CS412 Software Security

Program Testing — Fuzzing

a W aWa'
=1 B B2

Mathias Payer

EPFL, Spring 2019

Mathias Payer CS412 Software Security

Why testing?

Testing is the process of executing a program to find
errors.

An error is a deviation between observed behavior and specified
behavior, i.e., a violation of the underlying specification:

e Functional requirements (features a, b, c)
e Operational requirements (performance, usability)
@ Security requirements?

Mathias Payer CS412 Software Security

Forms of testing

e Manual testing
@ Fuzz testing
@ Symbolic and concolic testing

Mathias Payer CS412 Software Security

Manual testing

Three levels of testing:

@ Unit testing (individual modules)
@ Integration testing (interaction between modules)
@ System testing (full application testing)

Mathias Payer CS412 Software Security

Manual testing strategies

@ Exhaustive: cover all input; not feasible due to massive state
space

@ Functional: cover all requirements; depends on specification

e Random: automate test generation (but incomplete)

@ Structural: cover all code; works for unit testing

Mathias Payer CS412 Software Security

Testing example

How do you decide when you have tested a function “enough”?

double doFun(double a, double b, double c) {
if (a == 23.0 && b == 42.0) {
return a * b / c;

return a * b *x c;

}

Mathias Payer CS412 Software Security

Testing example

How do you decide when you have tested a function “enough”?

double doFun(double a, double b, double c) {
if (a == 23.0 && b == 42.0) {
return a * b / c;

return a * b *x c;

}
Fails for a == 23.0 && b == 42.0 && c == 0.0.

Mathias Payer CS412 Software Security

Testing approaches

double doFun(double a, double b, double c)

e Exhaustive: 27{643}"3 tests

Functional: generate test cases for true/false branch,
ineffective for errors in specification or coding errors
Random: probabilistically draw a, b, ¢ from value pool
Structural: aim for full code coverage, generate test cases for
all paths

e o

Mathias Payer CS412 Software Security

Coverage as completeness metric

Intuition: A software flaw is only detected if the flawed
statement is executed. Effectiveness of test suite therefore
depends on how many statements are executed.

Mathias Payer CS412 Software Security

Is statement coverage enough?

int func(int elem, int *inp, int len) {
int ret = -1;
for (int i = 0; i <= len; ++i) {
if (inp[i] == elem) { ret = i; break; }
+

return ret;

}

Test input: elem = 2, inp = [1, 2], len = 2. Full statement
coverage.

Mathias Payer CS412 Software Security

Is statement coverage enough?

int func(int elem, int *inp, int len) {
int ret = -1;
for (int i = 0; i <= len; ++i) {
if (inp[i] == elem) { ret = i; break; }

+
return ret;

}

Test input: elem = 2, inp = [1, 2], len = 2. Full statement
coverage.

Loop is never executed to termination, where out of bounds access
happens. Statement coverage does not imply full coverage. Today's
standard is branch coverage, which would satisfy the backward edge
from 1 <= len to the end of the loop. Full branch coverage implies
full statement coverage.

Mathias Payer CS412 Software Security

Is branch coverage enough?

int arr[5] = { 0, 1, 2, 3, 4};

int func(int a, int b) {
int idx = 4;
if (a < 5) idx -= 4; else idx —= 1;
if (b < 5) idx -= 1; else idx += 1;
return arr[idx];

3

Test inputs: a = 5, b = 1 and a
coverage.

= 5. Full branch

]
=
o

Mathias Payer CS412 Software Security

Is branch coverage enough?

int arr[5] = { 0, 1, 2, 3, 4};

int func(int a, int b) {
int idx = 4;
if (a < 5) idx -= 4; else idx -= 1;
if (b < 5) idx -= 1; else idx += 1;
return arr[idx];

3

Test inputs: a = 5, b = 1anda = 1, b = 5. Full branch
coverage.

Not all paths through the function are executed: a = 1, b = 1
results in a bug when both statements are true at the same time.
Full path coverage evaluates all possible paths but this can be
expensive (path explosion due to each branch) or impossible for
loops. Loop coverage (execute each loop 0, 1, n times), combined
with branch coverage probabilistically covers state space.

Mathias Payer CS412 Software Security

How to measure code coverage?

Several (many) tools exist:

@ gcov: https://gcc.gnu.org/onlinedocs/gecc/Geov.html
@ SanitizerCoverage: https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html

Mathias Payer CS412 Software Security

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

How to achieve full testing coverage?

Idea: look at data flow.
Track constraints of conditions, generate inputs for all possible
constraints.

Mathias Payer CS412 Software Security

Testing completeness

We now have a metric for testing completeness.
How can we explore programs to maximize coverage?

Mathias Payer CS412 Software Security

Testing completeness

We now have a metric for testing completeness.
How can we explore programs to maximize coverage?
Discuss: is coverage enough to find all bugs?

Mathias Payer CS412 Software Security

Fuzz testing (fuzzing) is an automated software testing technique.
The fuzzing engine generates inputs based on some criteria:

@ Random mutation
o Leveraging input structure
@ Leveraging program structure

The inputs are then run on the test program and, if it crashes, a
crash report is generated.

Mathias Payer CS412 Software Security

Fuzzing effectiveness

e Fuzzing finds bugs effectively (CVEs)
@ Proactive defense, part of testing
@ Preparing offense, part of exploit development

Mathias Payer CS412 Software Security

Fuzz input generation

Fuzzers generate new input based on generations or mutations.
Generation-based input generation produces new input seeds in each
round, independent from each other.

Mutation-based input generation leverages existing inputs and
modifies them based on feedback from previous rounds.

Mathias Payer CS412 Software Security

Fuzz input structure awareness

Programs accept some form of input/output. Generally, the
input/output is structured and follows some form of protocol.
Dumb fuzzing is unaware of the underlying structure.

Smart fuzzing is aware of the protocol and modifies the input
accordingly.

Example: a checksum at the end of the input. A dumb fuzzer will
likely fail the checksum.

Mathias Payer CS412 Software Security

Fuzz program structure awareness

The input is processed by the program, based on the program
structure (and from the past executions), input can be adapted to
trigger new conditions.

o White box fuzzing leverages semantic program analysis to
mutate input

@ Grey box leverages program instrumentation based on previous
inputs

@ Black box fuzzing is unaware of the program structure

Mathias Payer CS412 Software Security

Coverage-guided grey box fuzzing

—
Debug \
Coverage
Cimtn)
Tests
Crashes
Figure 1:

Mathias Payer CS412 Software Security

American Fuzzy Lop

@ AFL is the most well-known fuzzer currently

@ AFL uses grey-box instrumentation to track branch coverage
and mutate fuzzing seeds based on previous branch coverage

@ The branch coverage tracks the last two executed basic blocks

@ New coverage is detected on the history of the last two
branches: cur XOR prev>>1

o AFL: http://lcamtuf.coredump.cx/afl/

Mathias Payer CS412 Software Security

http://lcamtuf.coredump.cx/afl/

Fuzzer challenges: coverage wall

@ After certain iterations the fuzzer no longer makes progress
@ Hard to satisfy checks

@ Chains of checks

@ Leaps in input changes

Mathias Payer CS412 Software Security

Fuzzer challenges: coverage wall

Shallow code paths

Figure 2:

Mathias Payer CS412 Software Security

@ Reason about program behavior through “execution” with
symbolic values
e Concrete values (input) replaced with symbolic values

o Can have any value (think variable x instead of value 0x15)
e Track all possible execution paths at once

@ Operations (read, write, arithmetic) become constraint
collection

e Allows unknown symbolic variables in evaluation
e Execution paths that depend on symbolic variables fork

Mathias Payer CS412 Software Security

Symbolic execution: example

void func(int a, int b, int c) {
int x =0, y =0, z = 0;
if (a) x = -2;
if (b < 5) {
if (la && c) y = 1;
z = 2;
+

assert(x +y + z != 3);

Mathias Payer CS412 Software Security

Symbolic execution: example

x=0, y=0, z=0
I
|x:-2 %o |
T]
'a, && ¢, —— Condition: Condition:
|_V:% 1 ag&b,>=5 la, && b >=5
Z=
la, && c
Condition: Condition: y:?ﬂ ¢ z=2
a,&& b <5 a,&& b <5 z=2
& la, && c, && (13, && ¢) condition: Condition:
infeasible! la && b, <5 la, && b, <5
&& la, && c, && !('a, && c;)
violation!
Figure 3:

Mathias Payer CS412 Software Security

Symbolic paths

Path condition: quantifier-free formula over symbolic inputs that
encodes all branch decisions (so far).

Determine whether the path is feasible: check if path condition is
satisfiable. SMT solver provides satisfying assignment, counter
example, or timeout.

Mathias Payer CS412 Software Security

Challenges for symbolic execution

Loops and recursion result in infinite execution traces
Path explosion (each branch doubles the number of paths)
Environment modeling (system calls are complex)
Symbolic data (symbolic arrays and symbolic indices)

Mathias Payer CS412 Software Security

Concolic testing

Idea: mix concrete and symbolic execution

@ Record actual execution
@ Symbolically execute near recorded trace
@ Negate one condition, generate new input, repeat

Mathias Payer CS412 Software Security

KLEE

KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs,
Cadar et al., OSDI'08

Large scale symbolic execution tool
Leverages LLVM to compile programs
Abstracts environment

Many different search strategies

Mathias Payer CS412 Software Security

@ Unwind recursion, loops up to certain depth
@ Translate program into boolean formula

o Transform to SSA (static single assignment)
o Bitblast! (Translate into logical adders)

@ Pass to solver

Mathias Payer CS412 Software Security

BMC example (1/3)

X =x+y,
if (x 1= 1) {
X = 2;
if (z) x++;
}

assert (x<=3);

Mathias Payer CS412 Software Security

BMC example (2/3)

x1l = x0 + yO;
if (x1 '=1) {
X2 = 2;
if (z0) x3
}
x4 = (x1'=1) 7 x3 : x1;
assert (x4<=3);

x2 + 1;

Mathias Payer CS412 Software Security

BMC example (3/3)

C:=x1 = x0 + yO AND

x2 = ((x1 '= 1) 7 2 : x1) AND

x3 = ((x1 '=1 AND z0) 7 x2 + 1 : x2)
P:= x3 <=3

Mathias Payer CS412 Software Security

Comparisons

@ BMC: translate program to formula, solve all possible paths at
once

e Advantage: pinpoint flaw, overview of all paths
e Disadvantage: scalability
@ Symbolic execution: instead of concrete values, track
constraints

e Advantage: iteratively explore program based on paths
e Disadvantage: scalability

@ Concolic execution: select a concrete execution, track
constraints

o Advantage: explore a path at a time
e Disadvantage: scalability, incomplete

@ Fuzzing: create random input based on feedback
e Advantage: high scalability
e Disadvantage: incomplete

All solutions struggle with depth, i.e., exploring past a coverage wall.

Summary and conclusion

Software testing finds bugs before an attacker can exploit them
Manual testing: write test cases to trigger exceptions
Sanitizers allow early bug detection, not just on exceptions
Fuzz testing automates and randomizes testing

Symbolic and concolic testing allow full coverage analysis (at
high overheads)

Mathias Payer CS412 Software Security

