
Fine-Grained User-Space Security
Through Virtualization

Mathias Payer and Thomas R. Gross
ETH Zurich

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 2

Motivation
● Applications often vulnerable to security

exploits

● Solution: restrict application access to the
minimum amount of data needed
● Least privilege principle

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 3

In a nutshell
● Fine-grained virtualization layer confines

security threats
● All executed code is verified
● Additional security guards are added to the runtime

image
● All system calls are verified according to a tight

policy

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 4

Outline
● Introduction
● Security architecture

● Security through virtualization
● Software-based fault isolation (SFI)
● System call interposition

● Evaluation
● Related work
● Conclusion

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 5

Introduction
● Software security is a challenging problem

● Many different forms of attacks exist
● Low-level bugs are omni-present
● Current security practice is reactive

● We present a pro-active approach to security
● Catch exploits before they can cause any harm

Kernel

Application code

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 6

User-space SFI and Guards

Protection through virtualization
● Virtualization confines and secures applications

● Use a user-space virtualization system
● Secure all code and authorize all system calls

Kernel

Application code

Kernel

Application code

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 7

Security Architecture

● Layered security concept
● User-space software-based fault isolation
● System call interposition framework
● System call authorization

Kernel space / OS

User-space process
virtualization and fault isolation

Application

System call interposition framework

<

Configurable
runtime policy

lib
de

to
x

< Handler functions &
redirected system calls

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 8

Software-based fault isolation
● SFI implemented as a user-space library

● All code is translated before it is executed
● Code is checked and verified on the fly
● All unsafe instructions are encapsulated or rewritten

– Check targets and origins of control flow transfers
– Illegal instructions halt the program

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 9

SFI: Additional guards
● Translator adds guards that protect from

malicious attacks against the SFI platform and
enhance security guarantees
● Secure control flow transfers
● Signal handling
● Executable bit removal
● Address space layout randomization
● Protecting internal data structures

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 10

SFI: Control transfers
● Verify return addresses on stack

● Use a shadow stack to store original/translated
addresses

● Protects from Return Oriented Programming

● Secure control flow transfers
● Check target and source locations for valid transfer

points
● Protects from code injection through heap-

based/stack-based overflows

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 11

SFI: Signal handling
● Catch signals and exceptions

● Redirect to installed handlers if signal is valid
● Protects from break-outs out of the sandbox

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 12

SFI: Executable bit removal
● Executable bit removed for libraries and

application
● Only libdetox and code-cache contains executable

code

● Part of the protection against code-injection

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 13

SFI: ASLR
● Address space layout randomization

randomizes the runtime memory image
● Probabilistic measure that makes attack harder

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 14

SFI: Internal data structures
● All internal data structures are protected

● Context transfer to (translated) application code
protects all internal data structures

● Write permissions to all internal memory is removed

● Protects from code-injection and attacks
against the virtualization platform

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 15

SFI: Added protection
● These additional guards protect from

● Code injection (stack-based / heap-based)
● Return-oriented programming
● Execution of illegal code
● Attacks against the virtualization platform

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 16

System call interposition
● Implemented on top of SFI platform

● All system calls & parameters are checked
● Dangerous system calls are redirected to a special

implementation inside the virtualization library

● System call authorization
● System calls are authorized based on a user-

definable per-process policy

● Protects from data attacks

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 17

Outline
● Introduction
● Security architecture

● Security through virtualization
● Software-based fault isolation (SFI)
● System call interposition

● Evaluation
● Related work
● Conclusion

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 18

libdetox
● Approach implemented as a prototype
● Built on top of fastBT system

● Additional security hardening
● Guards implemented in the translation process
● Dynamic guards extend the dynamic control flow

transfer logic

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 19

Evaluation
● SPEC CPU2006 benchmarks used to evaluate

overheads
● Apache plus policy used to evaluate server

performance

● All benchmarks were executed on Ubuntu 9.04
on an E6850 Intel Core2Duo CPU @ 3.00GHz,
2GB RAM and GCC version 4.3.3

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 20

SPEC CPU2006
● Benchmarks executed with well-defined policy
● Three configurations:

● Binary translation (BT) only
– no security extensions
– shows cost of translation & control flow transfers

● libdetox
– standard security features

● libdetox + internal memory protection
– securing internal data structures
– all transfers from the application code to the libdetox

code are protected

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 21

SPEC CPU2006
Benchmark BT libdetox + mprot

400.perlbench 55.97% 59.88% 74.69%

401.bzip2 3.89% 5.39% 5.54%

429.mcf -0.49% 0.49% 0.25%

464.h264ref 6.17% 9.20% 9.20%

483.xalancbmk 23.72% 27.22% 31.27%

454.calculix -1.68% -0.56% -1.12%

Average* 6.00% 6.39% 8.21%

* Average is calculated over all 28 SPEC CPU2006 benchmarks

● Average overhead is low
● Most overhead comes from the BT
● Even worst-case behavior (perlbench) is

manageable

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 22

Apache2
● Fully protected Apache 2.2.11 is evaluated

using the ab benchmark
● Each file is received 1'000'000 times

– test.html (static, 1.7kB)
– phpinfo.php (small, dynamic PHP file)
– picture.png (static, 242 kB)

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 23

Apache2

test.html
phpinfo.php

picture.png
Average

0%

5%

10%

15%

20%

25%

BT libdetox

O
ve

rh
e

a
d

Throughput [mB/s] native BT libdetox

test.html 22.5 19.6 18.8

phpinfo.php 3.28 2.80 2.73

picture.png 945 902 885

Average overhead - 9.3% 12%

● Low overhead for real-world server application
● Throughput highly depends on payload

● Both for virtualized and native executions

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 24

Related Work
● Full system translation (VMWare, QEMU, Xen)

● Virtualizes a complete system, management
overhead, data sharing problem

● System call interposition (Janus, AppArmor)
● Only system calls checked, code is unchecked

● Software-based fault isolation (Vx32, Strata)
● Only a sandbox is not enough, additional guards

and system call authorization needed

● Static binary translation (Google's NaCL)
● Limits the ISA, special compilers needed

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 25

Conclusions
● Combining SFI and policy-based system call

authorization builds low overhead virtualization
platform
● Virtualization based on programs, not systems
● System image is shared with a single configuration

● Fine-grained access control to data / properties

● Opens door to new approaches of security
● Highly customizable and dynamic

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 26

Questions

● Libdetox as an implementation prototype
supports full IA-32 ISA without kernel module
● Source: http://nebelwelt.net/projects/libdetox/

?

http://nebelwelt.net/projects/libdetox/

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 27

Policy

.

.

.
5: open(string, int)
6: close(int)
.
.
.

System call definition:

("/etc/apache2/*", *): allow
("/var/www/*", *): allow
("*", *): deny

open:

(*): allow

close:

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 28

Policy: nmap
mode:whitelist /* not listed: abort program */
brk(*):allow /* memory management */
mmap2(*,*,*,*,*,*):allow
munmap(*,*):allow
close(*):allow
ioctl(*, TIOCGPGRP, *):allow
open("/dev/tty",*):allow
open("/etc/host.conf",*):allow
open("/etc/hosts",*):allow
open("/usr/share/nmap/nmap-services",*):allow
...
read(*,*,*):allow
stat64("/etc/resolv.conf",*):allow
stat64("/home/test/.nmap/nmap-services",*):allow
...
write(*,*,*):allow
socketcall(PF NETLINK, SOCK RAW, 0):allow /* net */
socketcall(PF INET, SOCK STREAM, IPPROTO TCP):allow
socketcall(PF FILE, SOCK STREAM | SOCK CLOEXEC | SOCK NONBLOCK, 0):allow
...

VEE'11 / 2011-03-10 Mathias Payer / ETH Zurich 29

SFI in a nutshell

● Translates individual basic blocks
● Verifies code source / destination
● Checks branch targets and origins

1 1'
2 2'
3 3'
… ...

Original code Code cacheMapping table

Translator

1

2

4
3

1'

2'

3'

R RX

Indirect control
flow transfers
use a dynamic
check to verify
target and origin

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

