
Fast Binary Translation:
Translation Efficiency and Runtime Efficiency

 Mathias Payer and Thomas R. Gross

Department of Computer Science

ETH Zürich

2ETH Zurich / LST / Mathias Payer2009-06-20

Motivation

 Goal: User-Space BT for Software Virtualization
 fastBT as a system to analyze cost of BT
 We are interested in

 Flexibility of code generation

 Efficiency of translation

 Efficiency of generated runtime image

 Limits of dynamic software BT

 Problem:
 Flexibility of dynamic software BT comes at a cost
 Especially indirect control transfers incur high overhead

 What is the lowest possible overhead (w/o HW support)?

3ETH Zurich / LST / Mathias Payer2009-06-20

Outline

 Introduction
 Design and Implementation

 Translator
 Table generation

 Optimization
 How to reduce overhead
 Benchmarks

 Related Work
 Conclusion

4ETH Zurich / LST / Mathias Payer2009-06-20

Introduction

 Design of a fast and flexible dynamic binary translator
 Table driven translation approach
 Master (indirect) control transfers

 Indirect jumps, indirect calls, and function returns

 Use a code cache and inlining
 High level interface to generate translation tables at compile time

 Manual table construction is hard & cumbersome

 Use automation and high level description!

Intel IA32
opcode
tables

● High level interface
● Adapter functions

Optimized
translator

table

Table generator

5ETH Zurich / LST / Mathias Payer2009-06-20

Table Generation

 Use enriched opcode tables
 Information about opcodes, possible encodings, and properties
 Specify default translation actions

 Use table generator to offer high-level interface
 Transforming opcode tables into runtime translation tables
 Add analysis functions to control the table generation

 Memory access?

 What are src, dst, aux parameters?

 FPU usage?

 What kind of opcode?

 Immediate value as pointer?

 ...

6ETH Zurich / LST / Mathias Payer2009-06-20

Design and Implementation

 BT in a nutshell:

Translator

Opcode
table 1'

2'

3'
Trampoline to

translate 4

Trace cache

0

1

2 3

4

Original program

3 3'
1 1'
2 2'

Mapping

7ETH Zurich / LST / Mathias Payer2009-06-20

Optimization

 Various optimizations explored for IA32
 Performance limited by indirect control flow transfers
 Optimize indirect call/jump and function returns

 Require runtime lookup and dispatching

 BT replaces indirect control transfers with software traps
 Calculate target address from original instruction

 Lookup target (translated?)

 Redirect to target

8ETH Zurich / LST / Mathias Payer2009-06-20

Optimization

 Various optimizations explored for IA32
 Performance limited by indirect control flow transfers
 Optimize indirect call/jump and function returns

 Require runtime lookup and dispatching

 BT replaces indirect control transfers with software traps
 Calculate target address from original instruction

 Lookup target (translated?)

 Redirect to target

A naive approach translates one instruction
into ~30 instructions (+function call)

9ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return instructions, naive approach

 Treat a return instruction like an indirect jump
 Use return IP on stack and branch to ind_jump
 ind_jump pseudocode:

 Lookup target
 Call to mapping table lookup function
 Translate target if not in code cache
 Return to translated target

push tld

call ind_jump
ret

10ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return instructions, naive approach

 Treat a return instruction like an indirect jump
 Use return IP on stack and branch to ind_jump
 ind_jump pseudocode:

 Lookup target
 Call to mapping table lookup function
 Translate target if not in code cache
 Return to translated target

 Results in ~30 instructions
 2-3 function calls (ind_jump, lookup, maybe translation)
 No distinction between fast path and slow path

push tld

call ind_jump
ret

11ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

RIP Trans. IP
RIP

Stack:
...

Shadow Stack:
...

12ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack

RIP Trans. IP
RIP

Stack:
...

Shadow Stack:
...

?

13ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack
 If it matches, return to translated IP on shadow stack

Trans. IP

Stack:
...

Shadow Stack:
...

14ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack
 If it matches, return to translated IP on shadow stack

Stack:
...

Shadow Stack:
...

15ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack
 If it matches, return to translated IP on shadow stack

 Results in ~18 instructions
 1 additional function call, if target is untranslated
 Overhead results from stack synchronization

16ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return Prediction

 Save last target IP and translated IP in inline cache
 Compare inline cache with actual IP branch to translated IP if correct
 Otherwise recover through indirect jump and backpatch cached

entries

cmpl $cached_rip, (%esp)

je hit_ret

pushl tld

call ret_fixup

hit_ret:

addl $4, %esp

jmp $translated_rip

ret

17ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return Prediction

 Save last target IP and translated IP in inline cache
 Compare inline cache with actual IP branch to translated IP if correct
 Otherwise recover through indirect jump and backpatch cached

entries

 Results in 4/43 (hit/miss) instructions
 1 additional function call, if target is untranslated

 Only possible for misses

 Optimistic approach that speculates on a high hit-rate
 Recovery is more expensive than even the naive approach

18ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Inlined Fast Return

 Inline a fast mapping table lookup into the code cache
 Branch to target if already translated
 Otherwise branch to ind_jump

pushl %ebx & %ecx

movl 8(%esp), %ebx #load rip

movl %ebx, %ecx

andl HASH_PATTERN, %ebx

subl MAPTLB_START(0,%ebx,4), %ecx

jecxz hit

popl %ecx & %ebx

pushl tld

call ind_jump

hit:

movl MAPTLB_START+4(0,%ebx,4),%ebx

movl %ebx, 8(%esp) # overwrite rip

popbl %ecx & %ebx

ret

ret

Fast lookup

Recover from failed lookup

Fix RIP and return

19ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Inlined Fast Return

 Inline a fast mapping table lookup into the code cache
 Branch to target if already translated
 Otherwise branch to ind_jump

 Results in 12 instructions
 1 additional function call, if target is untranslated

 Only possible for misses

 Faster than shadow stack and naive approach
 For most benchmarks faster than the return prediction

20ETH Zurich / LST / Mathias Payer2009-06-20

Optimization summary

 Optimize different forms of indirect control transfers
 Indirect jumps, indirect calls, and function returns

 fastBT uses:
 Inlined fast return and inlining to reduce the cost of function returns
 Indirect call prediction

 Hit: 4, miss: 43 instructions

 Inlined fast indirect jumps

21ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

 Used SPEC CPU2006 benchmarks to evaluate different
optimizations

 Compared against three dynamic BT systems
 HDTrans version 0.4.1 (current version)
 DynamoRIO version 0.9.4 (current version)
 PIN version 2.4, revision 19012

 Used “null”-translation
 Machine: Intel Core2 Duo @ 3GHz, 2GB Memory

22ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

400.perlbench 458.sjeng 464.h264ref
0

0.5

1

1.5

2

2.5

fastBT
dynamoRIO
HDTrans
PIN

Slowdown, relative
to untranslated code

23ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

456.hmmer 435.gromacs 444.namd
0

0.2

0.4

0.6

0.8

1

1.2

fastBT
dynamoRIO
HDTrans
PIN

Slowdown, relative
to untranslated code

24ETH Zurich / LST / Mathias Payer2009-06-20

 High overhead for SW BT:

 Low overhead for SW BT:

Map. Misses (%miss) Function calls Ind. Jumps Ind. Calls (%miss)
456.hmmer 15 (0.00%) 219*10 6̂ (26.78%) 163*10 6̂ 1*10 6̂ (0.01%)
435.gromacs 2 (0.00%) 3510*10^6 (75.48%) 27*10 6̂ 3*10 6̂ (0.86%)
444.namd 2 (0.00%) 34*10 6̂ (20.47%) 15*10 6̂ 2*10 6̂ (0.00%)

(%inl.)

Benchmarks

Map. Misses (%miss) Function calls (%inl.) Ind. Jumps Ind. Calls (%miss)
400.perlbench 246667 (0.00%) 21909*10^6 (9.50%) 21930*10^6 3902*10^6 (89.14%)
458.sjeng 1 (0.00%) 21940*10^6 (1.25%) 109930*10^6 5070*10^6 (64.05%)
464.h264ref 11340*10^6 (42.64%) 9148*10 6̂ (30.36%) 2317*10 6̂ 28445*10 6̂ (1.20%)

25ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

 High overhead:
 Many indirect control transfers

 Combined w/ high number of mispredictions, or a low number of inlined methods

 Overhead inherited from HW design, hard to reduce further with SW

 High collision rate in mapping table
 Leads to expensive recoveries

 Could be fixed through an adaptive SW system

 Low overhead:
 Few indirect control transfers
 Cost of indirect control transfers is reduced by optimizations

26ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

 High overhead:
 Many indirect control transfers

 Combined w/ high number of mispredictions, or a low number of inlined methods

 Overhead inherited from HW design, hard to reduce further with SW

 High collision rate in mapping table
 Leads to expensive recoveries

 Could be fixed through an adaptive SW system

 Low overhead:
 Few indirect control transfers
 Cost of indirect control transfers is reduced by optimizations

 Competitive performance compared to other translation
frameworks
 Additional optimization opportunities might require more HW support

27ETH Zurich / LST / Mathias Payer2009-06-20

Related work

 HDTrans
 S. Sridhar et al. HDTrans: A Low-Overhead Dynamic Translator.

SIGARCH'07
 Table based dynamic BT, no high level interface

 DynamoRIO
 D. Bruening et al. Design and Implementation of a Dynamic

Optimization Framework for Windows. In ACM Workshop Feedback-
directed Dyn. Opt. (FDDO-4) (2001).

 IR based optimizing BT, targets binary optimization

 PIN
 C.-K. Luk et al. PIN: Building Customized Program Analysis Tools

with Dynamic Instrumentation. In PLDI'05
 IR based, offers high level interface

28ETH Zurich / LST / Mathias Payer2009-06-20

Conclusion

 fastBT as a low-overhead BT
 Fast translation, resulting in an efficient program
 Table based, but offers high-level interface at compile time
 Overhead introduced by fastBT is tolerable
 Used to investigate limits of BT performance

 Indirect control transfers limit performance of SW solutions
 Cannot be overcome with software smartness alone

29ETH Zurich / LST / Mathias Payer2009-06-20

Thanks for your attention!

?

30ETH Zurich / LST / Mathias Payer2009-06-20

Future / current work

 Reduce collisions in mapping table
 Only visible for some benchmarks
 Reorder entries in mapping table
 Reset hash function and adapt to program

 Reduce the cost of indirect jumps and indirect calls
 Not all indirect jumps / indirect calls are the same
 Different optimizations for different kinds of control transfers

 Analyze during translation phase

 Pick best strategy

31ETH Zurich / LST / Mathias Payer2009-06-20

fastBT basics

 Table generator code size: 3937 lines total
 2373 lines opcode definition tables

 Runtime code size: 8702 lines total
 4580 lines of code, comments, definitions

 1200 lines for default translation actions

 4122 lines automatically generated opcode tables
 Library compiled to 88kB

 Machine code based translation tables constructed at
compile time, no additional overhead at runtime

 Constant time needed to translate one instruction

32ETH Zurich / LST / Mathias Payer2009-06-20

Table Generator: Analysis function

bool isMemOp (const unsigned char* opcode,

 const instr& disInf, std::string& action)

{

 bool res;

 /* check for memory access in instruction */

 res = mayOperAccessMemory(disInf.dstFlags);

 res |= mayOperAccessMemory(disInf.srcFlags);

 res |= mayOperAccessMemory(disInf.auxFlags);

 /* change the default action */

 if (res) { action = "handleMemOp"; }

 return res;

}

// in main function:

addAnalysFunction(isMemOp);

33ETH Zurich / LST / Mathias Payer2009-06-20

Translator: Action function (copy)

finalize_tu_t action_copy(translate_struct_t *ts) {

 unsigned char *addr = ts->cur_instr;

 unsigned char* transl_addr = ts->transl_instr;

 int length = ts->next_instr - ts->cur_instr;

 /* copy instruction verbatim to translated version */

 memcpy(transl_addr, addr, length);

 ts->transl_instr += length;

 return tu_neutral;

}

34ETH Zurich / LST / Mathias Payer2009-06-20

Translator: Action function (RET)

finalize_tu_t action_ret(translate_struct_t *ts) {

 unsigned char *addr = ts->cur_instr;

 unsigned char *first_byte_after_opcode = ts->first_byte_after_opcode;

 unsigned char* transl_addr = ts->transl_instr;

 int32_t jmp_target = (int32_t)&ind_jump;

 if(*addr == 0xC2) { /* this ret wants to pop some bytes of the stack */

PUSHL_IMM32(transl_addr, *((int16_t*)first_byte_after_opcode));

jmp_target = (int32_t)&ind_jump_remove;

 }

 PUSHL_IMM32(transl_addr, (int32_t)ts->tld);

 CALL_REL32(transl_addr, jmp_target);

 ts->transl_instr = transl_addr;

 return tu_close;

}

