
CS412 Software Security
Program Testing – Sanitization

Mathias Payer

EPFL, Spring 2019
Mathias Payer CS412 Software Security

Why testing?

Testing is the process of executing a program to find
errors.

An error is a deviation between observed behavior and specified
behavior, i.e., a violation of the underlying specification:

Functional requirements (features a, b, c)
Operational requirements (performance, usability)
Security requirements?

Mathias Payer CS412 Software Security

Limitations of testing

Testing can only show the presence of bugs, never their
absence. (Edsger W. Dijkstra)

A successful test finds a deviation. Testing is a form of dynamic
analysis. Code is executed, the testing environment observes the
behavior of the code, detecting violations.

Key advantage: reproducible, generally testing gives you the
concrete input for failed test cases.
Key disadvantage: complete testing of all
control-flow/data-flow paths reduces to the halting problem, in
practice, testing is hindered due to state explosion.

Mathias Payer CS412 Software Security

Forms of testing

Manual testing
Fuzz testing
Symbolic and concolic testing

We focus on security testing or testing to find security bugs, i.e.,
bugs that are reachable through attacker-controlled inputs.

Mathias Payer CS412 Software Security

Forms of testing

Manual testing
Fuzz testing
Symbolic and concolic testing

We focus on security testing or testing to find security bugs, i.e.,
bugs that are reachable through attacker-controlled inputs.

Mathias Payer CS412 Software Security

Alternative: (purely) static analysis

A static analysis reasons about the code instead of executing it.
Several static analysis exist and the line between static and dynamic
analysis is blurry.
Generally: a static analysis looks only at the code without keeping
track of concrete values during execution.

Advantage: no concrete input is needed.
Disadvantage: over-approximation due to imprecision and
aliasing, may have large amounts of false positives.

Recommended reading: A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World

Mathias Payer CS412 Software Security

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

Fault detection

How do we detect program faults?

Mathias Payer CS412 Software Security

Fault detection

Test cases detect bugs through
Assertions (assert(var != 0x23 && "var has illegal
value");) detect violations
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can you increase the chances of detecting a bug?

Mathias Payer CS412 Software Security

Sanitization

Sanitizers enforce a given policy, detect bugs earlier and increase
effectiveness of testing.
Most sanitizers rely on a combination of static analysis,
instrumentation, and dynamic analysis.

The program is analyzed during compilation (e.g., to learn
properties such as type graphs or to enable optimizations)
The program is instrumented, often to record metadata at
certain places and to enforce metadata checks at other places.
At runtime, the instrumentation constantly verified that the
policy is not violated.

What policies are interesting? What metadata do you need? Where
would you check?

Mathias Payer CS412 Software Security

AddressSanitizer
AddressSanitizer (ASan) detects memory errors. It places red zones
around objects and checks those objects on trigger events. The tool
can detect the following types of bugs:

Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (configurable)
Use-after-scope (configurable)
Double-free, invalid free
Memory leaks (experimental)

Typical slowdown introduced by AddressSanitizer is 2x.
Note: some of the ASan slides are inspired by Kostya’s presentation

Mathias Payer CS412 Software Security

https://www.usenix.org/sites/default/files/conference/protected-files/serebryany_atc12_slides.pdf

AddressSanitizer
What kind of metadata would you record? Where?
What kind of operations would you instrument?
What kind of optimizations could you think of?

Mathias Payer CS412 Software Security

ASan Metadata
Idea: store the state of each word in shadow memory (i.e., is it
accessible or not)

An 8-byte aligned word of memory has only 9 states
First N-bytes are accessible, 8-N are not

0: all accessible
7: first 7 accessible
6: first 6 accessible
. . .
1: first byte accessible
-1: no byte accessible

Trade-off between alignment and encoding (extreme: 128 byte
alignment, per byte)

Mathias Payer CS412 Software Security

ASan Metadata access
shadow = (addr>>3) + shadowbse

Mathias Payer CS412 Software Security

ASan instrumentation: memory access
long *addr = getAddr();
long val;
char *shadow = (addr>>3) + shadowbse;

// 8-byte access (read/write
if (*shadow)

ReportError(a);
val = *addr;

// N-byte access instead:
if (*shadow && *shadow <= ((addr&7)+N-1))

Mathias Payer CS412 Software Security

ASan instrumentation: asm
shr $0x3,%rax # shift by 3
mov $0x100000000000,%rcx
or %rax,%rcx # add offset
cmpb $0x0,(%rcx) # load shadow
je +2
ud2 # generate SIGILL
movq $0x1234,(%rdi) # original store

Mathias Payer CS412 Software Security

ASan instrumentation: stack
Insert red zones around objects on stack, poison them when
entering stack frames.

void foo() {
char rz1[32]; // 32-byte aligned
char a[8];
char rz2[24];
char rz3[32];
int *shadow = (&rz1 >> 3) + kOffset;
shadow[0] = 0xffffffff; // poison rz1
shadow[1] = 0xffffff00; // poison rz2
shadow[2] = 0xffffffff; // poison rz3
<------------- CODE ------------->
shadow[0] = shadow[1] = shadow[2] = 0;

}

Mathias Payer CS412 Software Security

ASan instrumentation: globals
Insert red zone after global object, poison in init.

int a;
// translates to
struct {

int original;
char redzone[60];

} a; // again, 32-byte aligned

Mathias Payer CS412 Software Security

ASan runtime library
Initializes shadow map at startup
Replaces malloc/free to update metadata (and pad allocations
with redzones)
Intercepts special functions such as memset

Mathias Payer CS412 Software Security

ASan report (example)
int main(int argc, char **argv) {

int *array = new int[100];
delete [] array;
return array[argc]; // BOOM

}

Mathias Payer CS412 Software Security

ASan report (example 2/2)
===
==23666==ERROR: AddressSanitizer: heap-use-after-free on address 0x61400000fe44
at pc 0x0000004ed7d2 bp 0x7ffc48249450 sp 0x7ffc48249448
READ of size 4 at 0x61400000fe44 thread T0

#0 0x4ed7d1 (/home/gannimo/a.out+0x4ed7d1)
#1 0x7f64f2fda2e0 (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
#2 0x41b2f9 (/home/gannimo/a.out+0x41b2f9)

0x61400000fe44 is located 4 bytes inside of 400-byte region
[0x61400000fe40,0x61400000ffd0)
freed by thread T0 here:

#0 0x4eb0d0 (/home/gannimo/a.out+0x4eb0d0)
#1 0x4ed79e (/home/gannimo/a.out+0x4ed79e)
#2 0x7f64f2fda2e0 (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)

previously allocated by thread T0 here:
#0 0x4eaad0 (/home/gannimo/a.out+0x4eaad0)
#1 0x4ed793 (/home/gannimo/a.out+0x4ed793)
#2 0x7f64f2fda2e0 (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)

SUMMARY: AddressSanitizer: heap-use-after-free (/home/gannimo/a.out+0x4ed7d1)
Shadow bytes around the buggy address:

0x0c287fff9f70: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff9f80: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff9f90: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff9fa0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff9fb0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

=>0x0c287fff9fc0: fa fa fa fa fa fa fa fa[fd]fd fd fd fd fd fd fd
0x0c287fff9fd0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c287fff9fe0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c287fff9ff0: fd fd fd fd fd fd fd fd fd fd fa fa fa fa fa fa
0x0c287fffa000: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fffa010: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Mathias Payer CS412 Software Security

ASan policy
Instrument every single access, check for poison value in
shadow table
Advantage: fast checks
Disadvantage: large memory overhead (especially on 64 bit),
still slow (2x)

Mathias Payer CS412 Software Security

LeakSanitizer
LeakSanitizer detects run-time memory leaks. It can be combined
with AddressSanitizer to get both memory error and leak detection,
or used in a stand-alone mode.
LSan adds almost no performance overhead until process
termination, when the extra leak detection phase runs.

Mathias Payer CS412 Software Security

MemorySanitizer
MemorySanitizer detects uninitialized reads. Memory allocations are
tagged and uninitialized reads are flagged.
Typical slowdown of MemorySanitizer is 3x.
Note: do not confuse MemorySanitizer and AddressSanitizer.

Mathias Payer CS412 Software Security

UndefinedBehaviorSanitizer
UndefinedBehaviorSanitizer (UBSan) detects undefined behavior. It
instruments code to trap on typical undefined behavior in C/C++
programs. Detectable errors are:

Unsigned/misaligned pointers
Signed integer overflow
Conversion between floating point types leading to overflow
Illegal use of NULL pointers
Illegal pointer arithmetic
. . .

Slowdown depends on the amount and frequency of checks. This is
the only sanitizer that can be used in production. For production
use, a special minimal runtime library is used with minimal attack
surface.

Mathias Payer CS412 Software Security

ThreadSanitizer
ThreadSanitizer detects data races between threads. It instruments
writes to global and heap variables and records which thread wrote
the value last, allowing detecting of WAW, RAW, WAR data races.
Typical slowdown is 5-15x with 5-15x memory overhead.

Mathias Payer CS412 Software Security

HexType
HexType detects type safety violations. It records the true type of
allocated objects and makes all type casts explicit.
Typical slowdown is 0.5x.

Mathias Payer CS412 Software Security

Sanitizers
AddressSanitizer:
https://clang.llvm.org/docs/AddressSanitizer.html
LeakSanitizer:
https://clang.llvm.org/docs/LeakSanitizer.html
MemorySanitizer:
https://clang.llvm.org/docs/MemorySanitizer.html
UndefinedBehaviorSanitizer: https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html
ThreadSanitizer:
https://clang.llvm.org/docs/ThreadSanitizer.html
HexType: https://github.com/HexHive/HexType

Use sanitizers to test your code. More sanitizers are in development.

Mathias Payer CS412 Software Security

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/HexHive/HexType

Summary and conclusion

Software testing finds bugs before an attacker can exploit them
Sanitizers allow early bug detection, not just on exceptions
AddressSanitizer is the most commonly used sanitizer and
enforces probabilistic memory safety by recording metadata for
every allocated object and checking every memory read/write.

Mathias Payer CS412 Software Security

