
I Control Your Code
Attack Vectors through the Eyes of Software-based

Fault Isolation

Mathias Payer
<mathias.payer@nebelwelt.net>

mailto:mathias.payer@nebelwelt.net

2 12/28/10

Motivation

 Current exploits are powerful because
 Applications run on coarse-grained user-privilege level

 Every exploit has full user-privileges

 Local privilege escalation through auxiliary attacks

 Tight security-models limit privileges on both
 A per-application level and
 A per-user level

 Idea: each application only has access to the data
owned by a specific user that is useful for the
application

2Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

3 12/28/10

Fahrplan

 Introduction
 Protection through virtualization
 Attack Vectors

 Code Injection
 Return-oriented programming
 Format String Attacks
 Arithmetic Overflow
 Data Attacks
 x86_64 vs. i386 code

 Demo
 Conclusion

3Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

4 12/28/10

Introduction

 Software security is a challenging problem
 Both managed and unmanaged languages are prone to

attacks
 Many different forms of attacks exist

 Low-level bugs are omni-present
 And high-level languages compile down to low-level code

 Hard to eliminate bugs
 They are hard to find and hard to fix

4Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

5 12/28/10

Introduction

 Programmers rely on too many assumptions
 That are not necessarily part of the semantics of the

programming language, e.g.,
 Memory layout (little vs. big endian)
 Type sizes (long is always 4 byte long)
 Variable placement (layout of structures)

 Goal of this talk:
 Understand attack vectors and constraints
 Know how to defend yourself against the attacks

 Different techniques and security measurements
 Security analysis

 Know your assumptions (e.g., language, compiler, architecture)

5Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

6 12/28/10

Fahrplan

 Introduction
 Protection through virtualization
 Attack Vectors

 Code Injection
 Return-oriented programming
 Format String Attacks
 Arithmetic Overflow
 Data Attacks
 x86_64 vs. i386 code

 Demo
 Conclusion

6Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

7 12/28/10

Protection through virtualization

 Like many other problems in CS security can be
increased through an additional layer of indirection

 We propose a user-space virtualization system that
secures all program code and authorizes all system
calls

application

code

u
se

r
sp

ace SFI and guard
s

ke
rn

el (privileged code)

application

code

ke
rn

el (privileged code)

7Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

8 12/28/10

Protection through virtualization

 Security principles:
 All code is translated before it is executed. Additional

guards are added to the translated code
 Catches control flow transfers to illegal locations (code injection)
 Catches illegal control flow transfers (arc attacks)
 Catches jumps into other instructions
 Catches switches between i386 and x86_64

 All system calls are authorized by a policy
 Catches privilege escalation

 Catches data bugs that execute unintended system calls

8Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

9 12/28/10

Virtualization in a nutshell

● Translates individual basic blocks
● Verifies code source / destination
● Checks branch targets and origins

1 1'
2 2'
3 3'
… ...

Original code Code cacheMapping table

Translator

1

2

4
3

1'

2'

3'

R RX

Indirect control
flow transfers
use a dynamic
check to verify
target and origin

 See: Generating Low-Overhead Dynamic Binary Translators
(Mathias Payer, youtube.com/watch?v=VIxaQeAHIxs)

9Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

10 12/28/10

Static security guards

 Check code location
 Exported in module / object as code region
 Verify permissions of the page according to the module

 Check target of static control transfers
 Permission check (through GOT – global offset table) for

inter-module transfers
 Verify valid instructions from the beginning of a function to

the target of the jump instruction

10Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

11 12/28/10

Dynamic security guards

 Dynamic checks for dynamic control transfers
 Return instructions, indirect calls, indirect jumps
 Verify that target is valid and translated
 Untranslated targets fall back into the static check

 Verify return instructions
 Validate stack and use a shadow stack

11Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

12 12/28/10

System call authorization

 System calls redirect to an authorization framework
 Policy based authorization

 For wide variety of system calls and parameter combinations

 Authorization functions
 For redirected system calls

 Reimplementations of system calls in user space
 Additional validation of dangerous system calls : mmap (overlapping

regions); mprotect (make code executable); fork (new processes);
clone (new threads)

 System calls are allowed, redirected to the
authorization function, or the program is terminated
with a security exception

12Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

13 12/28/10

Fahrplan

 Introduction
 Protection through virtualization
 Attack Vectors

 Code Injection
 Return-oriented programming
 Format String Attacks
 Arithmetic Overflow
 Data Attacks
 x86_64 vs. i386 code

 Demo
 Conclusion

13Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

14 12/28/10

Attack vectors

 Attacks redirect control flow
 New or alternate locations are reached
 Execution is different from unaltered run

 An attack exploits the fact that the programmer or
the runtime system is unable to check
 the bounds of a buffer or
 to detect a type overflow or
 to detect an out-of-bounds access

14Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

15 12/28/10

Code injection

 Injects new executable code into the process image
of a running process
 Into buffer on the stack
 Into heap-based data structures

 Redirects control flow to the injected code
 Overwriting the RIP (return instruction pointer)
 Overwriting function pointers, destructors, or data

structures of the memory allocator

15Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

16 12/28/10

Code injection: stack-based

 Exploits a missing or incomplete bound check on
stack-based buffers

 Exploit uses two steps:
 Buffer on the stack is filled with machine-code
 Stack grows downwards and (eventually) overwrites RIP

with pointer back into the buffer

 Constraints
 Executable stack
 Missing/faulty bound check
 RIP must not be verified/checked

 See: Smashing the Stack for Fun & Profit (Aleph1, Phrack #49)

16Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

17 12/28/10

Code injection: stack-based

int foobar(char* cmp) {

// assert(strlen(cmp)) < MAX_LEN

char tmp[MAX_LEN];

strcpy(tmp, cmp);

return strcmp(tmp, "foobar");

}

le
n

g
th

 o
f

u
se

r
in

p
u

t

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame
0xff

0xf0

0xe0

No bound checks
when data is
copied!

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame

exploit & nop slide

0xe0

0xf0

return address
don't care

17Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

18 12/28/10

Code injection: heap-based

 Exploits a missing or incomplete bound check on
heap-based buffers
 Very similar to stack-based overflows

 Exploit uses two steps:
 Buffer on the heap is filled with machine-code
 Function pointer, vtable-entry, (GLIBC) destructor, or

memory management data-structure altered to redirect
control flow

 Constraints
 Executable heap
 Missing/faulty bound check
 Successful redirection of the control flow

18Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

19 12/28/10

Code injection: heap-based

typedef struct {

char buf[MAX_LEN];

int (*cmp)(char*,char*);

} vstruct;

int is_foobar_heap(vstruct* s, char* cmp) {

strcpy(s->buf, cmp);

return s->cmp(s->buf, "foobar");

}
le

n
g

th
 o

f
u

se
r

in
p

u
t

buf

cmp*0xbf

0xb0

No bound checks
when data is
copied!

buf

cmp*

exploit & nop slide

0xb0

cmp*0xbf

19Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

20 12/28/10

Code injection: a tool writers perspect.

 The BT would stop the program when the control
flow transfer is detected
 Before the shellcode is even translated
 Two exceptions would be triggered

 Code is (about to be) executed in a non-executable area
 Function call to an unexported/unknown symbol (heap-based)
 RIP mismatch (stack-based)

 Use BT to analyze exploits/shellcode
 Catch new exploits and security holes
 Use debugging info in application to fix bugs
 Use BT to audit your own software / test your exploits

20Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

21 12/28/10

Return-oriented programming

 Exploit already existing code sequences
 Prepare the stack so that tails of library functions are

executed one after another

 Stack-based overflow is used to prepare multiple
stack invocation frames
 Control flow redirected to tails of library functions
 Tails can be used to execute arbitrary code

 Constraints
 Missing bound check for the initial stack-based overflow
 RIP must not be checked

 See: Return-Oriented Programming (Shacham, Black Hat'08)

21Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

22 12/28/10

Return-oriented programming

int foobar(char* cmp) {

// assert(strlen(cmp)) < MAX_LEN

char tmp[MAX_LEN];

strcpy(tmp, cmp);

return strcmp(tmp, "foobar");

}

No bound checks
when data is
copied!

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame
0xff

0xf0

0xe0

le
n

g
th

 o
f

u
se

r
in

p
u

t

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame
0xff

points to &system()

don't care

don't care

1st argument to system()
ebp after system call

0xf0

0xe0

22Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

23 12/28/10

ROP: a tool writers perspective

 The BT would stop the program when the control
flow transfer is detected
 Before the function tail or libC function is translated
 The execve system call would be stopped as well

 Real attacks would chain multiple libC calls
 Can be used to inject code into the address space in a legal

manner (use mprotect to update permissions)

23Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

24 12/28/10

Format string attack

 Exploit the parsing possibilities of the printf-family
 If a user-controlled string is passed to a printf function

 A combination of %x and %n in strings that are
passed to printf unfiltered result in random
memory reads and random memory writes
 Careful preparation of the input is needed

 The format string must be allowed to contain %n
and, e.g., %x to write to memory
 Random writes can be used to redirect the control flow by

overwriting, e.g., the RIP, destructors, or the vtable

24Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

25 12/28/10

Format string attack

 printf examples:
 printf("val: %d, ptr: %p, str: %s\n", a, &a, str);

 // value: 12, ptr: 0x7fffffffe27c, str: foobar

 Interesting printf features
 %NN$x – use the NN-th parameter (out of order access)
 %MMx – print the parameter using MM bytes
 %NN$MMx – print the NN-th parameter using MM bytes
 %hn – write the amount of printed characters to the

 given parameter
 %KK$hn – write the amount of chars to KK-th parameter

 General idea:
 Combine these features for random writes to memory

25Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

26 12/28/10

Format string attack

void foo(char* cmp) {

char text[1024];

strcpy(text, cmp);

printf(text); // correct: printf("%s", text);

}

 Use references to our string to retrieve pointers
 \x7c\xd3\xff\xff\x7e\xd3\xff\xff%12$2043x.%12$hn%11$32102x%11$hn

 Writes 0x0804 to 0xffffd37e and 0x856a to 0xffffd37c
 First 8 bytes of the string contain 2 pointers to half words
 %12$2043x prints 2043 bytes (increases the # of printed bytes)
 %12$hn writes a half word with the # of printed bytes to the first address
 %11$32102x writes 32102 more bytes

 %11$hn writes the second half word to memory
 This redirects the return instruction pointer to our special function

26Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

27 12/28/10

Format string: a tool writers perspect.

 BT stops the program when the control flow is
redirected
 Change of RIP to new function
 System call guard checks arguments of system calls
 Policy violations are detected and the program is stopped

 Random writes to memory only detectable with full
memory tracking

27Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

28 12/28/10

Arithmetic overflow

 Exploit overflows in data types
 Sometimes the bounds are checked before an arithmetic

operation

 Data types are of a specific length, arithmetic
operations can cause overflows or underflows
 Dangerous (unchecked) values passed to functions

 Constraints
 Lax or implicit type conversions
 Sign errors, rounding errors, type overflows, and wrong

pointer arithmetic

28Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

29 12/28/10

Arithmetic overflow

 Seems correct on first look
 But pass 0x40000000 as len parameter

 sizeof(int)=4

 0x40'00'00'00*4 = 0x1'00'00'00'00 = 0x00'00'00'00

 xmalloc() suceeds
 Following loop overwrites (large) parts of memory

 /* found in: OpenSSH 3.3 */

 nresp = packet_get_int();

 if (nresp > 0) {

 response = xmalloc(nresp*sizeof(char*));

 for (i = 0; i < nresp; i++)

 response[i] = packet_get_string(NULL);

 }

29Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

30 12/28/10

Arith. ovfl: a tool writers perspective

 Often used to overwrite memory and prepare
secondary attack
 Or can be used to inject code (similar to buffer overflow)

 BT detects the control flow transfer to illegal code
 System call authorization protects from system call only

attacks

 Food for thought: Use BT to analyze EFLAGS

30Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

31 12/28/10

Data attack

 Exploits a missing or faulty bound check
 Writes data to an user-controlled address
 Almost as much fun as format-string exploits

 Results in a random write to memory
 Position and value often only partially checked

 Use, e.g., integer overflow or combine with other attack

void foo(int pos, int value, int* data) {

data[pos] = value;

}

31Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

32 12/28/10

Data attack: a tool writers perspective

 Random (4b) write to memory
 Relative to position of data array (static?)
 Constraint: pos and value are user controlled

 Hard to detect, BT stops illegal control flow
transfers or illegal system calls

void foo(int pos, int value, int* data) {

data[pos] = value;

} movl 0x8(%ebp),%eax ; pos

shll $0x2,%eax ; pos * 4

addl 0x10(%ebp),%eax ; data + pos*4

movl 0xc(%ebp),%edx ; value

movl %edx,(%eax) ; data[pos]=val.

32Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

33 12/28/10

Mixing x86_64 and i386 code

 Modern kernels support both x86_64 and i386 code
in parallel
 Code can even be mixed in one program

 System call authorization tools and static verifiers
work on the assumption that only one form of
machine code is used
 System calls have different numbers in 32bit and 64bit

mode
 Checkers can be tricked to allow dangerous system calls

 Only a dynamic runtime security system that is
64bit aware can guard against these threats

 See: Bypassing syscall filtering technologies (Chris Evans)

33Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

34 12/28/10

Mixing code: a tool writers perspective

 System calls mixup even worse for seccomp-based
sandboxes
 Seccomp allows exit, read, write, sigreturn
 Mixe-up allows stat or chmod

 BT detects long jump that switches between i386
and x86_64 mode
 Syscall tables switched accordingly

34Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

35 12/28/10

Demos

 This is what you've been waiting for

 Which exploit do you want to see?
 Heap-based code injection
 Return-oriented programming
 Format string attack

 Please vote!

35Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

36 12/28/10

Code injection: heap-based (DEMO)

 Open file, read data from file and execute
is_foobar_heap
 Compare function is overwritten depending on file input

 The BT would stop the program when the control
flow transfer to the heap is detected
 Before the shellcode is even translated
 Two exceptions would be triggered

 Code is (about to be) executed in an non-executable area
 Function call to an unexported/unknown symbol

 Without security enabled BT translates and
disassembles exploit code
 See exploit dump

36Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

37 12/28/10

Return-oriented programming (DEMO)

 Simple stack-based overflow used to prepare a
single stack frame
 Call to system with /bin/sh as parameter
 Original program fails after return from system

 The BT would abort the program when the change
of the RIP is detected
 The RIP now points to a non-exported symbol
 The execve system call would be stopped as well

 BT without security translates and executes execve
 Log shows last entry with a system call

37Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

38 12/28/10

Format string attack (DEMO)

 Attack combines two half-word writes
 Only RIP overwritten
 Real exploit would overwrite multiple words to prepare

second stage of attack

 The BT would abort the program when the change
of the RIP is detected
 The RIP now points to a non-exported symbol
 The execve system call would be stopped as well

 BT without security translates and executes execve
 Log shows last entry with a system call

38Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

39 12/28/10

Conclusion

 User-space BT contains security problems
 Security violations detected and program terminated
 User-space, fine-grained, per-process, per-user model of

security

 Virtualization used to analyze threats
 Analyze malicious payload
 Observe control transfers and locations of break-ins

 fastBT supports the full ia32 ISA; x86_64 almost
complete; no kernel modification necessary
 All forms of system calls checked and authorized

 Source & demos: http://nebelwelt.net/fastBT

39Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

http://nebelwelt.net/fastBT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

