are mapped read-only and
only translated application code in the code cache is executable. Other memory
pages of the application are never mapped with executable permissions.

The shadow stack protects the return instruction pointer using a privileged
shadow stack in the sandbox domain. This guard protects from all stack-oriented
attacks (return to libc attacks and return-oriented programming [Sha07]).

We can use a system call policy to ensure that the application code cannot break
out of the sandbox and to protect from jump-oriented attacks and data attacks at a
later, more coarse-grained system-call level. An advantage of our extended trusted
computing base is that we do not need to consider the system calls needed by the
loader in our policy. The policy can be reduced to the functionality actually needed
by the application and is not polluted by system calls that are needed for loader
functionality.
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Evaluation

This chapter evaluates the model for the secure execution of untrusted code. The de-
sign and feasibility of the model is evaluated in Section 6.1. Different exploit classes
are analyzed and we show how an attack can be circumvented by the model. The
different modules of the prototype implementation are then evaluated in the later
sections. Section 6.2 displays some characteristics for the individual SPEC bench-
marks. Section 6.3 contains the evaluation of libdetox, the prototype implementation
of the secure execution platform. This section shows that the secure loader is per-
formance competitive to the standard loader and that the sandbox incurs tolerable
execution overhead. Section 6.4 evaluates the control flow integrity checks using the
information from the Executable and Linkable Format (ELF) headers and symbol
tables. Section 6.5 specifies several system call policies and includes details of the
different overheads for the system call redirection and authorization framework. A
policy for the Apache web server is then evaluated in detail in Section 6.6.

6.1 Security evaluation

It is important to evaluate the effective security properties of both the theoretical
foundations of the secure execution platform and libdetox, the prototype implemen-
tation.

The secure loader ensures the safe instantiation of the sandbox and propagates
information about the application (symbol locations and executable regions) to the
trusted domain. The sandboxing component relies on absolute control over the con-
trol flow of the application. Every control flow transfer (both direct and indirect) is
checked according to the control flow integrity rules. This ensures that the secure ex-
ecution platform is always in control of the translated application. The policy-based
system call authorization layer ensures system call integrity on a per-application
basis.

Section 6.1.1 explains the sandbox principle that ensures that the sandbox stays
in control of the sandboxed application. Section 6.1.2 discusses how the secure
execution framework (and the libdetox prototype implementation) can guarantee
dynamic control flow integrity. The following two sections analyze how the secure
execution framework reacts to code-based attacks (Section 6.1.3) and data-based
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attacks (Section 6.1.4). Section 6.1.5 lists all security-relevant bugs of Apache 2.2
and discusses how the secure execution platform protects against possible attacks.
Section 6.1.6 discusses how malicious applications can exploit the secure execution
platform.

6.1.1 Sandbox principle

The sandbox principle ensures that the sandbox always stays in control of the con-
trol flow of the application under three constraints. The first constraint is that the
sandbox can stop the application and redirect the control flow at one point in time
to initialize the sandbox, e.g., before the application starts. The second constraint
requires that all control flow transfers are redirected to regions that are under the
control of the sandbox, e.g., to translated basic blocks in a code cache or to tram-
polines that will translate a given untranslated basic block upon execution. The
third constraint implies that an application cannot use non-control flow instructions
to redirect control flow or that these instructions are properly handled, e.g., system
calls and interrupts.

If all three constraints are fulfilled then an application cannot escape out of
the sandbox. After the sandbox gets control of the application (1st constraint) all
outgoing edges of basic blocks are translated and redirected to code controlled by the
sandbox (2nd constraint). In addition all privileged instructions fault into sandbox
code (3rd constraint).

6.1.2 Dynamic control flow integrity

The sandbox principle guarantees that the secure execution framework stays in con-
trol of the control flow of the application. All control flow transfers are translated
and mapped by the sandbox. All static control flow transfers are verified during the
translation and mapped to the translated counterparts. All dynamic control flow
transfers, i.e., return instructions, indirect jumps and indirect calls, are translated
to a runtime lookup that checks and verifies the current target dynamically.

The sandbox protects the application from control flow redirection using over-
written return address on the stack by adding a secure shadow stack in the trusted
domain (see Section 5.3.4). All call instructions push the original eip to the stack
and to the shadow stack. Return instructions read the eip from the shadow stack
and return to the given translated target. This setup ensures that control flow
transfers cannot be redirected using stack-based exploits like, e.g., ROP (see Sec-
tion 2.2.2).

In addition to the shadow stack dynamic control flow integrity uses symbol and
import/export information from the secure loader. Function calls to other libraries
may only target exported functions in the library that are imported at the call
origin. Function calls inside the same object may only target exported functions if
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the symbol table is available. Jump instructions may only target valid code locations
inside the current function. If no precise symbol table is available in an object then
the model is less precise and local calls and local jump may target any instruction
in the current object.

Dynamic control flow integrity limits attacks that rely on control flow redirec-
tion to valid exported functions that are reachable in the current object for call
instructions and valid instructions in the current function for jump instructions.

6.1.3 Code-based attacks

Code-based attacks include code injection attacks, JOP attacks, and ROP attacks.
All code-based attacks need to redirect the control flow of the application by either
overwriting a return instruction pointer or a location used for an indirect jump or
indirect call (e.g., either a register or a memory location).

Section 6.1.2 guarantees that the control flow of the application cannot be redi-
rected arbitrarily by an attack. Call instructions must target functions and jump
instructions only transfer control inside a defined function. Code-based attacks are
therefore detected when the exploit has set up the data-structures and tries to exe-
cute the initial control flow transfer that starts the malicious code.

We implemented sample programs that are prone to code injection, JOP, and
ROP as well as sample exploits that redirect control flow based on a return in-
struction pointer redirection and function pointer redirection. The exploits execute
successfully for unprotected applications. The libdetox prototype implementation
catches all attacks before the exploit can do any harm.

6.1.4 Data-based attacks

Data-based attacks are hard to catch without information flow tracking. Our secure
execution platform uses a coarse-grained system call-based approach to control all
external changes that an application executes.

System call-based security policies stop attacks at the system call level and not
at the control flow level. A per-application policy defines a set of system calls and
corresponding parameters that are allowed for each application. All other system
calls (or parameters) result in an exception. The static policy handles simple system
calls; whereas most system calls are simple. In addition, validation functions are
executed in the context of the sandbox for complex system calls (e.g., for mmap

to check that the mapped region does not overlap with the memory used for the
sandbox).

A data-based attack can execute any system call that is in the system call policy.
The integrity of the system is tied to a least privilege principle and relies on a tight
security policy.
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We implemented the policy-based system call authorization and added validation
functions for system calls like mmap and fork. We tested the implementation by
executing programs that execute different system calls that are part of the policy
as well as system calls that violate the policy. The sandbox successfully stops the
execution of an application as soon as an illegal system call is executed.

6.1.5 Case study of real attacks

Apache 2.2 is a mature web-server for medium to large scale web sites. Between the
first release of version 2.2.0 on December 1st 2005 and the current release 2.2.22 on
January 31st 2012, 45 security related bugs are reported1. The bugs are fixed in
later releases. This study looks at all security-related bugs for Apache 2.2 until the
(current) 2.2.22 release. The bugs are classified according to their security impact.
Possible impact levels for bugs are2 low, moderate, important, and critical. This
study analyzes the security patches and evaluates if the libdetox sandbox can stop
an attack.

Table 6.1 shows the different Apache bugs, CVE number, a bug description,
the impact of the bug, and if libdetox guarantees the integrity of the system. The
following list shows the four libdetox protection categories:

SE: a security exception is detected in the code and the thread or process is grace-
fully terminated with a warning message.

SF: an illegal memory access that caused an segmentation fault is caught by the
sandbox and the thread or process is gracefully terminated with a warning
message.

PE: a policy exception against the per-application policy is detected and the thread
or process is gracefully terminated with a warning message.

NA!: this bug is not applicable and libdetox cannot protect from this bug due to
constraints of the secure execution platform.

PI!: libdetox does not protect from this bug due to a limitation of the prototype
implementation.

Table 6.1 and Table 6.2 use the following abbreviations for bug types: DoS denial
of service; EXE arbitrary code execution; IL information leak; lDoS local denial of
service; XSS cross-site scripting; CSRF cross-site request forgery; HBUF heap buffer
underflow; lPE local privilege escalation; HBOF heap buffer overflow; ACI arbitrary
command injection; AIH access to internal hosts; IOF integer overflow.

1The Apache homepage lists the security relevant bugs of the 2.2 release at http://httpd.

apache.org/security/vulnerabilities_22.html.
2The Apache homepage http://httpd.apache.org/security/impact_levels.html gives a

description of the different impact levels.

http://httpd.apache.org/security/vulnerabilities_22.html
http://httpd.apache.org/security/vulnerabilities_22.html
http://httpd.apache.org/security/impact_levels.html
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Fixed CVE number Description Impact Type Libdetox
2.2.2 CVE-2005-3352 mod imap referer XSS moderate XSS NA!
2.2.2 CVE-2005-3357 mod ssl access control low DoS SF (null)
2.2.3 CVE-2006-3747 mod rewrite off-by-one important EXE SE, SF, or PE
2.2.6 CVE-2007-1863 mod cache proxy moderate DoS SF (null)
2.2.6 CVE-2007-1862 mod cache info. leak moderate IL NA!
2.2.6 CVE-2007-3304 signals to arbitrary pids moderate lDoS PE
2.2.6 CVE-2006-5752 mod status XSS moderate XSS NA!
2.2.6 CVE-2007-3847 mod proxy crash moderate DoS SF
2.2.8 CVE-2007-5000 mod imagemap XSS moderate XSS NA!
2.2.8 CVE-2007-6388 mod status XSS moderate XSS NA!
2.2.8 CVE-2007-6421 mod proxy balancer XSS low XSS NA!
2.2.8 CVE-2007-6422 mod proxy balancer DoS low DoS SF (null)
2.2.8 CVE-2008-0005 mod proxy ftp UTF-7 XSS low XSS NA!
2.2.9 CVE-2008-2364 mod proxy http DoS moderate DoS PI! (mem)
2.2.9 CVE-2007-6420 mod proxy balancer CSRF low CSRF NA!
2.2.10 CVE-2008-2939 mod proxy ftp XSS low XSS NA!
2.2.10 CVE-2010-2791 mod proxy http timeout IL important IL NA!
2.2.12 CVE-2009-0023 APR-util heap underwrite moderate HBUF SE, SF, or PE
2.2.12 CVE-2009-1955 APR-util XML DoS moderate DoS PI! (mem)
2.2.12 CVE-2009-1956 APR-util off-by-one ovfl. moderate DoS SF
2.2.12 CVE-2009-1195 AllowOverride bypass low lPE PE
2.2.12 CVE-2009-1891 mod defalte DoS low DoS NA! (cpu)
2.2.12 CVE-2009-1191 mod proxy ajp info. leak important IL NA!
2.2.12 CVE-2009-1890 mod proxy rev. proxy DoS important DoS NA! (cpu)
2.2.13 CVE-2009-2412 APR apr palloc heap ovfl. low HBOF SE, SF, or PE
2.2.14 CVE-2009-2699 Solaris pollset DoS moderate DoS PI! (sig)
2.2.14 CVE-2009-3095 mod proxy ftp cmd. inject. low ACI PE
2.2.14 CVE-2009-3094 mod proxy ftp DoS low DoS SF (null)
2.2.15 CVE-2010-0408 mod proxy ajp DoS low DoS NA! (blocked)
2.2.15 CVE-2010-0434 mode headers DoS low DoS/IL SF (null)
2.2.15 CVE-2010-0425 mod isapi unload flaw important EXE PI! (Win)
2.2.16 CVE-2010-1452 mod cache & mod dav DoS low DoS SF
2.2.16 CVE-2010-2068 mod proxy http timeout important IL NA! (Win)
2.2.17 CVE-2010-1623 apr brigade split line DoS low DoS PI! (mem)
2.2.17 CVE-2009-3560 expat DoS low DoS SF (null)
2.2.17 CVE-2009-3720 expat DoS low DoS SF (null)
2.2.19 CVE-2011-0419 apr fnmatch flaw moderate DoS PI! (mem)
2.2.20 CVE-2011-3192 range header DoS important DoS NA! (cpu)
2.2.21 CVE-2011-3348 mod proxy ajp DoS moderate DoS NA! (blocked)
2.2.22 CVE-2011-3368 mod proxy rev. proxy moderate AIH PE
2.2.22 CVE-2012-0053 cookie exposure moderate IL NA!
2.2.22 CVE-2011-4317 mod proxy rev. proxy moderate AIH PE
2.2.22 CVE-2012-0031 scoreboard parent DoS low DoS SF (null)
2.2.22 CVE-2012-0021 mod log config crash low DoS SF (null)
2.2.22 CVE-2011-3607 mod setenvif priv. escal. low IOF SE, SF, or PE

Table 6.1: List of all Apache 2.2 security bugs until version 2.2.22.

Table 6.2 summarizes the information in Table 6.1 and groups all Apache bugs
according to libdetox’s protection classes. Libdetox protects from 21 of 45 Apache
bugs. Out of the 18 bugs that are not applicable to libdetox 5 bugs are denial
of service attacks that cause CPU exhaustion or block a thread until a timeout is
reached; one bug is only applicable to Windows systems; and 13 bugs are either
information leaks, cross-site request forgery, or cross-site scripting. These 13 bugs
are out of scope for a combined control flow-based and system call-based approach.

The prototype implementation of libdetox cannot protect from 6 bugs: 4 bugs
result in memory exhaustion (which could be checked using additional mmap rules), 1
bug enables malicious signals to other local processes on Solaris operating systems,
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Libdetox Vulnerabilities Total
NA! CSRF (1), DoS (5)a, IL (4), IL: Win. only (1), XSS (7) 18
PI! DoS: mem exhaust (4), DoS: sig (1), EXE: Win. only (1) 6

Sum of unprotected vulnerabilities 24
SF DoS: null (10), DoS: unbound memory read (2) 12
PE lDoS (1), lPE (1), ACI (1), AIH (2) 5
SE, SF, or PE EXE (1), HBUF (1), HBOF (1), IOF (1) 4

Sum of protected vulnerabilities 21

aNo DoS attack results in an exploitable state. Three bugs use a large amount of CPU to finish
bound loops, the other two bugs block a thread until a timeout is reached.

Table 6.2: Summary of the Apache 2.2 bug study.

and 1 bug enables arbitrary code execution on Windows operating systems.

Summarizing the limitations of the secure execution platform shows that 3 bugs
are not protected due to different operating systems (Windows or Solaris instead of
Linux), 12 bugs result in information leaks that can only be protected with informa-
tion flow tracking, 5 bugs result in denial of service that is not detectable in a secure
execution framework (the bugs either consume large amounts of CPU time or block
until a timeout is triggered), and 4 bugs are due to limitations in the prototype
implementation. None of these attacks endanger the integrity of the system and an
attacker cannot execute arbitrary code.

The fault handler of the secure execution platform catches all memory excep-
tions (segmentation faults). 12 bugs cause null pointer dereferences and 2 bugs
cause unbound memory reads. These bugs are caught using the fault handler which
gracefully terminates the application and flags a warning to the administrator. 5
bugs are caught by the per-application policies; the bugs include arbitrary command
execution, local privilege escalation, and unauthorized access to hosts on the inter-
nal network. 4 bugs can be used to implement arbitrary code execution through
ROP, JOP, or code injection. Libdetox catches all control-flow related bugs and
terminates the application.

6.1.6 Malicious applications

The execution model for applications inside the sandbox of the secure execution
platform assumes untrusted but non-malicious applications, i.e., an application may
contain bugs but not malicious code. This section discusses potential attacks against
the integrity of the sandbox for malicious applications.

A malicious application may execute any code in the sandbox but the system
call interposition layer binds the application to the given per-application policy. All
protected applications run with user privileges and an attacker can execute only
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Benchmark Instructions (BBs) Function calls (inlined) Ind. jumps Ind. calls
400.perlbench 248,753 (54,288) 21,908,972,069 (9.50%) 21,929,721,015 3,902,298,779
401.bzip2 72,261 (11,809) 6,686,411,394 (0.00%) 1,870,766 1,867
403.gcc 2,244,313 (500,030) 11,416,485,263 (2.82%) 5,040,160,816 653,553,951
429.mcf 8,207 (1,467) 6,937,298,559 (0.05%) 1,708,666 574,634
445.gobmk 540,224 (99,735) 17,818,856,119 (1.33%) 117,474,377 185,811,452
456.hmmer 19,667 (3,523) 219,205,278 (26.78%) 163,062,857 1,138,876
458.sjeng 16,604 (3,337) 21,939,941,742 (1.25%) 10,992,904,415 5,070,023,325
462.libquantum 8,209 (1,230) 1,762,122,564 (0.00%) 979 209
464.h264ref 161,107 (22,052) 9,148,416,877 (30.36%) 2,316,733,272 28,445,058,103
471.omnetpp 50,398 (10,281) 17,282,090,091 (19.29%) 3,151,849,446 2,733,835,044
473.astar 27,755 (4,698) 17,389,970,212 (31.63%) 10,809,621 4,996,462,097
483.xalancbmk 158,461 (27,210) 19,825,915,425 (13.87%) 2,426,718,169 9,161,983,117
433.milc 20,237 (2,750) 6,707,912,535 (1.43%) 11,999,314 3,856,839
435.gromacs 41,025 (5190) 3,510,490,537 (75.48%) 27,444,253 3,274,839
436.cactus. 44,365 (7,371) 1,670,570,147 (0.53%) 1,650,753,737 223,565
444.namd 36,545 (3,790) 33,516,882 (20.47%) 14,909,541 1,969,176
447.dealII 103,520 (13,784) 52,965,608,272 (54.00%) 21,163,171,969 540,898,547
450.soplex 79,152 (11,606) 2,482,695,709 (3.54%) 1,722,689,963 27,488,899
453.povray 64,054 (11,368) 18,698,952,109 (8.10%) 433,067,223 7,072,491,358
454.calculix 92,054 (13,964) 5,200,465,040 (25.43%) 502,727,282 11,226,880
470.lbm 6,912 (1099) 5,273,650 (49.98%) 2,627,289 3,724
482.sphinx3 31,403 (5,308) 7,489,332,386 (10.54%) 268,757,951 6,126,858

Table 6.3: Per benchmark number of translated instructions, translated basic blocks,
number of function calls, percentage of calls that are inlined, number of indirect
jumps, and number of indirect calls.

system calls with local user privileges that are part of the policy for the malicious
application.

A user can use the secure execution platform with a tight system call policy to
test untrusted applications. According to the sandboxing principle in Section 6.1.1
the malicious application cannot escape out of the sandbox. The control flow inside
the application is unchecked but all system calls must conform to the supplied policy.

6.2 SPEC CPU 2006 characteristics

The SPEC CPU 2006 version 1.0.1 benchmarks cover a wide range of applications.
These benchmarks have many different code patterns. An efficient binary translator
must be aware of the most common code sequences and must optimize for these
cases. The performance information was obtained using gcc version 4.1.3 and glibc
version 2.6-22. The benchmarks were compiled with -O2.

Table 6.3 shows the characteristics of the individual SPEC CPU 2006 bench-
marks. The three benchmarks gcc, perlbench, and gobmk have a relatively large
code base where many instructions are translated during the benchmark run. Most
of the overhead results from the following four different sources:

• Function pointers: Calling a function through a function pointer results in
an indirect call. Every indirect call leads to the execution of overhead instruc-
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tions. The memory location of the function pointer is read and the target is
then mapped into the trace cache. To reduce this overhead the last target
of the function pointer is saved if the indirect call prediction optimization is
activated. If the function pointer changes, then the binary translator must do
an additional lookup for the new address.

• Return instructions: Every function call incurs overhead due to the indirect
control flow transfer in the translated return instruction. The cost of function
calls can be decreased through inlining. The dealII benchmark shows nicely
that the overhead can be reduced through inlining; the binary translator does
not pay the additional cost for a function call in 54% of the calls.

• Jump tables (switch): Switch constructs or jump tables are another source
of overhead. The C compiler translates switch constructs into indirect jumps.
The targets of the memory locations do not change, but the binary translator
must add and execute an additional lookup for each of these jumps.

Each of the four worst performing benchmarks (perlbench, sjeng, dealII and
povray) include multiple of the above mentioned factors. The most dominant over-
head is the combined effect of all translated indirect control flow transfers. If indirect
control flow transfers are executed often, and if they cannot be replaced by some
optimization (e.g., inlining), or if the cost cannot be reduced through some opti-
mization (e.g., predictions) then they will induce overhead.

6.3 Libdetox performance evaluation

This section evaluates and discusses the implementation prototype of the secure
execution platform to demonstrate its practicability. The evaluation shows a perfor-
mance evaluation for the SPEC CPU benchmarks and discusses limitations of the
current secure loader implementation.

The evaluation uses the SPEC CPU 2006 benchmarks version 1.0.1 to evalu-
ate both performance and feasibility of our prototype implementation. The SPEC
benchmarks are run on an Intel Core i7 CPU at 3.07GHz in a VirtualBox virtual
appliance using a single dedicated core. The operating system is Ubuntu Natty Nar-
whal 11.04 with gcc version 4.5.2-8ubuntu4 on a x86 ia32 kernel with glibc version
2.13.

The OpenOffice measurements are run on an Intel Core i7 CPU at
3.07GHz on Ubuntu Maverick 10.10 using glibc version 2.13 on a 64-bit ker-
nel with 32-bit support. We use OpenOffice version 3.20 (the exact version is
OOO320 m18 native packed-1 en-US.9502).
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6.3.1 SPEC CPU benchmarks

Table 6.4 displays the number of relocations per benchmark run and the number of
loaded Dynamic Shared Object (DSO)s for a subset of the SPEC CPU2006 bench-
marks. The total number of relocations is low (between 1381 and 1597 relocations)
for all the evaluated SPEC CPU 2006 benchmarks.

Table 6.5 shows the overhead of the secure loader compared to the standard
loader. The performance of the secure loader is competitive to the standard loader.
Comparing the columns of the secure loader to the secure loader with memory
protection illustrates that the overhead of the secure loader to protect all writable
sections except .data and .bss is negligible. The memory protection adds overhead
for every resolved symbol but the execution time that is spent in the loader is low
compared to the overall execution time. The cost for protecting the memory pages
that contain the loader data for each shared object is amortized during the runtime
of the program.

Table 6.5 evaluates three different configurations and compares them to a native
execution. The different configurations are:

LnBT: This configuration uses the secure loader without the security guarantees
that the sandbox offers.

Benchmark Relocations DSOs Bin. exec.

400.perlbench 1447 3 3
401.bzip2 1368 2 6
403.gcc 1437 3 9
429.mcf 1381 3 1
445.gobmk 1422 3 5
456.hmmer 1431 3 2
458.sjeng 1386 2 1
462.libquantum 1372 3 1
464.h264ref 1423 3 3
473.astar 3995 5 2
433.milc 1379 3 1
434.zeusmp 1602 5 1
435.gromacs 1597 5 1
436.cactusADM 1613 5 1
444.namd 4001 5 1
450.soplex 4244 5 1
459.GemsFDTD 1644 5 1
470.lbm 1377 3 1
482.sphinx3 1429 3 1

Table 6.4: Per benchmark average number of relocations, loaded DSOs, and number
of binaries executed in a benchmark run for a subset of the SPEC benchmarks.



84 Chapter 6. Evaluation

nLBT: This configuration evaluates the overhead of the secure sandbox without
the secure loader (using an LD_PRELOAD-style injection of the sandbox.

LBT: This configuration evaluates the complete secure execution framework using
the secure loader to bootstrap the application. All application code is then
executed in the sandbox.

The last column displays the overhead of the secure platform (including secure
loader, memory protection from Section 5.1.3 and full sandboxing of all application
code). Most programs have low overhead and safe execution is feasible. Running
all application code in a sandbox and checking all control flow transfers results in
additional overhead between 0.5% and 96% for the SPEC benchmarks compared
to the standard loader. The overhead results mostly from binary translation, and
only little overhead is induced through the additional security checks. Benchmarks
with a very high number of indirect control flow transfers (these transfers incur a
runtime check in the sandbox) have higher overhead (e.g., 403.gcc, or 464.h264ref).
The average overhead for all evaluated benchmarks is 15.4% which is tolerable for
the combination of safe loading and sandboxing. Appendix E shows the evaluation
of an earlier version of libdetox that focuses on performance over security.

Benchmark Native LnBT Ovhd. nLBT Ovhd. LBT Ovhd.

400.perlbench 404 400 -1.0% 801 98.3% 792 96.0%
401.bzip2 670 665 -0.7% 709 5.8% 708 5.7%
403.gcc 369 372 0.8% 502 36.0% 500 35.5%
429.mcf 443 437 -1.4% 446 0.7% 433 -2.3%
445.gobmk 503 499 -0.8% 680 35.2% 674 34.0%
456.hmmer 576 574 -0.3% 581 0.9% 581 0.9%
458.sjeng 594 593 -0.2% 971 63.5% 961 61.8%
462.libquantum 606 623 2.8% 618 2.0% 597 -1.5%
464.h264ref 817 815 -0.2% 1160 42.0% 1170 43.2%
473.astar 586 579 -1.2% 660 12.6% 660 12.6%
483.xalancbmk 310 301 -2.9% 561 81.0% 572 84.5%
433.milc 500 505 1.0% 516 3.2% 552 10.4%
434.zeusmp 609 612 0.5% 607 -0.3% 608 -0.2%
435.gromacs 923 922 -0.1% 913 -1.1% 915 -0.9%
436.cactusADM 1370 1380 0.7% 1340 -2.2% 1360 -0.7%
444.namd 556 556 0.0% 559 0.5% 558 0.4%
450.soplex 296 297 0.3% 322 8.8% 318 7.4%
459.GemsFDTD 638 638 0.0% 674 5.6% 658 3.1%
470.lbm 368 361 -1.9% 363 -1.4% 362 -1.6%
482.sphinx3 629 592 -5.9% 596 -5.2% 597 -5.1%

Average 588.4 586.1 -0.4% 679.0 15.4% 678.8 15.4%
Geo.mean 550.0 547.0 -0.5% 639.3 16.2% 638.5 16.1%

Table 6.5: Performance analysis of the libdetox prototype implementation.
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6.3.2 OpenOffice

We measured OpenOffice version 3.2.0 startup as a stress test and worst-performance
metric, 145 DSOs are loaded, relocated, and executed with very low code reuse.
OpenOffice was run on an Intel Core i7 CPU at 3.07GHz on Ubuntu Maverick.

OpenOffice 3.2.0 executes 265,067 relocations during the startup phase and loads
145 individual shared objects. The secure loader imposes an overhead of 44% for
OpenOffice and 77% overhead for the additional memory protection. If the full
protection sandbox and the secure loader are used in combination then the start-up
of OpenOffice is slowed down by 188%.

The overhead for OpenOffice results from additional checks that are carried out
whenever a new shared object is loaded and all relocation entries need to be resolved.
The OpenOffice startup sequence is evaluated as a worst-case scenario. Code is
rarely reused and a huge number of references between objects need to be resolved.
The overhead for the secure loader comes from less efficient loading and symbol
resolving. The additional overhead between the secure loader and the secure loader
plus memory protection comes from the additional mprotect system calls used to
protect all runtime sections except .data, .bss, .tdata, and .tbss.

6.4 Control flow integrity using ELF information

This section describes the static and dynamic overhead for translated and checked
control flow transfers in detail. Overhead for each control flow type is analyzed and
dissected. Additional information about the generated dynamic control flow graph
is discussed as well.

6.4.1 Overhead analysis

The Software-based Fault Isolation (SFI) sandbox imposes low overhead (around
6.4% for a performance optimized version as in Appendix E or around 15.4% for the
secure execution framework as in Section 6.3). The overhead for the static origin and
destination checks (to verify the control flow transfer rules from Section 4.2.1 during
translation) is negligible. The stack is already set up to execute internal functions,
and the search in the control transfer lookup model is fast (there are usually not
more than 5 to 10 DSOs loaded and there are usually not more than 100 to 200
functions defined per DSO, with a peak of 2,171 entries for the standard libc). The
DSOs are chained and must be searched linearly. The individual objects of a DSO
are stored in a sorted array structure, this setup enables O(logN) access for each
individual object.

Dynamic control flow transfers need a dynamic check every time the translated
code is executed. The translator emits a dynamic check alongside the control flow
transfer. The additional code per control transfer is depicted in Table 6.6.
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movl %esp, (tld->stack-1)

movl tld->stack-1, %esp

pushad # Save registers
pushl CFTX_CALL_IND # Handle ind. call
pushl 40(%esp) # Pointer to dst.
pushl src # Pointer to src.
pushl tld # Thread local data
call fbt_check_transfer # Check transfer
leal 16(%esp), %esp # Readjust stack
popad # Restore registers
popl %esp

jmpl *(tld->ind_target)

Table 6.6: Control flow transfer check for an indirect call instruction. The additional
code is emitted by the dynamic translator. This code validates a runtime transfer
when executed during a dispatch.

The dynamically executed checks add some overhead to the general execution
time. But the overhead is barely noticeable even for large interactive applications
like OpenOffice.

The following micro benchmarks evaluate individual kinds of control flow trans-
fers and give an overview of general translation and validation overhead. Each micro
benchmark tests one form of control flow transfer. The binary translator is started
at the beginning, gathers data about the program and runs 1,000,000,000 control
flow transfers of each kind. The source code for the micro benchmarks is shown
in Listing D.1. We report the average of 5 runs after removing the best and worst
result from 7 total runs. Standard deviation is below 2% for all micro benchmarks.

The overall overhead is shown in Table 6.7. All non-control flow instructions
and non-privileged instructions are copied verbatim and do not incur additional
overhead. Only protected and translated dynamic control flow instructions add
overhead. Most applications have few control flow instructions. Experiments show

Control flow type Orig. LD Factor

Indirect Jump 1.11ns 45.3ns 40.9
Indirect Call 2.50ns 37.42ns 15.0
Conditional jump 1.75ns 0.62ns 0.35
Call 1.61ns 1.91ns 1.19
Jump 0.61ns 1.61ns 2.64
Function return 8.54ns 41.18ns 4.82

Table 6.7: Overhead per control flow transfer type for dynamic CFI. Orig. shows the
time for an unchecked run; LD accounts for the total time in the libdetox framework.
Factor shows the overhead factor between untranslated and sandboxed execution.
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that the average overhead for user-space virtualization is between 6% and 9% de-
pending on the additional security guards [PG11]. The differences between static
and dynamic control flow transfers are visible in Table 6.7.

Static control flow transfers (call, jump, and conditional jump) where the tar-
get is known at translation time incur only minimal overhead or even result in a
speedup. This speedup is due to better code layout and trace linearization during
the translation process. The target is validated during the translation process, no
additional dynamic check is needed during the execution of the code.

Dynamic control flow transfers (indirect jumps, indirect calls, and function re-
turns), on the other hand, result in an online lookup whenever the translated code
is executed. Fortunately these dynamic control flow transfers are less frequent than
other instructions in applications. There exist several opportunities for optimization
of dynamic control flow transfers (e.g., lookup caching, or special lookup tables).

6.4.2 Control transfer graph analysis

Figure 6.1 shows the complete graph with all control flow transfers (direct and
indirect) for the small program listed in Listing 6.1. The graph of this simple
application visualizes the large number of control flow transfers (even in a small
demo program) that must be validated in an online protection framework. Such
validation is only manageable with efficient and carefully designed data structures.
Libdetox proposes a simple yet effective strategy to peek into the application and
to analyze every control flow transfer according to the control flow transfer model.

These visualizations of the control transfer graphs are built as a side effect of the
validation and can be recorded using additional instrumentation. Multiple transfers
between the same nodes collapse into one edge. The graph contains all symbols
from the application including those that are imported from standard libc. Small
circles are transfers through PLT tables of shared objects. The two light green
nodes (foo and main) are the functions from the application source of Listing 6.1;
the remaining nodes are libC functions used for input and output and functions that
are used during the application startup and tear-down.

#include <stdio.h>

int foo() {

printf ("We are in foo\n");

return 0;

}

int main(int argc , char *argv []) {

foo();

printf (" Successfully executed foo\n");

return 0;

}

Listing 6.1: Small demo program with two functions
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Figure 6.1: Overview of a graph with all control flow transfers of a simple application
including all dynamic loading steps that are translated as a side effect. The small
circles indicate PLT entries that are dereferenced using indirect jumps.

6.5 System call policies

Listing 6.2 shows a relaxed policy that covers all SPEC CPU2006 benchmarks.
This policy is not secure and only used to evaluate the overhead of policy-based
user-space SFI. Some rules are relaxed to facilitate the run of the SPEC internal
benchmark scripts3. The policy is a summary of all individual policies for each
SPEC benchmarks so that the overhead for all benchmarks can be evaluated in a
single run of the SPEC benchmark script. Differences to real policies include the
over-generalization of attributes and the lax handling of the open, unlink, mmap2,
unlink, and stat64 system calls. A production policy tightens the policy for a
single program and explicitly lists all needed files and directories or restricts these

3The SPEC internal benchmark scripts are used internally to setup the environment for the
SPEC benchmarks. The execution time of these scripts is not part of the overall benchmark result.
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system calls to specific directories. These system calls are used to access many data
files in each individual benchmark and for each data size. The long list of explicit
configurations was abbreviated through over-approximation to give a cleaner picture.
A safe policy for one specific SPEC benchmark does not result in any measurable
additional overhead.

Listing 6.2 shows that all SPEC CPU2006 benchmarks need no more than 38
different system calls with a few more individual parameter configurations.

/* not listed: abort */

mode:whitelist

/* memory management */

brk (*): allow

mmap2(null ,*, PROT_READ | PROT_WRITE ,

MAP_ANONYMOUS | MAP_PRIVATE , -1,*):allow

mremap(*,*,*, MREMAP_MAYMOVE ):allow

munmap (*,*): allow

/* allowed prog.s */

execve ("/bin/echo",*,*): allow

execve ("/opt/cpu2006/bin/echo",*,*): allow

execve ("/ sbin/echo",*,*): allow

execve ("/usr/bin/echo",*,*): allow

execve ("/usr/local/bin/echo",*,*): allow

execve ("/usr/local/sbin/echo",*,*): allow

execve ("/usr/sbin/echo",*,*): allow

/* allowed file I/O */

clone(*,null ,0,null):allow

close (*): allow

dup (*): allow

fcntl64 (*,*): allow

fstat64 (*,*): allow

ftruncate64 (*,*): allow

getcwd ("*" ,*): allow

ioctl (*,*): allow

llseek(*,*,*,*, SEEK_SET ):allow

llseek(*,*,*,*, SEEK_CUR ):allow

lseek(*,*, SEEK_SET ):allow

lseek(*,*, SEEK_CUR ):allow

lstat64 ("/opt/cpu2006/benchspec /" \

"CPU2006 /*", *): allow

/* relaxed for spec */

open ("*" ,*): allow

pipe (*): allow

read (*,*,*): allow

stat64 ("*" ,*): allow

/* remove foo directories */

rmdir("foo"): allow

/* unlink relaxed for spec */

unlink ("*"): allow

write (*,*,*): allow

writev (*,*,*): allow

/* process mgmt */

futex(*, FUTEX_PRIVATE | FUTEX_WAKE ,

0x7FFFFFFF , null ,*,*): allow

waitpid (*,*,0): allow

/* signals /*

rt_sigprocmask(SIG_BLOCK ,*,*): allow

rt_sigprocmask(SIG_SETMASK ,*,null):allow

/* information retrieval */

getegid32 (): allow

geteuid32 (): allow

getgid32 (): allow

getrusage(RUSAGE_Self ,*): allow

gettimeofday (*,null):allow

getuid32 (): allow

setrlimit(RLIMIT_DATA ,*): allow

ugetrlimit(RLIMIT_DATA ,*): allow

/* sleep and time */

nanosleep (* ,*): allow

time(null):allow

times (*): allow

Listing 6.2: Policy for the SPEC CPU2006 benchmarks

The second case study shows a policy for nmap, which is a network exploration
and security tool that checks and fingerprints running services of servers over the
Internet. libdetox virtualizes and encapsulates version 4.53 of nmap into a secure
sandbox. The policy in Listing 6.3 shows a set of rules that restricts nmap to a
few different system calls, e.g., opening any network connection. The policy allows
network access and access to a set of libraries and configuration files. The nmap
program uses 23 different system calls; individual parameters are used to open 15
different files, use stat64 on 6 files, and use access for two files. The parameters of
the fcntl64 and ioctl calls need to be checked in detail in a specific handler func-
tion. This policy sandboxes the network scanner, and an attacker cannot escalate
privileges if one of the many nmap detection modules contains exploitable code.
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/* not listed: abort */

mode:whitelist

/* memory management */

brk (*): allow

/* due to shared libraries all mmap

calls must be additionally checked

in a handler function for a set

exec bit. */

mmap2 (*,*,*,*,*,*): allow

munmap (*,*): allow

/* thread futexes */

futex (*,*,*,*,*,*): allow

/* limit I/O */

access ("/etc/ld.so.nohwcap ",*): allow

access ("/usr/share/nmap/" \

"nmap -services ",*): allow

close (*): allow

fcntl64(*, F_GETFL ):allow

fcntl64(*, F_GETFD ):allow

fcntl64(*, F_SETFL , O_RDWR |

O_NONBLOCK ):allow

fstat64 (*,*): allow

ioctl(*, TIOCGPGRP , *): allow

llseek (*,*,*,*,*): allow

newselect (*,*,*,*,*): allow

open ("/dev/arandom ",*): allow

open ("/dev/tty",*): allow

open ("/dev/urandom ",*): allow

open ("/etc/host.conf ",*): allow

open ("/etc/hosts ",*): allow

open ("/etc/ld.so.cache ",*): allow

open ("/etc/localtime ",*): allow

open ("/etc/nsswitch.conf ",*): allow

open ("/etc/passwd ",*): allow

open ("/etc/resolv.conf ",*): allow

open ("/lib/i686/cmov/" \

"libnsl.so.1" ,*): allow

open ("/lib/i686/cmov/" \

"libnss_compat.so.2" ,*): allow

open ("/lib/i686/cmov/" \

"libnss_files.so.2" ,*): allow

open ("/lib/i686/cmov/" \

"libnss_nis.so.2" ,*): allow

open ("/usr/share/nmap/" \

"nmap -services ",*): allow

read (*,*,*): allow

stat64 ("/etc/localtime ",*): allow

stat64 ("/etc/resolv.conf ",*): allow

stat64 ("/ home/test/.nmap/" \

"nmap -services ",*): allow

stat64 ("./nmap -services ",*): allow

stat64 ("/usr/lib/nmap/" \

"nmap -services ",*): allow

stat64 ("/usr/share/nmap/" \

"nmap -services ",*): allow

write (*,*,*): allow

/* net */

socketcall(PF_NETLINK , SOCK_RAW , 0): allow

socketcall(PF_INET , SOCK_STREAM ,

IPPROTO_TCP ):allow

socketcall(PF_FILE , SOCK_STREAM |

SOCK_CLOEXEC | SOCK_NONBLOCK , 0): allow

/* system information */

geteuid32 (): allow

gettimeofday (*,*): allow

getuid32 (): allow

time (*): allow

uname (*): allow

ugetrlimit (*,*): allow

setrlimit(RLIMIT_NOFILE , *): allow

Listing 6.3: Policy for the nmap network scanner

Benchmark native BT Ovhd. libdetox Ovhd.
test.html 84.83s 97.47s 14.9% 101.34s 19.5%

22.48Mb/s 19.57Mb/s 18.82Mb/s
phpinfo.php 84.40s 98.63s 16.9% 101.34s 20.1%

3.28Mb/s 2.8Mb/s 2.73Mb/s
picture.png 249.87s 261.92s 4.83% 266.98s 6.85%

945.18Mb/s 901.67Mb/s 884.6Mb/s
Avg. overhead - 9.29% 12.06%

Table 6.8: The ab benchmark is used to compare a native run without isolation to
fast binary translation only, and libdetox with user-space fault isolation and policy-
based system call authorization.
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6.6 Apache case study

The Apache 2.2.11 HTTP server is used to benchmark a daemon that needs both ac-
cess to local files and is accessible over the network. libdetox encapsulates the Apache
processes and threads and only allows few system calls with restrictive parameter
configurations. Like the nmap policy in Listing 6.3 Apache is allowed to open only
specific files and access files in two directories (/etc/apache2, and /var/www) and
is not allowed to execute other processes. On the other hand, the daemon process is
free to open connections over the network. Listing 6.4 lists the full Apache policy.

mode:whitelist

access ("/etc/ld.so.nohwcap ",*): allow

brk (*): allow

chdir ("/"): allow

chdir ("/var/www"): allow

clone (*,*,*,*): allow

close (*): allow

dup2 (*,*): allow

epoll_create (*): allow

epoll_ctl (*,*,*,*): allow

exit_group (*): allow

fcntl64 (*,*): allow

fstat64 (*,*): allow

futex (*,*,*,*,*,*): allow

getcwd ("*" ,*): allow

getdents (*,*,*): allow

geteuid32 (): allow

getpgrp (): allow

ioctl (*,*): allow

ipc(*,*,*,*,*,*): allow

kill (*,*): allow

llseek (*,*,*,*,*): allow

lstat64 ("/etc /*" ,*): allow

lstat64 ("/var",*): allow

lstat64 ("/var/www",*): allow

lstat64 ("/var/www/phpinfo.php",*): allow

mmap2 (*,*,*,*,*,*): allow

munmap (*,*): allow

newselect (*,*,*,*,*): allow

open ("./*" ,*): allow

open ("/dev/null ",*): allow

open ("/dev/urandom ",*): allow

open ("/etc/apache2 /*" ,*): allow

open ("/etc/gai.conf ",*): allow

open ("/etc/group ",*): allow

open ("/etc/host.conf ",*): allow

open ("/etc/hosts ",*): allow

open ("/etc/ld.so.cache ",*): allow

open ("/etc/mime.types ",*): allow

open ("/etc/nsswitch.conf ",*): allow

open ("/etc/passwd ",*): allow

open ("/etc/php5 /*" ,*): allow

open ("/etc/protocols ",*): allow

open ("/etc/resolv.conf ",*): allow

open ("/lib /*" ,*): allow

open ("/ proc /*" ,*): allow

open ("/usr/lib /*" ,*): allow

open ("/usr/share/file/" \

"magic.mime ",*): allow

open ("/usr/share/zoneinfo *",*): allow

open ("/var/log/apache2 /*" ,*): allow

open ("/var/www/html.html ",*): allow

open ("/var/www/phpinfo.php",*): allow

pipe (*): allow

poll (*,*,*): allow

read (*,*,*): allow

rt_sigprocmask (*,*,*): allow

sendfile (*,*,*,*): allow

setgid32 (*): allow

setgroups32 (*,*): allow

setsid (): allow

setuid32 (*): allow

socketcall (*,*): allow

stat64 ("/etc/apache2 *",*): allow

stat64 ("/etc/php5 *",*): allow

stat64 ("/etc/resolv.conf ",*): allow

stat64 ("/lib *",*): allow

stat64 ("/usr/lib/",*): allow

stat64 ("/usr/share/zoneinfo *",*): allow

stat64 ("/var/www/",*): allow

stat64 ("/var/www/html.html ",*): allow

stat64 ("/var/www/phpinfo.php",*): allow

time (*): allow

umask (*): allow

uname (*): allow

unlink ("/etc/apache2 /*"): allow

waitpid (*,*,*): allow

write (*,*,*): allow

Listing 6.4: Policy for the Apache web server

The overhead for the Apache daemon was measured using the ab Apache bench-
mark, which uses 10 concurrent instances to receive each file 1,000,000 times. Ta-
ble 6.8 shows the overheads using different configurations. The benchmark uses the
following files: (i) test.html, a static html file with 1.7kB, (ii) phpinfo.php, a
small php file that issues the phpinfo call, and (iii) picture.png, a larger binary file
with 242kB.
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Figure 6.2: Overhead introduced through isolation, sandboxing, and policy-based
authorization for the Apache benchmarks.

The overhead to download a small file is 14.9% for binary translation because of
the high number of system calls needed to open, read, and send the file. The overhead
for libdetox is 19.5%. For larger files, as seen by the numbers for picture.png, the
overhead of binary translation is 4.83% and 6.85% for libdetox.

An interesting feature is the throughput difference between small and large files.
Throughput is increased from 22.48Mb/s to 945.18Mb/s for native runs and even
more for libdetox, namely from 19.57Mb/s to 901.67Mb/s, which is more than 46
times faster compared to the small file.

Figure 6.2 shows the overhead introduced through isolation and sandboxing for
the different Apache benchmarks. The numbers show that libdetox introduces a
moderate overhead of about 20% for small static and small dynamic files. For larger
files the overhead drops to below 7%. The average overhead of libdetox for the
Apache web-server is 12.06%, which makes user-space fault isolation attractive.
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Case study: dynamic race

detection

Attacks to local security by privilege escalation are a challenging problem because
a potential attacker already has access to some privileges on the same machine. An
attacker can use these privileges to exploit local bugs in an application to escalate
privileges and/or to impersonate a different user.

File-based race conditions are a typical form of Time Of Check To Time Of Use
(TOCTTOU) attacks [Bis95, BD96]. The application process leaves a window of
opportunity to the attacker where a specific bug is exploitable. A second process
may interfere on a shared resource whereas the original process assumes that it is
using the resource exclusively. These interferences can be used to replace accessed
files between checks or, e.g., to deadlock privileged processes. As multicore systems
become more and more popular, we expect an increase in attacks that employ mul-
tiple (concurrently) executing processes. Multicore systems enable an attack to run
alongside the original program; the attacking process can then use cache effects, or
other timing issues to exploit a process.

In a Unix-like system file accesses are particularly prone to race conditions. Po-
tential race conditions arise because the mapping from a filename to a unique inode
and device number can change. Filenames are volatile and the corresponding inode
and device number can change upon every system call invocation. If a path and
filename are passed to a system call then the kernel dynamically resolves the path
and filename. The kernel then maps the resolved inode and device number (which
corresponds to the file at that moment in time when the system call was executed)
to a file descriptor that is then passed back to the application. The mapping from
inode and device number to a file descriptor is unique and race-free but the mapping
from filename to inode and device number is volatile.

File-based race conditions can occur either in the path to the file (i.e., a directory
is a symbolic link that can be changed by the attacker), or in the final file atom (i.e.,
the last file atom is an attacker-controlled symbolic link). The POSIX community
tried to address the problem of file-based races by introducing new system calls
that work relative to a specific file descriptor [POS08, cor05]. These new system
calls can be used to, e.g., test permissions of files relative to a given base directory.

93
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A programmer can use these system calls to, e.g., authorize a directory and then
safely create a file atom in that directory provided that the directory is validated
appropriately (using, e.g., user-mode path resolution). If used properly, the new
system calls solve the problem of race conditions in the path to the final file atom,
but they do not solve the problem of race conditions if the final file atom is a symbolic
link.

Much work has been done by the system security community to resolve TOCT-
TOU races [SW91,MK97,VBKM00,CBWKh01,Che02,CW02,KR02,GSV03,TY03,
PLLK04, DH04, SCW+05, UJR05, sLC05, JKDC05, WP05, AJ06, WP06, WSSZ07,
THWDS08a, THWDS08b, SGC+09, CHV10]. Recently a practical, portable solu-
tion has been found that can deterministically solve the problem without requiring
modifications to the kernel or its API: user-mode path resolution [THWDS08b].
This solution, however, suffers from a serious drawback: a programmer must manu-
ally identify and modify all pairs of system calls that are vulnerable to TOCTTOU
races.

DynaRace (the race detection module of the secure execution platform) builds
on and extends user-mode path resolution by removing the burden of manual pro-
gram modification. DynaRace deterministically performs safe user-mode file path
resolution1 for unmodified applications by applying some user-defined action to
every atom along the file path in a race-free manner. The key idea is that Dy-
naRace defines user-defined actions such that they guarantee that the metadata of
file atoms do not change between invocations of vulnerable system call sequences.
DynaRace then dynamically intercepts and replaces these vulnerable sequences with
their deterministically-safe alternative. To this end, DynaRace maintains a cache
holding the metadata of accessed files and a state machine that quickly identifies
periods of vulnerability.

DynaRace is an approach that protects unmodified applications from file-based
TOCTTOU race conditions. DynaRace adds a hidden layer between the unmodified
application and the operating system that keeps state and metadata in a mapping
cache for all accessed files. This mapping cache is used to verify the integrity and
consistency of consecutive file accesses according to a state machine. Each accessed
file has an associated state. The mapping cache is either updated with the current
metadata, or the existing metadata is enforced for the accessed file according to the
state of the file. Each file can be in four different states: new for new files, update
for files where the metadata is updated between system calls, enforce for files where
the cached metadata is enforced between system calls, and retire for files that are
no longer used in the application.

Individual unsafe system calls like access followed by open are redirected dy-
namically to race-free implementations. These race-free implementations are part of
the DynaRace framework. They check the state of the file according to the internal
mapping cache and the state machine. If the system call executes without a race

1See [THWDS08b] for a detailed description of user-mode path resolution.
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condition then the mapping cache is updated and the result of the system call is
returned to the application.

Our implementation prototype uses user-space binary translation and system call
interposition to weave a deterministic race protection framework into the application.
An important aspect of our implementation prototype is that neither the application
nor any library must be aware of the safe system calls. The system call replacement
system works in the background of the process without any coordination. The user-
space application can use unsafe system calls and our approach ensures that no file
system race conditions are possible.

The contributions of this case study are as follows:

1. DynaRace, a lightweight approach to protect unmodified applications from
file-based race conditions.

2. An evaluation and discussion of a DynaRace prototype implementation.

DynaRace keeps state and metadata for each accessed file in an intermediate
layer between the application and the operating system. DynaRace redirects all file-
based system calls to a stateful inspection framework. This inspection framework
uses a state machine and the cached metadata to validate that the metadata of a
file has not changed between system calls that test file properties and system calls
that use or change files or file metadata.

7.1 Attack model and background information

This section describes the attack model assumed by the DynaRace approach and
presents background information on file-based TOCTTOU race conditions. File-
based race conditions enable an attacker to escalate privileges, e.g., to access, read,
or write privileged files.

7.1.1 Attack model

An attacker has user-access to the system and tries to escalate privileges. The
user has no root-privileges, and the attacker has no direct hardware access. The
DynaRace protection runs with the same privileges as the protected application.
A successful attack breaches the security of the application and grants additional
privileges to the attacker. DynaRace terminates the application if an attack is
detected. Denial of service attacks are not part of the attack model.

7.1.2 File-based TOCTTOU race conditions

Table 7.1 shows a classic TOCTTOU race condition presented by Mazières et al.
in [MK97]. A privileged Set User ID upon execution (SUID) garbage collector script
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cleans the /tmp directory. An attacker prepares a temporary directory containing
an empty file with the same name like the target file. The script reads the directory
and relies on the fact that the directory will not change between individual system
calls. The attacker removes the temporary directory and replaces it with a link to
an existing directory. The script then deletes the file with the same name in the
privileged directory.

SUID program Attacker
mkdir("/tmp/x")

creat("/tmp/x/passwd")

readdir("/tmp")

lstat("/tmp/x")

readdir("/tmp/x")

rename("/tmp/x", "/tmp/y")

symlink("/etc", "/tmp/x")

unlink("/tmp/x/passwd")

Table 7.1: An attacker races against the privileged application and deletes a critical
system file.

Table 7.2 shows a typical TOCTTOU race condition presented in [BD96]. The
access system call is used to check permissions of the user in a SUID program. A
privileged application relies on the fact that the mapping from a file to an inode and
device id remains the same over subsequent system calls. An attacker replaces the
file with a link to a privileged file. The privileged application then uses the sensitive
file instead of the original file that was authenticated.

SUID program Attacker
access("file")

unlink("file")

link("sensitive", "file")

fd = open("file")

read(fd, ...)

Table 7.2: An attacker races against the SUID program and reads a privileged file.

7.2 The DynaRace approach

DynaRace adds a hidden abstraction layer between the application and the operating
system. This abstraction layer keeps track of all file-based system calls and keeps
information about accessed files and directories in a metadata cache. The monitoring
of all file-based system calls allows DynaRace to keep track of all directories and
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Figure 7.1: Overview of the DynaRace approach.

files that are accessed. Our implementation prototype extends a dynamic system
call interposition framework to dynamically monitor all file-related system calls of
an application as well as all loaded libraries.

Figure 7.1 shows two system configurations, one configuration without DynaRace
and one configuration with DynaRace. Without DynaRace potentially unsafe system
calls are executed directly by the kernel without additional checks for race conditions.
Each system call is executed in isolation and without knowledge of the results of prior
system calls. Applications without special checks (e.g., storing file state internally,
or checking for safe accesses using hardness amplification, see Section 7.6.5) for these
unsafe system calls are prone to race conditions.

DynaRace intercepts all file-related system calls using system call interposition.
DynaRace keeps state for each accessed file and dynamically checks for file-based
race conditions. Unsafe system calls like access followed by open are replaced
dynamically with the new and safe race-free sequence of system calls. File-based
system calls are no longer executed in isolation but use the state and metadata from
prior system calls to validate the current system call. Neither the application nor
any library must be aware of the safe system calls. The system call replacement
system works in the background of the process without any coordination. The user-
space application can use unsafe system calls and DynaRace ensures that no file
system race conditions are possible. Due to the replacement strategy of system calls
DynaRace can be applied to pre-existing libraries and applications. The DynaRace
module works as an independent additional module and can be used in combination
with other approaches.

Filenames and directory names can be changed by a concurrent process, e.g.,
by using symbolic links to redirect a file to a different location. The presented
approach uses two security principles: (i) A chain of trust of known directories from
the root directory (/) to the directory of the file is constructed by iterating through
all the different file atoms. This chain enables the use of the new system calls that
are relative to a specific directory. (ii) A thread local transparent mapping of file
statistics that keeps track of all accessed, opened, stat’d, and modified files.
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Figure 7.2: State machine with file states and dynamic checks.

7.2.1 File states

The general rewriting policy for unsafe system calls replaces an unsafe system call
with a set of dynamic atomic checks. These checks ensure that if a filename is equal
to an already accessed filename then the following open system call can rely on the
subsystem to ensure that the files are also equal.

Equality is defined as same inode number, device id, and parent directory for
existing files. For files that do not exist equality is defined as same parent directory
and an error code. File metadata that is stored in the mapping cache must contain
the complete metadata to show equality between different files or, if the file does
not exist, information of the base directory and the fact that the file does not exist.
The metadata of a file includes a pointer to the metadata of the file’s directory.

Every file that is accessed has an associated state. Depending on the system call
that is executed on the file and the state of the file, different checks are executed.

Figure 7.2 shows the different states and the checks that are executed during
a transition. Nodes correspond to the states with associated checks and edges to
different groups of system calls that force transitions between states. The three
states are update, enforce, and retire. A file can be in any of these three states if
the same filename has already been used in the program, or in the start state new
if the file is used the first time.

The edges of the state machine correspond to different groups of system calls.
The transition from one state to another depends on the system call and the current
state. The system calls are separated into different sets depending on their function:

Test: the application uses system calls in this set to gather information and to check
file metadata (e.g., permissions, or status). The system calls in this group do
not change the file or any associated metadata. Examples for test system calls
are access or any of the stat system calls.
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Use: this group of system calls works with files or changes file-related metadata.
The system calls in this group modify the file or the associated metadata.
Examples for use system calls are open, creat, or chmod.

Close: the group of system calls that closes or deletes files: close, unlink, and
unlinkat. The application uses these system calls to close or delete files.
These system calls signal the kernel that the application no longer works with
the specified files.

Depending on the prior state of the file and the new state (as determined by the
system call) a set of checks is executed. The metadata is updated if the file has not
been changed by the application (e.g., in the states new, update, and retire). If the
file transitions from the update state to the enforce state (or stays in the enforce
state), then DynaRace enforces the correctness of the available metadata. If the
file is a new file that has not been used by the application then DynaRace adds
the metadata into the metadata cache. If the file has been closed then DynaRace
updates the metadata and warns if there is a mismatch in the metadata cache. This
“check and warn” case is used for files that have already been used in the application
but were closed.

The state machine in Figure 7.2 is updated depending on the type of the system
call. The possible states of the state machine are:

Update: all state transitions that end in the update state (new → update, retire →
update, and update→ update) update the information of a file in the metadata
cache or create a new entry for a new file in the metadata cache. This state
gathers information about the different files used in the application.

Enforce: whenever a file is used (i.e., either the file itself or the metadata of the file
changes) in the application then the state of the file changes to enforce. Enforce
ensures that the application can always work with the same file. DynaRace
enforces equality if valid information about the file is available in the metadata
cache (this holds for the transitions update → enforce and enforce → enforce).
If a system call of the use group is used for a new file (new → enforce) then
DynaRace adds the information to the cache and changes the state of the file
to enforce. If a file has been closed by the application and a system call of the
use group is executed (retire → enforce) then DynaRace checks and updates
the metadata and emits a warning if there is a mismatch between the cached
and the current information.

Retire: a file ends in this state if it has been closed or discarded by the application
(enforce → retire). This special state discards and retires files that are no
longer used by the application after they have been in the enforce state.

The retire state offers the possibility to retire files that are no longer used by the
application. A retired file can be changed by a concurrent process without a security
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violation. This feature is important to enable ownerships transfers like log rotation.
Process P1 checks and opens a log file for writing. A second process P2 rotates the
logs (compresses the open log and creates a new, empty log file). Process P2 signals
process P1 to reopen its log files. Process P1 closes the log file (thereby retiring the
metadata information), checks, and reopens the new file.

7.2.2 File resolution

All file-based system calls are replaced by safe handler functions that dynamically
use the mapping cache to verify that identical filenames conform to the same file
identified by a unique inode number and device id. File resolution is performed in a
manner similar to the chk_use algorithm presented by Tsafrir et al. [THWDS08a,
THWDS08b]. DynaRace uses the user-defined function in the chk_use algorithm
to verify and update the mapping cache as the file is resolved atom by atom. The
handler functions resolve files in the following way:

1. Split path names into (i) a directory path that contains the directory and (ii)
the actual filename.

2. Rewrite relative directory path names to absolute paths according to the cur-
rent working directory.

3. Identify and check the directory using the directory path.

(a) If the directory path is already in the mapping cache then the handler
function can open the directory and verify that the current directory and
the data in the mapping cache are identical.

(b) Otherwise the handler function builds a chain of trust from the root of
the file system to the directory path by opening every single directory on
the way and adding the information about the directory to the mapping
cache, e.g., for /var/tmp/file the directories /, var relative to /, and
tmp relative to /var are checked and added to the mapping cache.

This function returns a file descriptor that can be used for system calls relative
to the verified directory.

4. Next the filename is resolved using the resolved and checked directory. The
file is opened and parameters are checked in the handler function (using the
new relative system calls openat and fstat64). If the file is already in the
mapping cache then the handler function ensures that the current file and the
cached metadata are identical. Otherwise the new file information is added to
the mapping cache.

If there is a mismatch between any metadata of either a directory or the file
then the application is terminated with a race warning. After the file is resolved the
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system call handler is executed. This handler might then add new file information
to the mapping cache or change existing information, according to the system call
that is executed.

7.3 Implementation

The current prototype implementation of DynaRace relies on several software lay-
ers. A binary instrumentation toolkit detects and rewrites all unsafe system calls
related to file handling. These system calls are then redirected transparently to the
DynaRace module. The application (and all libraries used by the application) still
issue the original (unsafe) system calls. Using binary rewriting, DynaRace keeps
track of all accessed directories and files.

DynaRace extends the interposition layer of the secure execution platform to
check all system calls that modify files. All system calls that execute unsafe file
operations are redirected to special handler functions. Each handler function han-
dles one system call. These handler functions either (i) update the mapping cache
between filenames and inode and device information for files that have not been
used before, or (ii) use available information in the mapping cache to ensure that
the filename still maps to the same physical file.

Related work [WP05, sLC05, GSV03] often matches specific predefined pairs of
system calls to identify potential races. DynaRace introduces a new mapping cache
that keeps track of all accessed files; all file-related system calls are rewritten to use
this new mapping cache. This approach detects potential race conditions between
any combination of file-related system calls.

The handler functions first resolve the file according to Section 7.2.2 and then
check the actual system call or rewrite specific parameters. Handler functions exist
for the following system calls:

Test: the following system calls are in the test group:

stat*: all stat related system calls (e.g., stat, stat64) are rewritten to en-
sure that the specified file ends up in the cache. fstat64 is used as the
actual system call.

access: this unsafe system call has no replacement that uses a file descriptor,
so the handler function implements this system call using fstat64.

Use: the following system calls are in the use group:

open: check flags, if O_CREAT is used then the handler ensures that O_EXCL is
set as well, handling potential errors. openat is used as the actual system
call, relative to the current directory.

creat: reuses the check for the open system call.
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chmod: the handler ensures that the current metadata of the modified file is
equal to the cached metadata and changes the system call to use fchmod

with the tested file.

Close: the following system call is in the close group:

close: the handler closes the file and reduces the number of open instances
of the current file. If the counter reaches 0 then the file enters the retire
state.

Section 7.2.1 explains the different states in more detail. The current imple-
mentation prototype emits a warning and terminates the application if an unim-
plemented system call is used, but the implementation can easily be extended to
include other system calls as well.

7.3.1 Tracking of file states and metadata

A transparent file mapping cache keeps the information of all used files and direc-
tories. This file mapping cache enables a secure way to identify files and is used in
the handler functions of unsafe system calls. These handler functions rely on the file
mapping cache to identify files that have already been used in earlier system calls,
e.g., a rewritten open system call that is preceded by a (rewritten) access system
call uses the file mapping cache to ensure that if the filenames passed to the system
calls are equal then the files themselves are also equal.

The data structure for file entries contains the following fields:

state: the current state of the file. Possible states for files are either update, enforce,
retire, or new (see Figure 7.2). Directories are in one of two possible states,
either accessible or in an error state.

nropen: the number of open file descriptors for this file that are in use by the
application. A file can only transition to the retire state if all open instances
of a file are closed.

fd: this field contains either 0 if the file is OK, the open file descriptor if the file is
currently opened for DynaRace checks, or the error code if the file is invalid.

filename: a string that contains the file atom for files or the full path for directories.

stat: holds the result of the fstat64 system call when the file was last accessed.
This field is used to check equality of files.

dir: a pointer to a file data structure that contains information about the directory
of the file. A file is always verified alongside the directory that it is in.
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The file mapping cache is constructed lazily. Whenever a new file is used by the
application then the file’s metadata and state are added to the mapping cache. If a
file or directory is reused then the current state of the file system must conform to
the data in the mapping cache. The handler functions update the mapping cache
for system calls that change metadata after the system call is executed but before
control is returned to the translated application.

7.3.2 File resolution

File resolution is split into two steps according to Section 7.2.2. The first step
constructs an authenticated chain from the directory of the file to the root of the
file system to authenticate the path. The second step uses the base directory to
authenticate the remaining file atom (the last component in the path) against the
already authenticated base directory using the new file-based race-free system calls.
The following sections discuss the implementations to resolve directories and file
atoms.

Directory authentication

Path authentication starts with a full path and recursively authenticates single di-
rectories moving towards the root directory. The recursive function first checks if the
current directory is already in the cache, otherwise a new cache entry is constructed.
Newly constructed entries are linked to the parent directory, and the correct parent
directory is also verified. Each directory is stored in the cache with the full path to
enable a fast lookup.

Directory authentication is implemented using an approach similar to
chk_use [THWDS08b]. chk_use consumes a path one atom at a time, starting
with the root directory. The intention of chk_use is to specify a check function
(e.g., access), and a use function (e.g., open) which are then executed after an-
other in a race-free way. DynaRace uses the chk_use function to authenticate the
directory by traversing the path one atom at a time and inserting the metadata
information of each sub-path into the cache.

A notable difference to the original chk_use implementation is that DynaRace
uses the new system calls like openat to traverse the directory path. This setup
removes the need to change the current working directory of the process in the
chk_use function and allows DynaRace to support multiple concurrent threads.

The path authentication function checks each directory once. If the check fails
then an error is recorded in the list of paths. Errors that occur during the authen-
tication of the chain propagate upwards to the initial directory (and to the caller).

Path authentication takes a full absolute path as an argument and returns either
a valid open directory or an error. The opened directory can be used for further
authentication of files in that directory.
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File authentication

File authentication takes an authenticated directory and authenticates a file atom in
that directory. This function keeps track of the state of individual files and validates
correctness according to Figure 7.2. New files are initialized and added to the list of
accessed files, while existing files are authenticated according to their current state
and the target state.

File authentication first searches the list of already accessed files using the au-
thenticated directory and the file name. If there is a cache hit then the file metadata
is either updated or verified according to the state of the file. If the directory and
the file are not in the cache (i.e., this combination is used for the first time) then a
new entry is constructed with the available information.

This function throws two types of warnings. The first type warns if a file was
changed by an external process during the runtime of this process. This type of
warnings shows potential attacks against the program that were fixed. The second
type warns if files are used without validation (e.g., opening files without checking
the permissions first). This type shows protocol violations by the application. If a
race attack is detected (i.e., the cached information changes in the enforce state)
then the application is terminated.

7.3.3 Replacing system calls

The system call interposition framework checks all system calls and redirects all
file-based system calls to handler functions. These handler functions implement the
DynaRace core and keep state for each accessed file and all used directories.

The handler functions use directory authentication from Section 7.3.2 and file
authentication from Section 7.3.2 to update the state cache of individual files and
directories. These authentication functions abstract the bookkeeping problem and
enable clean and simple handler functions.

The current implementation provides handler functions for the stat, access,
open, creat, chmod, and close system calls. This section discusses one system call
from each state: access for the update state, open for the enforce state, and close

for the retire state.

The prototype implements a subset of all file-based system calls. Missing system
calls can be added using the available authentication functions and the existing
handler functions.

access system call

The access system call handler intercepts access system calls and rewrites them
dynamically to use fstat64. The handler function splits the given filename into an
absolute pathname (a relative path is resolved using getcwd) and a file atom.
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The absolute path is authenticated according to Section 7.3.2. All directories on
the path are consequently added to the directory cache. Directory authentication
returns an open file descriptor for the directory of the used file. This file descriptor
is then used to execute a fstat64 system call. The stat information is needed
to construct the state information of the file atom. The file metadata entry is
then constructed depending on the return values of directory authentication and the
following stat system call using the file authentication function.

The stat64 struct contains all information needed to reimplement the access

system call. A macro uses the stat information, the user id, and the group id to
return the same information as the access system call. The return value of the
access handler function is either an error value for invalid files or 0. The state
update can trigger warning messages that are logged.

open system call

The open system call handler intercepts all open system calls and rewrites them
to use the safe alternatives. The given pathname is split into a file atom and an
absolute path similar to the access system call handler. The absolute path to the
file atom is then authenticated using directory authentication.

The file atom is then opened using the openat system call relative to the au-
thenticated base directory. If the application uses the truncate attribute to remove
the file’s contents then the attribute is removed from the executed open system call.
The truncating is delayed until after the authentication and the update of the meta-
data. The handler function then updates file metadata using the file authentication
function.

The handler function either returns an error value or the open file handle. If
there are authentication errors then the program terminates. If the application
opens unchecked files that are in the “new” state then DynaRace emits a warning
(in the file authentication function).

close system call

Similar to the access and the open system calls, the close system call is redirected
to a handler function. The close system call has the advantage that the file is
already open and there are no potential race conditions when accessing this open
file descriptor.

The handler function searches the cache using the unique inode number and
device id. If the file is opened multiple times then the number of open files is
reduced. If the last file descriptor of a specific file is closed then the state of the file
is updated to the special retire state.
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New system calls

DynaRace can coexist with applications that already use new system calls that use
relative directory file descriptors (accessat, openat, fstatat64, etc.). The new
system calls are handled just like regular file-based system calls and redirected to a
handler function by the interposition framework. The handler function then updates
the file metadata and executes the new system call using the information provided
by the application.

7.4 Implementation alternatives

DynaRace uses and extends libdetox, the prototype implementation of the secure
execution framework. Three other implementation approaches are possible. The first
approach extends the Linux kernel and implements the DynaRace approach, e.g., as
a kernel module. The second approach extends the standard libc and implements
the DynaRace approach on top of the library. The third approach uses the ptrace

debugging framework to implement DynaRace in a concurrent process.

7.4.1 Kernel DynaRace implementation

An alternative implementation could extend the kernel with a module that im-
plements the DynaRace approach and keeps a cache of accessed files on a per-
application basis. This state cache could then be used whenever the application
requests an unsafe system call.

An advantage of this implementation approach is that there is no overhead for
binary translation and that the kernel can also keep track of all accessed files for all
running applications.

A disadvantage is that a kernel-based implementation needs kernel level access.
The kernel-based implementation can contain bugs and lead to serious exploits. An-
other point is that the Linux kernel already provides file-based system calls relative
to open directories. These system calls can be used to implement safe applications.
DynaRace is only needed for potentially unsafe applications. New functionality
should only be added to the kernel if a user-space implementation is not feasible.

We argue that the risk of potential exploits in kernel space due to additional
code is not worth the advantage of the potentially lower overhead. In addition, a
user-space implementation is preferable whenever possible.

7.4.2 libc-based DynaRace implementation

A second alternative implementation could extend the standard libc library. This
library contains wrappers for most of the file-based system calls. These wrappers are
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then used by the application. The implementation would extend the wrappers for
all file-based system calls to implement the DynaRace approach. A static cache of
accessed files and states would be initialized during the standard libc initialization
and used whenever a file is accessed.

An advantage is the lower overhead compared to our prototype implementation
because no binary translation is needed to redirect and catch the system calls.

A disadvantage is that the application can still execute native system calls by
using an unpatched (“third-party”) library. This third-party library breaks the se-
curity of the race detection. A second potential problem is that the DynaRace race
checks are executed at the same privilege level as the application. Our implementa-
tion uses binary translation for the application; the file-based system calls are then
intercepted from the sandbox and redirected to the DynaRace implementation in
the privileged part of the sandbox in user-space.

We argue that the risk of a third-party library that executes a direct system call
is too high compared to the performance overhead for binary translation. A possible
implementation should offer “complete” protection for all system calls, and not only
the system calls that are executed through the libc.

7.4.3 ptrace-based DynaRace implementation

A third alternative implementation leverages the ptrace2 system call to implement
the DynaRace approach. A separate DynaRace process controls the target pro-
cess and observes all system calls externally. The DynaRace process intercepts and
inspects all file-related system calls.

DynaRace replaces the unsafe system call with a piece of code that executes a
set of safe system calls and some checks. The DynaRace process would inject that
code into the running process and redirect the execution flow to the injected code.
This injected code would then replace the original system call and return the result
from the kernel to the unmodified application code.

An advantage of this approach is that the application does not need to be trans-
lated and virtualized. Depending on the implementation of the DynaRace process
this setup could lead to some performance speed-up compared to our prototype
implementation.

A disadvantage is that the DynaRace process must either stop the traced process
upon every system call, a setup that leads to high context-switching overhead, or
DynaRace must inject new code into the application that could lead to unwanted
side-effects. The implementation of the DynaRace process and the code-injection
technique is critical to keep the overhead low. Original system calls must be perma-
nently redirected to injected code to reduce the task switching overhead between the

2The ptrace system call is used to remotely control a process. The tracing process can read
and write memory locations and registers of the target process, controls signals and signal delivery,
and can inspect system calls and parameters.
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DynaRace process and the application process. Another disadvantage is that the
application process does not profit from the additional protection that the sandbox
offers.

We argue that a feasible ptrace-based implementation will be too complex due
to the need to inject code in the application domain. A virtualization-based imple-
mentation adds new code naturally and instruments the executed system calls using
simple redirection. Binary rewriting tools provide additional opportunities for error
checking that are hard to replicate with external debugging techniques like ptrace.

7.5 Evaluation

The DynaRace prototype is implemented on top of the secure execution frame-
work. This section evaluates (i) the raw performance of the DynaRace prototype
implementation using several microbenchmarks, (ii) end-to-end performance of the
DynaRace prototype implementation using a complex Apache setup, and (iii) evalu-
ates DynaRace using several application scenarios. The discussion of the application
scenarios shows how DynaRace protects from file-based race attacks in these scenar-
ios.

7.5.1 Performance evaluation

The set of features and the security guarantees raise the question about the total
overhead for libdetox. Optimizations in the dynamic translation process result in
an average overhead of 15.4% for the SPEC CPU2006 benchmarks.

The prototype implementation of DynaRace is not yet optimized and there is
potential to reduce the number of executed system calls and to use better data-
structures for the mapping cache. Table 7.3 shows overheads for specific microbench-
marks depicted in Listing 7.1. Every microbenchmark executes the code sequence
1,000,000 times in a loop. The microbenchmarks are executed on an Intel Core i7
950 CPU at 3.07GHz using a 64-bit version of Ubuntu 10.10. The benchmarks are
compiled using gcc version 4.5.2-8ubuntu4.

An interesting result of Table 7.3 is that libdetox can outperform the native
execution for raw system call throughput in the open/close test. Two reasons for this
behavior are (i) trace linearization inside the code cache (of the binary translator)

Native libdetox DynaRace
1) long test 4.73ms 4.00ms 20.96ms (4.4x)
2) access test 1.59ms 1.62ms 6.11ms (3.8x)
3) open/close test 1.93ms 1.00ms 6.90ms (3.6x)

Table 7.3: Results of the microbenchmarks compared to native performance.
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/* 1) long test */

if (access ("input", R_OK|W_OK )==0) {

int fw = creat("test", 660);

if (fw == -1) perror ("Creat ");

int fr = open("input", 0);

if (fr == -1) perror ("Open ");

close(fw);

close(fr);

} else {

printf (" Unable to open dir ");

}

/* 2) access test */

int j = access ("input", R_OK|W_OK);

/* 3) open/close test */

int j = open(" input ");

close(j);

Listing 7.1: Microbenchmarks used for the evaluation (C code)

for the translated standard libc function, and (ii) the inlining of all system calls from
the ld-linux.so library.

The DynaRace prototype implementation uses multiple system calls to verify
that already accessed files have not changed between system calls. For new files
additional system calls are used to gather information for the mapping cache. This
setup leads to an overhead for file-based system calls of around 3-4x (for raw system
call performance) to remove potential race conditions. Only the small set of file-
based system calls that check or modify file metadata incur overhead. The overhead
can be reduced through future optimizations that reuse more information or keep
frequently accessed files open. All other (non file-related) system calls do not incur
overhead.

The overhead is tolerable as system calls used to check the metadata of files and
to open/close files are rare compared to read or write operations or computation.
There is no overhead in the access to a file’s data (e.g., reading from a file or
writing to a file). Any overhead caused by DynaRace is associated with file metadata
management. For most programs system calls that modify file metadata are not
on the hot path. The time spent for I/O dominates the time spent for metadata
management.
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7.5.2 Apache web server study

This section presents an end-to-end performance evaluation using the Apache web
server. The web server study compares the performance of a system with active
DynaRace protection for the Apache server and all scripts to a system without
DynaRace. This study shows the completeness and end-to-end performance of our
prototype implementation. The study uses Apache 2.2 on 32-bit Ubuntu 10.04 LTS
on a Core i7 950 CPU at 3.07 GHz in a VirtualBox virtual appliance using a single
core. Apache uses the default Ubuntu configuration (multiple processes multiple
threads, full support for the dynamic PHP interpreter and other modules). The
study uses the ab3 Apache benchmark in a different virtual machine on a different
core on the same CPU to download four different files from a server. Each file is
downloaded 100’000 times and Apache is restarted between iterations.

The four different files are index.html, a 5kB HTML file; image.png, a
large 1mB image; test.php, a short PHP script that generates 90B output; and
test2.php, a PHP script that executes phpinfo() and generates 48kB of output.

This evaluation does not use the same files as the Apache evaluation in Sec-
tion 6.6, therefore we evaluate libdetox for this configuration as well. The evaluation
uses three different system configurations: (i) native, Apache runs unmodified and
unprotected; (ii) libdetox, Apache runs in a protected environment under the control
of libdetox; (iii) DynaRace, Apache runs in a protected libdetox environment with
a DynaRace module that protects all file accesses as well. All three configurations
run inside a virtual machine.

Table 7.4 shows the performance numbers of the Apache benchmark. The three
different system configurations are evaluated for each file. Each column shows the
number of completed requests per second, the libdetox and DynaRace columns also
show the overhead compared to native performance. The relative overhead shows
that libdetox and DynaRace exhibit a small performance improvement compared
to the native performance for static files. The improvement comes from the binary
translation that results in greedy trace extraction for hot code.

3The command used for the measurements is: ab -c 2 -n 100000 http://${VM}/${FILE}.

Native libdetox (ovhd.) DynaRace (ovhd.)
index.html 1464 1675 -14.5% 1601 -9.4%
image.png 48 51 -6.3% 47 1.6%
test.php 1773 1562 12% 1498 15.5%
test2.php 463 343 26% 320 30.9%

Table 7.4: Results for the Apache benchmark showing the number of requests per
second. The benchmark uses four different files to compare native performance,
libdetox performance, and DynaRace performance.
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For the dynamic files (test.php and test2.php) libdetox results in 12% and
26% overhead due to the translation of the dynamic PHP interpreter (which results
in many indirect control flow transfers). Comparing the libdetox and DynaRace
columns shows that DynaRace results in roughly 6% more overhead than libdetox
alone. This overhead comes from the additional system calls for the directory and
file atom authentication.

The overhead of both libdetox and DynaRace is tolerable, especially when con-
sidering that only a prototype implementation is evaluated. The prototype imple-
mentation still leaves room for additional performance optimization (e.g., additional
caching of open file descriptors, better code optimization, and other optimizations).
The current prototype implementation shows that the DynaRace approach is fea-
sible and the overhead is tolerable. Additional optimization is left as a topic for
future work.

7.5.3 Protection from file-based race conditions

DynaRace relies on the handler functions for the different system calls and the state
of each file to protect and to remove potential race conditions. The file state is
updated using transitions from one state to another.

This section shows three important usage scenarios that are common in appli-
cations. The usage scenarios are (i) checked file access where access permissions
for a file are checked before it is used, (ii) temporary file creation where a file is
created in an unsafe directory, and (iii) log rotation where files are replaced by an
external process. Each usage scenario is dissected into the individual system calls
and what (implicit) assumptions are used between the system calls. The described
usage scenarios are prone to race conditions in their original form. DynaRace adds
additional state to each file and enforces the assumptions between the system calls.
We implemented demo exploits for all three scenarios with sufficient wait time be-
tween system calls so that an attacker can exploit the race condition. DynaRace
protects all of our sample programs effectively.

State transitions between system calls are shown in the following way:

oldstate
systemcall−−−−−−→
targetstate

newstate

The state associated with a file transitions from oldstate to newstate if a system-
call system call is executed that induces the targetstate state. Both newstate and
targetstate are needed for files that are in the enforce state. If a system call would
induce the update state (e.g., the access system call) and the file is currently in the
enforce state then the file remains in the enforce state.
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Checked file access

The checked file access pattern consists of four steps to work with a file. The first
step checks access permissions of the existing file using the access (or stat) system
call. The second step opens the same file using the open system call, returning a
file descriptor. The third step uses the file (e.g., reading from, or writing to the
file descriptor using the read and write system calls; read and write system calls
do not change the state of the file). The fourth step closes the file again using the
close system call, completing the usage pattern.

A potential attack races to exchange the checked file after the first validation step
and before the second opening step. Using mazes of connected directories [BJSW05]
an attacker can win this race every time if he or she can inject a symbolic link into
any part of the file name (see Section 7.6.4).

With DynaRace the following four state transition sequences are possible:

The file has not been accessed/used before by the application:

new
access−−−→
update

update
open−−−−→

enforce
enforce

close−−−→
retire

retire (7.1)

The file has been used before but was closed by the application:

retire
access−−−→
update

update
open−−−−→

enforce
enforce

close−−−→
retire

retire (7.2)

The file has been accessed by the application:

update
access−−−→
update

update
open−−−−→

enforce
enforce

close−−−→
retire

retire (7.3)

The file is still opened by the application:

enforce
access−−−→
update

enforce
open−−−−→

enforce
enforce

close−−−→
retire

enforce (7.4)

The above state transition sequences leave no opportunity for a potential attacker
to change files between a check system call and a“use”system call. An attacker could
swap files in the update or retire state but not if the current state or next state is
enforced.

A potential attacker tries to change a file after the access system call and before
the open system call. Using the DynaRace states an attacker can change the file only
before the access system call in Equation 7.1; in Equation 7.2 and Equation 7.3 a
warning is printed, and in Equation 7.4 the application is terminated with a race
condition error message. DynaRace guarantees that in all cases no unchecked file can
be injected between the access and the open system call. A potential attacker can
change the files before the permissions are checked but never between the permission
check and the system call that uses the checked file.
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As soon as a file transitions into the enforce state, the last checked or accessed
information is fixed and verified. This setup results in a guarantee to the program
that the last checked information of a file is enforced when that information is used
later.

Temporary file creation

Safe temporary file creation is an important and hard problem. An access test using
an access or stat system call first checks that the file does not exist. A following
creat system call (or an open system call with the create exclusive flag) then creates
the file. An attacker can try to race between the existence check and the file creation
to add a link to an already existing file that will then be overwritten.

new
access−−−→
update

update
open−−−−→

enforce
enforce (7.5)

Equation 7.5 shows the state transitions when a new file is created. The state
information contains a valid directory and the error code for the file after the access
or stat system call. The directory where the file will be placed in must exist but
the temporary file must not exist.

Log rotation

Log rotation is a technique that is used by many daemons to renew/rotate their
log files. A daemon opens a log file and writes information to that file. A rotation
daemon moves these log files to a different place and signals the original daemon
to reopen the log file. The daemon then closes the old file and reopens the log file
(which no longer points to the same inode and device id).

DynaRace’s retire state enables log rotation. When a file is closed it can be
reopened even if the metadata of the file has changed. The retire state is similar to
the new state where we do not know anything about the file. The information in
the cache is updated and enforced only if there exists a valid set in the cache.

enforce
close−−−→
retire

retire
access−−−→
update

update
open−−−−→

enforce
enforce (7.6)

Equation 7.6 shows a sequence of system calls that is used during the rotation
of a log file. The file is closed by the daemon, checked, and reopened. The access

system call following the close system call prints a warning message that the file has
changed. The daemon continues in the update state and enforces the information
from the check when the file is opened.

This scheme leaves a window of opportunity for the attacker where he or she can
change the log file after it was closed but before it is accessed. The access check in
the daemon catches these attacks and the state information is later enforced.
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...

lfd = open(tmp , O_CREAT|O_EXCL|O_WRONLY ,

0644);

...

if (lfd < 0) {

unlink(tmp);

}

...

write(lfd , pid_str , 11);

/* unchecked relaxation */

chmod(tmp , 0444);

...

Listing 7.2: TOCTTOU vulnerability in X.org (os/utils.c, C code)

7.5.4 X.org file permission change vulnerability

Version 1.4 to 1.11.2 of the X.Org X11 X server had a severe TOCTTOU race condi-
tion [vla11]. The X server creates a temporary lock file and relaxes the permissions
of the lock file using unsafe system calls. Any local attacker with permission to run
the X server can exploit this vulnerability to set the read permission for any file or
directory on the system.

Listing 7.2 shows the code containing the race condition. The variable tmp

contains a fixed string of /tmp/.tXn-lock where X is the n-th X display running
on that computer. An attacker executes the SUID X binary as P1. The attacker
stops P1 after the write system call and before the chmod system call. In a second
execution P2 of the X binary the open system call fails and the temporary file
created by P1 is removed using the unlink system call. The attacker kills P2 and
links /tmp/.tXn-lock to an arbitrary file (e.g., /etc/shadow) and continues P1. P1

will then set the arbitrary file to world-readable.

DynaRace protects from this TOCTTOU race condition. As soon as the file
identified by the tmp variable is in the enforce state it can no longer be modified
by a concurrent process. Equation 7.7 shows the states for the temporary file for
P1. Before the chmod system call P1 is stopped and P2 depicted in Equation 7.8 is
executed. P1 then continues and DynaRace throws an error because the metadata
of the enforced temporary file has changed.

P1 : new
open−−−−→

enforce
enforce

chmod−−−−→
enforce

FAIL (7.7)

P2 : new
open−−−−→

enforce
enforce

retire−−−−→
unlink

retire (7.8)
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7.6 Related work to file-based race detection

DynaRace is a dynamic TOCTTOU race detection mechanism that is implemented
as a libdetox extension. File-based race detection can be built on different tech-
niques. Static race detection analyzes the program source code or the binary of the
application before execution; dynamic race detection uses code that is added during
the compilation of the program to detect races at runtime; dynamic race preven-
tion uses added code to prevent possible races; and novel race-free APIs change the
available file system API to remove or reduce potential races.

7.6.1 Static race detection

Static source code analysis [VBKM00,Che02,CW02,SCW+05] can be used to detect
potential file-based race conditions. A scanner reads the source code of the appli-
cation and observes calls to library functions or system calls. If a sequence of calls
opens a race condition then the static analysis tool emits a warning.

Static analysis tools often have a high number of false positives because they rely
on pattern matching and they cannot use runtime data to verify potential races. Due
to the high error rate these approaches are not feasible for online services that must
meet some response time constraints.

The DynaRace approach adds state to each accessed file. Due to the classification
of system calls into groups and the additional state, DynaRace can determine for
each system call if a potential race condition occurs.

7.6.2 Dynamic race detection

A dynamic approach can observe all system calls as they happen. These system
calls can either be logged and analyzed postmortem [KR02] or an online analysis
can evaluate the pair of system calls according to a given policy [sLC05]. Aggarwal
and Jalote [AJ06] use static binary translation to add dynamic guards that are
executed at runtime.

IntroVirt [JKDC05] uses OS virtualization and a virtual machine monitor to run
predicates outside of the OS scope. These predicates check the health of system soft-
ware and also check for file race conditions if the programs have the right predicates.
Wei and Pu [WP05] enumerate likely TOCTTOU pairs that are used for common
tasks. Goyal [GSV03] uses the strace framework to collect system call traces and
detect TOCTTOU attacks.

The technique of enumerating pairs of system calls misses the opportunity to
detect race conditions dynamically between any combination of system calls. This
approach is similar to blacklisting several pairs of system calls without looking at
all possible combinations. Only an approach like DynaRace that takes care of all
file-based system calls can protect from all race conditions.
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7.6.3 Dynamic race prevention

RaceGuard [CBWKh01] defends against several classes of TOCTTOU attacks using
an in-kernel cache but is limited for file swap attacks where the file itself is changed
from one execution to the other. Tsyrklevich and Yee [TY03] implement pseudo-
transactions in a kernel module to detect specific combinations of check/use system
calls targeting the same file. Multiple similar approaches followed [PLLK04,UJR05,
WP06,SGC+09].

Several novel race-free APIs have been proposed to replace the POSIX-like sys-
tem calls for file handling. Some of these novel APIs use transactions to run a set
of related system calls atomically [SW91, WSSZ07]. The OS ensures that no other
application may interfere with these system calls.

Dean and Hu prove that no deterministic solution to prevent races exists (with
the set of available system calls in 2004) and introduce a probabilistic way to prevent
races [DH04]. They assume that an attack is unable to win all races. Therefore they
propose hardness amplification. Hardness amplification executes the check multiple
times in a loop (a so called K-loop) and checks if all results are as expected.

Transactions of system calls need kernel modification. In addition to the new
code in the kernel the applications must be rewritten to include transactional code.
DynaRace supports a gradual approach that adds protection from file-based TOCT-
TOU races. Applications and libraries can use a mix of old file-based system calls
and new file-based system calls. Using the file-state and the new system calls Dy-
naRace deterministically protects every file-based system call.

7.6.4 Maze-based race attacks

Borisov et al. break the probabilistic approach by enabling an attacker to win all
races [BJSW05]. If all races are won by the attacker then the check proposed by
Dean and Hu [DH04] is unable to detect the race condition. An attacker constructs
so called mazes. A maze is a chain of temporary directories that contains a link
to the next chain as the leaf. The attacked program needs time to go through the
maze (e.g; once for access and once for open) and in that time the attacker swaps
the final link.

7.6.5 Hardness amplification-based race protection

Mazières and Kaashoek [MK97] propose an alternate approach that uses inodes (low
level file objects) instead of filenames. If the binding between inode and filename
is immutable then no file swap race conditions are possible when the target file
changes. Tsafrir et al. [THWDS08a, THWDS08b] implement a similar approach in
user-space. Their approaches render the maze attack from Borisov et al. [BJSW05]
impossible. User-space checks guard applications from TOCTTOU attacks. A file
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is resolved step by step. The algorithm checks for each part of the filename if the
current part is a file or a symlink. Files are opened using an approach similar to
Dean and Hu [DH04] using a K-loop probabilistic check. Symlinks are opened using
a recursive check using the same algorithm.

Chari et al. extend the work of Tsafrir er al. to implement a safe-open mech-
anism [CHV10] that ensures that all elements of a path are safe to open by the
current user id. Safe file elements can be modified only by the same user or root.

DynaRace introduces a hidden mapping and state cache and rewrites unsafe
system calls. This technique gives similar guarantees as Mazières and Kaashoek
without the need to change the implementation of the application or the libraries.
DynaRace resolves a file step by step similar to Tsafrir et al. using safe system calls.

7.7 Limitations and weaknesses

This section discusses limitations and weaknesses of the DynaRace approach and
highlights insights obtained through the DynaRace prototype implementation. The
idea of DynaRace is to associate state to each file. Files are identified using a
mapping cache that maps filenames to unique inodes and device numbers.

Using the state machine in Figure 7.2 enables specific checks for file-based system
calls, whereas the state transitions are decided based on the group that the current
system call is in and the state of the file. All usage cases of a file inside an application
are covered using the state diagram that never throws an exception if the file has
not been changed between different system calls.

The retire state enables multiple concurrent processes to modify files in a safe
way. Closing a file in one application retires the information in the mapping cache
and the application no longer assumes that the state of the file remains the same.
Ownership transfers, e.g., log rotation, are only possible using the retire state.

7.7.1 Retirement schemes

The current implementation keeps all files in the enforce state after they have been
used with a system call of the use group. A possible extension of the state machine
in Figure 7.2 would be a retirement scheme for system calls that change the file but
do not return an open file descriptor (e.g., chmod, chown, or more general system
calls in the use group without creat and open). The application does not signal the
kernel that it no longer expects to use the associated file (e.g., through the close

system call for opened files). DynaRace therefore cannot check if a file is no longer
used for these system calls.

The retirement scheme for these system calls could be implemented through a
timer that starts when the system call is executed. The timer would signal when
these files can be retired and the state of the file would move from enforce back to
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update, thereby enabling concurrent modification without terminating the program.
On the other hand a timer would open a window of opportunity for an attacker to
delay the application long enough. We leave this problem to future work.

7.7.2 Broken (legal) usage scenarios

DynaRace protects from changes to file-metadata from concurrent processes if the file
state is enforced (i.e., if the application assumes that information from prior system
calls is still valid). Possible broken usage scenarios are concurrent file/directory
modification and polling.

If an application works with a file in the enforce state and a concurrent process
changes the parent directory (e.g., by moving the directory, or by renaming the
directory) then the directory verification will fail and an error is thrown. Two
concurrent processes also cannot work together on a single file if it is in the enforce
state in both processes.

Polling (i.e., checking metadata of the file) from concurrent processes works as
long as the file is in the update state. If both processes want to work with the
file (e.g., reading, writing, changing metadata), then DynaRace will terminate the
second application due to a metadata mismatch.

DynaRace limits the number of modifiers of each file to a single process. If
multiple processes try to modify a file at the same time then all processes except
the first are terminated due to metadata mismatches.

7.8 Summary

This case study presents DynaRace, a novel approach to detect and prevent file
system races in unmodified applications. DynaRace adds state to each file and
keeps metadata for all accessed files in a mapping cache.

File system races are detected if the information in the mapping cache does not
match the information of the current file. Our prototype implementation emits a
warning and terminates the application if races are detected.

DynaRace ensures that there are no file-based races possible and dynamically
rewrites unsafe system calls into race-free versions. A benefit of DynaRace is that it
protects all file-based system calls. DynaRace allows partial migration of individual
libraries to the new set of file-related system calls. The new system calls are no
panacea: even with new system calls a programmer still has to worry about the
state of individual files. DynaRace removes this burden from the programmer and
offers a state-based dynamic approach for all file-related system calls.

Currently programmers have to live with potential races when they use standard
system calls. DynaRace enables programmers to use both the unsafe and the new
system calls without the need to add explicit safety checks in the application.
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Future directions

This chapter discusses possible extensions for the secure execution platform. The
discussions in this chapter are of purely qualitative nature and should be seen as
suggestions: extensions presented here are not implemented and are therefore not
empirically evaluated.

The first extension discussed in Section 8.1 enables a more fine-grained control
over control flow transfers. The second proposed extension in Section 8.2 facilitates
the generation of system call policies by analyzing system call parameters. The third
extension discussed in Section 8.3 analyzes all network-based I/O from and to the
application and checks for specific patterns. Section 8.4 discusses a dynamic patching
mechanism that protects running applications from potential future exploits.

8.1 Compiler-based CFG generation

An execution model with all valid targets for a single location can be generated in
multiple ways. The original Control Flow Integrity (CFI) [ABEL05] approach uses
static analysis to enumerate all possible targets, while our approach in Section 4.4
uses a dynamic approach that takes advantage of already available information in
the Executable and Linkable Format (ELF) headers of shared objects. Some com-
piler extensions [ACR+08, CCM+09, MCZ+11] described in Section 3.6 protect the
execution of the application by additional runtime checks.

A more fine-grained alternative would be the automatic generation of a control
flow transfer model by the compiler during the compilation of a library or an ap-
plication. The compiler and to some extent the linker have full information about
all possible control flow transfers that an application can execute (including domain
specific knowledge about the exact program behavior). The compiler could compile
this exact information to a detailed map that is emitted alongside the regular com-
piler output (e.g., object files or assembly code). This generated map could then
be integrated into the shared object (or application) as an additional section in the
ELF header1.

1The GNU specific debugging information or GCC specific line number tables are added in a
similar way.
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The secure execution framework would then be able to load this exact information
during the startup phase of the application. This would lead to a more detailed
model for control flow transfers and would provide the same precision as CFI with
the advantages of a dynamic protection system.

8.2 A compiler-driven approach to system call

policies

During the compilation of a program detailed information is available about possible
parameters for function calls. A system call can be seen as a function call with
extended privileges and a specific calling convention.

The compiler can determine which parameters of a system call are static and
which ones are dynamic (e.g., depending on user-input or depending on some other
program state). A compiler is therefore in the unique position to generate an exact
system call policy with fine-grained parameters for a compiled program.

The proposed extension would extend a compiler and add additional checks for
system calls. Using the collected information about the different system call param-
eters combined with constant propagation and other compiler optimizations leads
to exact knowledge about the individual system call parameters (e.g., ranges for
parameters, or exact static values). Based on the parameter information a set of
rules would then be generated minimizing the number of rules and the verbosity of
the parameters.

An optional manual pass by, e.g., the administrator or the application developer
could use the domain specific knowledge about the context of the application that
cannot be determined automatically to further limit the parameters that are left in
an open state.

This approach would make it easier to generate fine-grained and exact policies
with little or no human interaction required. The generated policies can then be
used as a drop-in replacement for the hand-coded policies in the secure execution
platform.

8.3 I/O purification extension

The I/O purification extension is an orthogonal extension to the DynaRace approach
presented in Chapter 7 where a set of system calls is redirected to additional checker
functions in user-space to remove a specific threat.

Applications use network I/O to do useful work, to read input-data and to return
a result to the requesting process (or user). Most exploits use an I/O channel to
transfer malicious data into the application which then triggers some exploit. On
the other hand, Internet protocols define possible legal messages.
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The I/O purification extension implements a transparent input parser in front
of the application code processing the input request. This input parser validates
the request before it is passed to the application. Such an input validation has the
advantage that the protocol can be defined in a compact way and the only result
the parser must generate is either accept or deny. If a request is accepted then it is
forwarded to the application, otherwise the request is logged and dropped.

This approach is similar to network-based intrusion detection systems that an-
alyze the data flow between hosts. The local approach has the advantage that a
potential attack can be circumvented as well and the application is protected. A
network-based intrusion detection system can only detect the attack but cannot
protect the application from the attack without disrupting the network connection.

8.4 Dynamic patching

Dynamic patching enables a patch to be applied on-the-fly to a running application.
The secure execution framework protects running applications from any code-based
attacks. Attacks are detected and the application is terminated. An attacker still
has the opportunity to start a denial of service attack against the application: the
attacker is unable to gain any privileges on a system but an exploit can still be used
to bring a service down. The secure execution framework cannot catch these attacks
dynamically. An approach similar to Section 8.3 would help to block known bad
input data before they are passed to the application, but the exploit opportunity
still remains in the running application.

Dynamic online patching extends the secure execution platform by a service that
dynamically patches the application. Small security patches (that do not change the
data-layout of the application) can be applied dynamically to a running application
to remove the opportunity for a denial of service attack. Simple security patches that
do not change any data structures but only add or replace individual instructions
can be replaced easily without the need to restart the application. The online
patching mechanism is related to Aspect-Oriented Programming (AOP) but the
dynamic execution platform enables a patching mechanism that does not rely on a
specific compiler and a special AOP runtime. Translated code in the code cache can
be dynamically replaced using a coordinated flush of the code cache in all running
threads and a list of patched addresses that are replaced during the (new) translation.
Larger patches that replace individual functions can be patched by adding additional
data structures in the secure loader. The functions can swap the complete code but
the data structures must remain the same due to already existing data structures
that are in use by the application.

The combination of the secure loader and the dynamic execution platform enables
small instruction patches and function patches to replace exploitable parts of the
application at runtime.





9
Concluding remarks

This thesis presents a novel secure model for the execution of untrusted application
code. Today large programs run as daemons or desktop applications. Each program
has full access to all the capabilities of the user that runs the program. These
programs can be attacked through different possible intrusion vectors to gain control
of a running process. The secure execution model uses a small framework to protect
the running program using a secure loader and a runtime sandbox. Programs that
execute under the control of the secure execution model are protected from all code-
oriented and data-oriented attacks, and the privileges of the program are limited to
a well-defined policy.

The list of Common Vulnerabilities and Exposures (CVE) shows that many
exploits are code-oriented. Larger software projects are still written in low-level
languages mainly out of speed reasons and to keep up compatibility with older
projects. Even high level languages like Java usually run in a virtual machine that is
written in a low level language. In addition high level languages often provide access
to native methods. A small trusted computing base that executes large programs
in a safe environment removes the threat of code-oriented exploits and still retains
speed and compatibility to legacy software.

9.1 Summary and contributions

As noted in the thesis statement in Section 1.4 this thesis shows that it is possible
to build a secure dynamic execution platform that protects from code-oriented and
data-oriented exploits. The platform combines dynamic control flow integrity, a
secure loader mechanism, and a sandbox to run untrusted code. The platform is
expandable with modules that guarantee additional security properties.

The contributions are as follows:

1. Chapter 4 gives a detailed explanation of the secure execution platform com-
bining a secure loader, a dynamic sandbox for the execution of untrusted code,
and a system call policy guard that checks all system calls executed in the un-
trusted code. The secure loader is used to form a chain of trust during the
bootstrapping of the application and to provide information for the dynamic
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control flow checks that restrict the control flow transfers of the translated
code in the sandbox.

2. Chapter 5 presents the prototype implementation of the secure execution plat-
form (which is released as open source). The prototype implementation is then
evaluated using different benchmarks in Chapter 6. The evaluation shows that
the performance overhead for the complete execution platform is low (around
15% of overhead on average for the SPEC CPU benchmarks if the complete
feature set of libdetox is used). The security discussion also shows that code-
oriented exploits are no longer possible and will be detected by the model.

3. Chapter 7 demonstrates the expandability of the secure execution platform by
adding additional guards that detect file-based race conditions.

9.2 Expandability

The secure execution platform is designed to add additional security guards and
modules. The combination of secure loader and sandbox protects from code-oriented
exploits and the system call policy protects from privilege escalation using data-
based exploits. Data-based exploits can still use the available system calls. New
modules can be added in both the sandbox and the system call authorization layer.

Information from the loader component is already used to remove the additional
indirection for Procedure Linkage Table (PLT) calls during the translation of code
in the sandbox. The sandbox can be extended with additional checks for differ-
ent instructions to, e.g., search for specific code sequences, and to rewrite unsafe
instructions.

The system call interposition layer, on the other hand, can be extended to in-
clude additional control logic. A specific set of system calls can be redirected to a
privileged module that checks these system calls for malicious parameters, potential
race conditions, or bad input data. Chapter 7 demonstrates the expandability by
adding checks for file-based race conditions.



A
x86 ISA

The x86 Instruction Set Architecture (ISA) is defined by Intel [Cor12a, Cor12b,
Cor12c] and describes the instruction set of all x86 compatible processors. Intel
uses a Complex Instruction Set Computer (CISC) design for the x86 ISA to enable
multiple low-level operations (e.g., a sequence of a memory load, an arithmetic
operation, and a memory store) in one instruction. The x86 ISA supports 16-bit,
32-bit, and 64-bit addressing modes and operand modes. Figure A.1 shows the
encoding of 32-bit x86 instructions.

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Up to four 
prefixes of 1 
byte each 
(optional)

1-, 2-, or 3-
byte opcode

1 byte (if
required)

1 byte (if
required)

Address 
displacement 
of 1, 2, or 4 
bytes or none

Immediate 
data of 1, 2, 
or 4 bytes or 
none

Mod Reg/
Opcode R/M Scale Index Base

023567 023567

Figure A.1: The x86 instruction format according to the Intel manual [Cor12a].

Instructions are parsed from left to right. The x86 architecture uses a variable
instruction length encoding of 1 to 3 bytes for the opcode to specify a large set of
instructions. 2 and 3 byte opcodes use escape bytes as the first or as the first 2
bytes, enabling an easier lookup in multiple lookup tables. Prefixes can be used to
override the address size, to override the operand size, to repeat certain instructions,
to override segments, to lock memory transfers, and to give branch hints.

The ModR/M byte and SIB byte encode information about registers or memory
addresses. Depending on the instruction and the encoding of the ModR/M byte and
the SIB byte a displacement and immediate value is encoded as well. This results
in an instruction length from 1 to 17 bytes for 32-bit mode.

The x86 ISA uses multiple privilege rings. Ring 0 is the most privileged ring and
runs the kernel. Ring 3 is the least privileged mode and usually runs the application
code. Privileged instructions raise an exception if executed in an unprivileged ring.
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ELF format and the Linux loader

Modern Unix operating systems and the Linux kernel use the Executable and Link-
able Format [SCO96,Dre10] (Executable and Linkable Format (ELF)) to specify the
on-disk layout of applications, libraries, and compiled objects. A file that uses the
ELF format to define its internal layout is called a Dynamic Shared Object (DSO).
The ELF format defines two views for each DSO. The first view is the program
header that contains information about segments; the program header controls how
the segments must be mapped from disk into the process image. The second view is
the section header table; this table contains detailed section definitions. Figure B.1
shows the data layout and the two different views.

The Linux kernel reads the ELF information and the program header to map
parts of the binary file into memory. The kernel then passes control to the dynamic
loader that is specified by the interpreter parameter in the program header. The

ELF header
Program header table

.text

.rodata

.data

...

Section header table

...

.dynsym

.symtab

...

Figure B.1: Overview of an ELF DSO. The program header table follows the ELF
header. The section header table is at the end of the file.
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dlerror: calloc@plt /* call in, e.g., libdl.so.2 */

...

calloc@plt: jmp *0x1c(%ebx) /* jmp through GOT slot */

...

calloc: push %ebp /* target of call in libc.so.6 */

...

Listing B.1: Example of PLT-based position independent code

dynamic loader then reads the section header table, handles all relocation entries
in the current DSO, loads all auxiliary shared libraries, and resolves all imported
symbols. If there is no interpreter set then the kernel starts the static binary directly.

Applications load libraries to dynamic (non-constant) addresses in their pro-
cess image. These DSOs must therefore be compiled as Position Independent Code
(PIC). DSOs that use shared libraries contain two additional tables, the GOT and
the PLT. These tables make it possible to share most physical memory of the li-
braries between processes as relocation information is not stored in the code itself
but in the GOT. The GOT contains pointers to symbols referenced in the current

GOT

PLT

Code

...
dlerror:
call calloc@plt
...

...
jmp *0x1c(%ebx)
...

GOT slot / ptr

libdl.so

GOT

PLT

Code

...
calloc:
push %ebp
...

libc.so.6

1

2

3

...

...

Figure B.2: Example of PLT-based position independent code. The function in the
code section transfers control to the PLT slot (1), the code in the PLT slot executes
a lookup in the GOT section (2), and transfers code to the other shared object (3).
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DSO. The dynamic linker calculates the pointers in the GOT during relocation.
Using a GOT enables code in the current DSO to access symbols in other DSOs
without knowing the absolute address of the code. The base-address of the other
DSO changes every time the application is started and the dynamic linker fixes the
offset in the GOT. The GOT entries for shared variables must be relocated when
the DSO is loaded. The PLT, on the other hand, uses lazy on-demand initialization.
A function is resolved the first time it is referenced. PLT is used to transfer control
to symbols in other DSOs, where entries in the PLT correspond to an indirect jump
through an GOT slot. See Figure B.2 and Listing B.1 for an example.

Both the dynamic loader and the linker use the section header table. Depending
on the linker flags the section header table of a linked executable or shared library
contains information about all functions and symbols, or it contains only information
about exported symbols.

The dynsym section contains the location information of all exported symbols
and is available in all dynamically linked libraries and applications. This section is
used by the dynamic loader to resolve references.

The symtab section is not needed by the dynamic loader and can be stripped
from the final library or application. This section contains detailed information at
the highest possible level of granularity and includes details of all available symbols,
even static and weak variables or functions, hidden symbols, and individual object
files.

The granularity of the dynsym and symtab information is no longer at the section
level but on the level of individual compiled objects (usually individual source files)
and functions. If available this information maybe used, e.g., by the debugger.
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System call interface

A program running in user-space uses system calls to request services from the
operating system. The operating system runs at a higher privilege level than the
user-space processes. System calls implement the interface between applications (in-
dividual processes and threads) and the operating-system (the kernel). The separa-
tion between the operating system and processes is enforced using different hardware
modes. These modes are called rings for Intel x86 hardware. Typical Unix-like ker-
nels provide functionality for process control, file management, device management,
information maintenance, and communication.

System calls are selected by a specific system call number. The mapping between
system call and system call number can change between different hardware platforms
and Instruction Set Architecture (ISA)s. Linux supports two system call interfaces
using either software interrupts or sysenter instructions. Figure C.1 shows a sample
invocation of the getpid system call.

User-space Kernel-space

Application libC

entry

getpid()

getpid()
(int 0x80 or 
sysenter)

return
return from 
kernel

Figure C.1: Example of a system call invocation.

C.1 Argument passing

On x86 the %eax register holds the system call number. Up to 5 arguments to the
system call are passed in registers (%ebx, %ecx, %edx, %esi, and %edi). System calls
that exceed 5 arguments push all arguments on the user-stack (e.g., the mmap system
call), or the arguments are passed using a pointer to a struct.
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C.2 Software interrupts

Until Linux 2.5 the preferred way to execute system calls was to use software inter-
rupts. Application programs use the int 0x80 instruction to request services from
the operating system. The system call number and arguments are passed according
to Section C.1.

Execution of software interrupts results in a trap and a branch to the kernel
interrupt service routine (ISR). Upon kernel entry all user state is saved and the
appropriate system call is executed.

C.3 sysenter instruction

Newer processors feature the sysenter instruction that enables a fast switch to ring
0. This instruction does not store any context information. The application in user-
space must ensure that all needed registers and the current instruction pointer are
saved before the system call is executed.

Linux implements a virtual dynamic shared object (VDSO). This shared library
is exported from the kernel and imported into the application by the Linux loader.
The VDSO page defines __kernel_vsyscall that stores callee-safe registers and
executes the actual sysenter instruction. The system call number and arguments
are passed in registers according to Section C.1.

This faster way of executing system calls was introduced in Linux 2.5 because
executing software interrupts on the processors available at that time was some
orders of magnitude slower than executing sysenter instructions.



D
CFI micro benchmarks

Listing D.1 shows the micro benchmarks that evaluate dynamic control flow integrity.

#include <stdio.h>

#include <sys/time.h>

#include "libfastbt.h"

#define NUM_ITER 1000000000

static void jmpindirect(int nriter) {

int i, loc;

for (i = 0; i < nriter; ++i) {

asm("movl $.out , %%eax\n"

"movl %%eax , %0\n"

"jmp *%0\n"

".out: nop\n" : : "m"(loc)

: "eax", "memory ");

}}

static void callindirect(int nriter) {

int i, loc;

for (i = 0; i < nriter; ++i) {

asm("movl $.ciout , %%eax\n"

"movl %%eax , %0\n"

"call *%0\n"

". ciout: leal 4(%% esp), %%esp\n"

: : "m"(loc) : "eax", "memory ");

}}

static void call(int nriter) {

int i;

for (i = 0; i < nriter; ++i) {

asm("call .cout\n"

".cout: leal 4(%% esp), %%esp\n"

: : : "memory ");

}}

static void ret(int nriter) {

int i;

for (i = 0; i < nriter; ++i) {

asm("pushl $.rout\n"

"ret\n"

".rout: nop\n" : : : "memory ");

}}

static void jcc(int nriter) {

int i, ret = 0;

for (i = 0; i < nriter; ++i) {

if ((i%2) == 0) ret +=3; else ret -=2;

}}

static void jump(int nriter) {

int i;

for (i = 0; i < nriter; ++i) {

asm("jmp .jout\n"

"nop\n.jout: nop");

}}

static void measure(int (* fctptr )(int),

char *name)

{

struct timeval start , stop;

double total;

gettimeofday (&start , 0);

fctptr(NUM_ITER );

gettimeofday (&stop , 0);

total = stop.tv_sec - start.tv_sec;

if (stop.tv_usec - start.tv_usec < 0)

total ++;

total *= 1000*1000;

total += stop.tv_usec - start.tv_usec;

total /= (NUM_ITER /1000);

printf ("%s %10f ns\n", name , total);

struct thread_local_data *tld = \

fbt_init(NULL);

fbt_start_transaction(tld ,

fbt_commit_transaction );

gettimeofday (&start , 0);

fctptr(NUM_ITER );

gettimeofday (&stop , 0);

fbt_commit_transaction ();

fbt_exit(tld);

total = stop.tv_sec - start.tv_sec;

if (stop.tv_usec - start.tv_usec < 0)

total ++;

total *= 1000*1000;

total += stop.tv_usec - start.tv_usec;

total /= (NUM_ITER /1000);

printf ("%s %10f ns\n", name , total);

}

int main() {

measure (& jmpindirect , "jmpindirect ");

measure (& callindirect , "callindirect ");

measure (&jcc , "jcc");

measure (&call , "call ");

measure (&jump , "jump ");

measure (&ret , "ret");

return 0;

}

Listing D.1: Micro benchmark to evaluate dynamic CFI overhead
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E
Libdetox evaluation with
additional optimizations

This chapter shows the evaluation of the first libdetox version without the separate
secure loader [PG10, PG11]. This version uses two additional optimizations for
indirect jump instructions (compared to Section 5.2.6) and a different benchmark
machine:

• The indirect jump prediction caches the last two jump targets (and their trans-
lated counterparts) instead of just one as in the current implementation.

• The indirect jump jumptable is an optimization that uses the fact that most
indirect jumps that use a jump table are translated in a similar way (e.g. jmp
table_base(,%xxx, 4)) where table_base is the address of the jump table
and %xxx is the register containing the offset into the table. This pattern
is recognized, and the jump table is replaced by a shadow jump table which
removes the mapping table lookup.

These two optimizations have been removed in the current reimplementation for
simplicity reasons. The benchmarks are run under Ubuntu 9.04 on an E6850 Intel
Core2Duo CPU running at 3.00GHz, 2GB RAM, and GCC version 4.3.3. Averages
are calculated by comparing overall execution time for all programs of untranslated
runs against translated runs. The SPEC CPU2006 benchmarks are presented as a
way to compare performance with other systems.

Table E.1 and E.2 display overheads for all SPEC CPU2006 benchmarks com-
pared to an untranslated run. This evaluation uses the LD_PRELOAD feature to hijack
control flow at startup. The different configurations are:

BT: A configuration without additional security features, showing the overhead of
the isolation and binary modification toolkit.

libdetox: This configuration shows libdetox’s overhead using the default guards.

libdetox+mprot: The last configuration shows full encapsulation including pro-
tection of internal data structures using explicit memory protection through
mprotect.
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Benchmark BT libdetox libdetox
+mprot

400.perlbench 55.97% 59.88% 74.69%
401.bzip2 3.89% 5.39% 5.54%
403.gcc 20.86% 22.68% 55.56%
429.mcf -0.49% 0.49% 0.25%
445.gobmk 18.17% 14.57% 16.69%
456.hmmer 4.64% 4.75% 5.72%
458.sjeng 24.62% 27.65% 31.22%
462.libquantum 0.98% 0.98% 0.98%
464.h264ref 6.17% 9.20% 9.20%
471.omnetpp 13.91% 14.11% 15.12%
473.astar 3.66% 3.83% 4.33%
483.xalancbmk 23.72% 27.22% 31.27%
410.bwaves 2.12% 2.68% 3.91%
416.gamess -3.50% -4.20% -0.70%
433.milc 0.97% 2.18% 3.26%
434.zeusmp -0.13% -0.25% 0.13%
435.gromacs 0.00% 0.00% 0.00%
436.cactusADM 0.00% -0.66% 0.00%
437.leslie3d 0.00% 0.00% 0.86%
444.namd 0.65% 0.65% 0.65%
447.dealII 44.20% 41.12% 43.66%
450.soplex 7.25% 5.02% 7.25%
453.povray 22.10% 25.14% 26.52%
454.calculix -1.68% -0.56% -1.12%
459.GemsFDTD 1.79% 1.79% 2.68%
465.tonto 9.19% 10.27% 12.43%
470.lbm 0.00% 0.00% -0.11%
482.sphinx3 2.36% 2.25% 1.89%
Average 6.00% 6.39% 8.21%

Table E.1: Overhead for different configurations executing the SPEC CPU2006
benchmarks (relative to an untranslated run). +mprot: libdetox with full mem-
ory protection.

Table E.1 uses the standard SPEC CPU2006 benchmarks and shows the overhead
for long running programs. The average slowdown for binary translation (and no
other transformation) for the full SPEC CPU2006 benchmarks is 6.0%. The libdetox
security extensions increase the overhead a little to 6.4%. The full protection mech-
anism results in an overhead of 8.2%. The overhead for binary translation and basic
libdetox protection for most programs is between−3.5% and 4.0%; some benchmarks
like 400.perlbench, 433.gcc, 453.sjeng, 483.xalancbr, 447.dealII, and 453.povray re-
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Benchmark BT libdetox libdetox
+mprot

400.perlbench 29.49% 29.74% 1158.97%
401.bzip2 2.28% 2.78% 9.11%
403.gcc 41.38% 41.38% 588.97%
429.mcf 0.80% -0.40% 8.37%
445.gobmk 18.10% 14.29% 47.14%
456.hmmer 5.80% 6.68% 12.48%
458.sjeng 23.91% 24.11% 39.13%
462.libquantum 32.69% 10.58% 118.27%
464.h264ref 6.09% 10.87% 14.78%
471.omnetpp 65.58% 50.49% 195.45%
473.astar 3.67% 6.42% 7.34%
483.xalancbmk 55.81% 68.22% 2597.67%
410.bwaves 1.72% 2.59% 6.90%
416.gamess 8.52% 4.17% 426.96%
433.milc 2.38% 6.74% 15.03%
434.zeusmp -0.49% 0.00% 3.88%
435.gromacs 1.71% 0.34% 25.26%
436.cactusADM 0.25% 0.25% 24.56%
437.leslie3d 0.35% 0.70% 2.11%
444.namd 1.20% 1.20% 4.82%
447.dealII 36.40% 35.20% 42.80%
450.soplex 101.75% 13.41% 2316.91%
453.povray 23.12% 16.12% 185.29%
454.calculix 58.60% 11.69% 1566.67%
459.GemsFDTD 7.21% 7.46% 39.30%
465.tonto 30.56% 27.08% 182.64%
470.lbm 0.93% 0.47% 4.36%
482.sphinx3 12.44% 12.44% 54.22%
Average 9.60% 9.93% 48.40%

Table E.2: Overhead for different configurations executing the SPEC CPU2006
benchmarks with the test data set (relative to an untranslated run). mprot tBT:
libdetox with full memory protection.

sult in a higher overhead of 23% to 60% due to many indirect control flow transfers
that cannot be optimized. The speedup of some programs is achieved by a bet-
ter code layout through the translation process. libdetox adds static overhead per
translated block and per system call. The SPEC CPU20006 benchmarks have a low
number of system calls and high code reuse, which is typical for server applications.
Therefore the libdetox extensions add no measurable overhead to these programs.
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