CS412 Software Security
Web Security

N A N
=1 B B2

Mathias Payer

EPFL, Spring 2019

Mathias Payer CS412 Software Security

Web (and internet) security: two views

@ Just a long running network service
@ Complex application with multiple layers and components.

Mathias Payer CS412 Software Security

Web (and internet) security: two views

@ Just a long running network service
@ Complex application with multiple layers and components.

Start with the software security view, then dive into multi-layered
aspects.

Mathias Payer CS412 Software Security

Daemons / Services / Servers

A daemon is a long running service that serves outside
requests. A web server, a mail server, or a DNS server are
examples of daemons.

What makes daemons prone to attacks?

Mathias Payer CS412 Software Security

Daemons / Services / Servers

A daemon is a long running service that serves outside
requests. A web server, a mail server, or a DNS server are
examples of daemons.

What makes daemons prone to attacks?

@ Daemons are long running

e Daemons are complex (multi-threaded, caching, broad
functionalities)

@ Daemons are exposed

Mathias Payer CS412 Software Security

Daemons are long running

@ ASLR/stack canaries are probabilistic, single secret per process
@ Heap layout influenced by concurrent allocations
@ Information leaks become more dangerous

Mathias Payer CS412 Software Security

Daemons are complex

@ Crashing threads are restarted: resilience/uptime versus security
@ Large set of functionalities increases attack surface
@ Shared secrets across users in single address space

Mathias Payer CS412 Software Security

Daemons are exposed

@ Concurrent users must be serviced

@ Outside connections are allowed

@ Attackers can leverage many different IPs (what about rate
limiting accounts?)

Mathias Payer CS412 Software Security

Daemon compartmentalization

@ Break complexity into smaller compartments
@ Develop “fault compartments”, can fail independently
@ Goal: one component fails, others continue to function

Mathias Payer CS412 Software Security

Example: mail agent

@ Mail agents need to do a plethora of tasks:

o Send/receive data from the network
e Manage a pool of received/unsent messages
e Provide access to stored messages for each user

@ Two approaches: sendmail and gmail

@ Sendmail uses a typical Unix approach with a large monolithic
server and is known for the high complexity and previous
security vulnerabilities

@ QMail uses a modern least privilege approach with a set of
communicating processes.

Mathias Payer CS412 Software Security

@ Separate modules run under separate user IDs (isolation)

@ Each user ID has only limited access to a subset of the
resources (least privilege)

@ Only one very small component runs as suid root

@ Only one very small component running as root

Mathias Payer CS412 Software Security

Network Local

Figure 1:

—_—
Mathias Payer CS412 Software Security

QMail components

e gmaild/user: incoming email

@ suid gmaild: split message into contents and headers, signal
gmail-send

@ gmail-send: send locally or remotely

@ gmail-Ispawn: root, spawns gmail-local with ID of user

@ gmail-local: handles alias expansion, delivers locally, or signals
gmail-queue if needed

@ gmail-remote: sends remote message

Mathias Payer CS412 Software Security

OWASP: Open Web Application Security Project
Collects information about vulnerabilities and attack vectors

Releases top 10 of vulnerabilities every couple of years
Most recent: OWASP Top 10, 2017

Mathias Payer CS412 Software Security

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

OWASP Top 10 (2017)

(Code) Injection

Broken Authentication

Sensitive data exposure

XML External Entities (XXE)

Broken Access control

Security misconfigurations

Cross Site Scripting (XSS)

Insecure Deserialization

Using Components with known vulnerabilities

°
°
°
°
°
°
°
°
°
o Insufficient logging and monitoring

Mathias Payer CS412 Software Security

OWASP: What changed 2013 to 20177

| owsrtopiozos B owsrrio o7
A1 —Injection =) A1:2017-Injection

A2 — Brok A ication and Session Management = =) |A2:2017-Broken Authentication

A3 - Cross-Site Scripting (XSS)) A3:2017-Sensitive Data Exposure

A4 —Insecure Direct Object References [Merged+A7] |J A4:2017-XML External Entities (XXE) [NEW]

A5 — Security Misconfiguration 3) A5:2017-Broken Access Control [Merged]

A6 — Sensitive Data Exposure 7 A6:2017-Security Misconfiguration

A7 —Missing Function Level Access Contr [Merged+A4] | J A7:2017-Cross-Site Scripting (XSS)

A8 — Cross-Site Request Forgery (CSRF) AB8:2017-Insecure Deserialization [NEW, Community]

A9 — Using Components with Known Vulnerabilities =) | A9:2017-Using Components with Known Vulnerabilities
A10 - Unvalidated Redirects and Forwards A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Figure 2:

Mathias Payer CS412 Software Security

Top 1: Code Injection

Injection flaws, such as SQL, NoSQL, OS, and LDAP
injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s
hostile data can trick the interpreter into executing
unintended commands or accessing data without proper
authorization

Code is not restricted to executable instructions. Web applications
execute different kinds of code, many of which could be under the
control of an attacker. Prime examples:

e Command injection
@ SQL injection

Mathias Payer CS412 Software Security

Command injection

@ Unix philosophy: leverage simple tools to achieve complex
results

@ Data is passed to scripts or programs as parameters

@ Often the constrained communication channel will contain both
code and data (e.g., the query command and the query
arguments)

e While functionality is tested, the security guarantees are often

not
e Vetting and escaping arguments correctly is challenging

Mathias Payer CS412 Software Security

Example: web-based command injection

@ Dynamic web pages execute code on the server

@ This allows the web server to add content from other sources
(e.g., databases) and provide rich interfaces back to the user

@ Build and combine complex parts dynamically and send the
final result to the user (e.g., a content management system
that loads contents from the database, intersects it with the
site template, adds navigation modules and other third party
modules)

Mathias Payer CS412 Software Security

Example: web-based command injection

<html><head><title>Display a file</title></head>
<body>

<? echo system("cat ".$_GET['file']); 7>
</body></html>

Mathias Payer CS412 Software Security

Example: web-based command injection

<html><head><title>Display a file</title></head>
<body>

<? echo system("cat ".$_GET['file']); 7>
</body></html>

@ There is no separation of code and data that is passed through
the channe

°
display.php?file=info.txt\%3bcat\%20\%2fetc\/2fpasswd

@ ; allows chaining of individual bash commands

@ system is a poweﬁulconnnandthatexeaﬂesfu”she”scﬁpml

Mathias Payer CS412 Software Security

Command injection mitigation

@ Can we just block ;?

Mathias Payer CS412 Software Security

Command injection mitigation

@ Can we just block ;?

@ Blacklisting is not a good solution, attack space may be infinite

What about using a pipe?

What about using a backtick?

What about other commands (cat instead of rm)
Even the shell has many builtin commands

Mathias Payer CS412 Software Security

Mitigation through validation

@ Ensure that the filename matches a set of allowed filenames

@ Non-alphanumeric characters are needed to execute commands
@ Fix both directory and set of allowed files

@ Disallow special characters in the file name

Mathias Payer CS412 Software Security

Mitigation through escaping

@ Escape parameters so that interpreter can distinguish between
data (channel) and control (channel)

o Escaped form: system("cat 'file.txt')

@ How do you write such an escape function?

Mathias Payer CS412 Software Security

Mitigation through escaping

@ Escape parameters so that interpreter can distinguish between
data (channel) and control (channel)

o Escaped form: system("cat 'file.txt')

@ How do you write such an escape function?

You don't — there's a huge potential for error. Use built-in ones.
Each language has its own flavours of escape functions.

Mathias Payer CS412 Software Security

Mitigation through reduction of privileges

@ The system command is immensely powerful as it launches a
new shell interpreter

@ Fall down to simplest possible API: open the file yourself and
read it into a buffer or, if you must execute a command, launch
it directly and not through the shell

Mathias Payer CS412 Software Security

Generalized injection attacks

@ What enables injection attacks?

@ Both code and data share the same channel.

@ In the system example above, cat and file are specified as part
of the same “shell script” where ; starts a new command

@ In code injection the data on the stack and the executed code
share the same channel (as do code pointers)

Mathias Payer CS412 Software Security

$sql = "SELECT * FROM users WHERE email='"
$ GET['email']
"' AND pass='" . $_GET['pwd']

r.n
’

@ What is wrong with this query?

Mathias Payer CS412 Software Security

Example: SQL injection
$sql = "SELECT * FROM users WHERE email='"
. $_ GET['email']
"' AND pass='" . $_GET['pwd']

r.n
’

e What is wrong with this query?

@ An attacker may inject ' to escape queries and inject
commands.

@ (Also, the password is not hashed but stored in plaintext.)

@ SQL injection is, in spirit, the same attack as code injection or
command injection.

V.

Mathias Payer CS412 Software Security

SQL injection mitigation

@ Same idea: validation, escaping, or reduction of privileges.
@ Separate control and data channel: prepared SQL statements

e Similar to printf, define “format” string and supply arguments

sql("SELECT * FROM users WHERE email=\$1 AND pwd=\$2",| ema:

Mathias Payer CS412 Software Security

How do you prevent code injection?

@ Use a safe API (e.g., prepared statements in SQL or restricted
commands)

e Validate input based on a whitelist, reject invalid input

@ For any remaining dynamic query data, escape commands
using available API (do not roll your own escape functions)

Mathias Payer CS412 Software Security

Application functions related to authentication and session
management are often implemented incorrectly, allowing
attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws to assume
other users' identities temporarily or permanently.

@ Multi-factor authentication to mitigate brute-force attacks or
PW leaks

No default credentials

Develop a reasonable password policy (length, strength, checks)
Limit or delay failed login attempts

Log any login failures

® 6 6 ¢

Mathias Payer CS412 Software Security

Top 3: Sensitive Data Exposure

Many web applications and APIs do not properly protect
sensitive data, such as financial, healthcare, and PII.
Attackers may steal or modify such weakly protected data.
Sensitive data may be compromised without extra
protection, such as encryption at rest or in transit, and
requires special precautions when exchanged with the
browser.

Be aware of what data types are handled (threat modeling)
Only store what you need, nothing more

Protect data at rest and in transit (e.g., through encryption)
Only store password hashes

Mathias Payer CS412 Software Security

Top 4: XML External Entities (XXE)

Many older or poorly configured XML processors evaluate
external entity references within XML documents.
External entities can be used to disclose internal files using
the file URI handler, internal file shares, internal port
scanning, remote code execution, and denial of service
attacks.

@ Code injection: make sure that you don't include external or
untrusted resources (see top 1)

@ Use simpler data formats such as JSON

@ Avoid serializing sensitive data (see top 8)

@ Disable XML External Entities and DTD processing in XML
parsers

Mathias Payer CS412 Software Security

Top 5: Broken Access Control

Restrictions on what authenticated users are allowed to do
are often not properly enforced. Attackers can exploit
these flaws to access unauthorized functionality and/or
data, such as access other users’ accounts, view sensitive
files, modify other users’ data, change access rights, etc.

@ Except for public resources deny by default

@ Rely on central access control
@ Log access control failures

Mathias Payer CS412 Software Security

Top 6: Security Misconfiguration

Security misconfiguration is a result of insecure default
configurations, incomplete or ad hoc configurations, open
cloud storage, misconfigured HTTP headers, or error
messages containing sensitive information. Not only must
all operating systems, frameworks, libraries, and
applications be securely configured, but they must be
patched and upgraded in a timely fashion.

Configuration documentation (what software is in use? In what
configuration?)

Keep your systems up to date! (see top 9)

Use compartmentalization

Test for configuration failures

Mathias Payer CS412 Software Security

Top 7: Cross-Site Scripting (XSS)

XSS allows an attacker to inject and execute JavaScript
(or other content) in the context of another web page
(e.g., malicious JavaScript code that is injected into the
banking web page of a user to extract user name and
password or to issue counterfeit transactions).

Three kinds of XSS: persistent/stored, reflected, and client-side
XSS.

Mathias Payer CS412 Software Security

Persistent XSS

@ The attacker stores the attack data on the server itself

@ A simple chat application allows users to store arbitrary text
that is then displayed to other logged in users

@ The attacker may send a message that contains
<script>alert('Mr. Evil here');</script>

@ Common use case: feedback forms, blog comments, or even
product meta data (you don't have to see it to execute it)

@ Bug is on the server side

Mathias Payer CS412 Software Security

Reflected XSS

@ The attacker encodes the attack data in the link that is then
sent to the user (e.g., through email or on a compromised site)

@ A web interface may return your query as part of the results
(i.e., “Your search for ‘query’ returned 23 results.")

@ Requirement: user must click on attacker-controlled link

@ Bug is on the server side

Mathias Payer CS412 Software Security

Client-side XSS

@ Large applications contain lots of JS code. Code itself may
contain vulnerabilities.

@ JS may use URL parameters to process information (think
AJAX/JSON requests to process data in the background)

o Attacker must make user follow the compromised link but,
compared to reflected XSS, the server does not embed the
JavaScript code into the page through server side processing
but the user-side JavaScript parses the parameters and misses
the attack

@ The bug is on the client side, in the server-provided JS

Mathias Payer CS412 Software Security

Mitigating XSS

@ Modern frameworks allow you to properly escape input. Each
framework has its subtleties, be careful
@ Leverage data-flow to detect where unfiltered input exists

Mathias Payer CS412 Software Security

Insecure deserialization often leads to remote code
execution. Even if deserialization flaws do not result in
remote code execution, they can be used to perform
attacks, including replay attacks, injection attacks, and
privilege escalation attacks.

o Integrity check (MAC) messages

e Enforce type checks during deserialization (e.g., flag an error if
application receives an array or map instead of a string)

@ Isolate parsing code to deprivileged process

@ Log deserialization exceptions

Mathias Payer CS412 Software Security

Top 9: Using Components with known Vulnerabilities

Components, such as libraries, frameworks, and other
software modules, run with the same privileges as the
application. Applications and APls using components with
known vulnerabilities may undermine application defenses
and enable various attacks and impacts.

@ Remove unused dependencies

@ Documentation of components and their dependencies (see top
6)

@ Monitor for unmaintained libraries or components

Mathias Payer CS412 Software Security

Top 10: Insufficient Logging & Monitoring

Insufficient logging and monitoring, coupled with missing
or ineffective integration with incident response, allows
attackers to further attack systems, maintain persistence,
pivot to more systems, and tamper, extract, or destroy
data. Most breaches are detected late (200+ days) and by
external parties.

@ Ensure errors are logged and log files are evaluated
@ Audit trail for important transactions, clear responsibilities

Mathias Payer CS412 Software Security

OWASP Summary

OWASP Top 10: (code) injection, broken authentication, sensitive
data exposure, XML external entities, broken access control, security
misconfiguration, cross-site scripting, insecure deserialziation, using
components with known vulnerabilities, insufficient logging and
monitoring.

@ Input parsing: (code) injection, XML external entities,
cross-site scripting

@ Authorization: broken authentication, sensitive data exposure,
broken access control

@ Configuration and documentation: security misconfiguration,
using components with known vulnerabilities, insufficient
logging and monitoring

Mathias Payer CS412 Software Security

Summary and conclusion

Daemons are long running, complex, and exposed.
Compartmentalization helps reduce attack surface
Command/SQL injection is a powerful attack across many
applications

Separation of code and data is crucial

OWASP Top 10: input parsing, authorization, and
configuration /documentation

Mathias Payer CS412 Software Security

