
CS412 Software Security
Reverse Engineering

Mathias Payer

EPFL, Spring 2019

Mathias Payer CS412 Software Security

Basics: encodings

Code is data is code is data
Learn to read hex numbers: 0x38 == 0011'1000
Python: hex(int('00111000', 2))
Remember common ASCII characters and instructions

Mathias Payer CS412 Software Security

Basics: characters
ASCII - American Standard Code for Information Interchange
1 byte per character (7bit, extended to 8)
How to go from upper to lower? What are numbers?

Figure 1

Mathias Payer CS412 Software Security

Endianness
Do you break the egg at the big or at the small end?

Two parties in Liliput were constantly fighting about the best
way to open an egg. The Big-Endians opened the egg on the
big end, the Little-Endians opened the egg on the little end.
See Jonathan Swift’s “Gulliver’s travels” for the literal answer

Figure 2

Mathias Payer CS412 Software Security

Endianness (CS)
How do we store multi-byte integers, such as 0x12345678 in
memory?

Byte 00 01 02 03

Big endian 12 34 56 78
Little endian 78 56 34 12
Middle endian 56 34 78 12

Little endian architectures: x86, ARM.
Big endian architectures: MIPS, RISC.

Mathias Payer CS412 Software Security

Compilation: C source

#include <stdio.h>

int main(int argc, char* argv[]) {
if (argc == 2)

printf("Hello %s\n", argv[1]);
return 0;

}
// gcc -W -Wall -Wextra -Wpedantic -O3 -S hello.c

Mathias Payer CS412 Software Security

Generated code (1/4)
.file "foo.c"
.section .rodata.str1.1,"aMS",@progbits,1

.LC0:
.string "Hello %s\n"
.section .text.unlikely,"ax",@progbits

.LCOLDB1:
.section .text.startup,"ax",@progbits

.LHOTB1:
.p2align 4,,15

Mathias Payer CS412 Software Security

Generated code (2/4)
.globl main
.type main, @function

main:
.LFB0:

.cfi_startproc
cmpl $2, %edi
je .L6
xorl %eax, %eax
ret

Mathias Payer CS412 Software Security

Generated code (3/4)
.L6:

pushq %rax
.cfi_def_cfa_offset 16
movq 8(%rsi), %rsi
movl $.LC0, %edi
xorl %eax, %eax
call printf
xorl %eax, %eax
popq %rdx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE0:
.size main, .-main

Mathias Payer CS412 Software Security

Generated code (3/3)
.section .text.unlikely

.LCOLDE1:
.section .text.startup

.LHOTE1:
.ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.5) 5.4.0"
.section .note.GNU-stack,"",@progbits

Mathias Payer CS412 Software Security

Assembly instructions

Instructions are encoded as bytes in memory: code == data.
Some architectures require that pages are mapped executable to
execute them.

Different architectures map bytes to instruction differently.
Common architectures: x86, ARM, MIPS

Mathias Payer CS412 Software Security

Assembly mnemonics
Decoding machine code into assembly code makes code readable.

AT&T syntax: mov src, dst (gcc, gdb)
Intel syntax: mov dst, src (radare2, IDA)

Pick and choose your favorite, get comfortable with either.
Remember the story about the two groups in Liliput?

Mathias Payer CS412 Software Security

Data storage
Data can be stored in

Registers: fast, directly accessible
Memory: load and store to registers
Disk/network: slow access through operating system

Mathias Payer CS412 Software Security

Registers

Figure 3

Mathias Payer CS412 Software Security

Data movement

Action Assembly C code

Constant to register movq $0x20, %rdx rdx = 0x20;
Register to register movl %ebx, %ecx ecx = ebx;
Memory to regiser movq (%rdi), %rbx ‘rbx = *rdi;

The x86 ISA also supports offsets and scaling: movq -0x4(%rdi,
%rdx, $0x4), %rbx which corresponds to rbx =
*(rdi+rdx*0x4 - 0x4);

Mathias Payer CS412 Software Security

Arithmetic

Action Assembly C code

Addition addl %ebx, %eax eax = eax + ebx;
Subtraction subl %ebx, %eax eax = eax - ebx;
Multiplication imul $123, %eax eax = eax * 123;
Division idiv %ebx eax = eax / ebx;

edx = eax % ebx;

Many more fun instructions, check out floating point

Mathias Payer CS412 Software Security

Control flow
Unconditional: jmp target (direct/indirect)
Function call: call target (direct/indirect)
Update flag register:

cmp t1, t2 (AKA sub t1, t2)
test t1 t2 (AKA and t1, t2)
Updates flag register but not target register, the result of the
computation is discarded

Conditional jump: jcc target (direct)

Mathias Payer CS412 Software Security

x86 caveat
x86 is an incredibly complex and rich instruction set.
Rely on the Intel Instruction Manual, the AMD Instruction Set
Description, or one of the online resources.
Reference http://ref.x86asm.net/

Mathias Payer CS412 Software Security

http://ref.x86asm.net/

x86 instruction decoding

Figure 4

Mathias Payer CS412 Software Security

Process address space

Programs get “full” virtual address space
32, 48, or 64 bit

Where to place
program,
libraries,
global data,
heap,
stack(s)?

Mathias Payer CS412 Software Security

Process address space

Figure 5

Mathias Payer CS412 Software Security

Process address space
Questions to ponder:

What are the permissions of the individual sections?
What are the requirements for placing code/data?
How much flexibility is there?

Mathias Payer CS412 Software Security

The loader
Programs are either statically linked (self-contained) or use a
dynamic loader for bootstrapping.

Loader is the first program to run
Loads and relocates program
Loads and relocates all libraries
Resolves all references
Stiches programs together
Call initialization functions
Handles control to program
Programs call into libc to initialize

Mathias Payer CS412 Software Security

Linking
0000400470 <main>:
70: 83 ff 02 cmp $0x2,%edi
73: 74 03 je 400478 <main+0x8>
75: 31 c0 xor %eax,%eax
77: c3 retq
78: 50 push %rax
79: 48 8b 56 08 mov 0x8(%rsi),%rdx
7d: 40 b7 01 mov $0x1,%dil
80: be 04 06 40 00 mov $0x400604,%esi
85: 31 c0 xor %eax,%eax
87: e8 d4 ff ff ff callq 400460

<__printf_chk@plt>
8c: 31 c0 xor %eax,%eax
8e: 5a pop %rdx
8f: c3 retq

What about all the other code in objdump -d a.out?

Mathias Payer CS412 Software Security

Start files (1/2)
0000000000400470 <main>: ...
0000000000400490 <_start>:
90: 31 ed xor %ebp,%ebp
92: 49 89 d1 mov %rdx,%r9
95: 5e pop %rsi
96: 48 89 e2 mov %rsp,%rdx
99: 48 83 e4 f0 and

$0xfffffffffffffff0,%rsp
9d: 50 push %rax
9e: 54 push %rsp
9f: 49 c7 c0 f0 05 40 00 mov $0x4005f0,%r8
a6: 48 c7 c1 80 05 40 00 mov $0x400580,%rcx
ad: 48 c7 c7 70 04 40 00 mov $0x400470,%rdi
b4: e8 87 ff ff ff callq 400440

<__libc_start_main@plt>
b9: f4 hlt
ba: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

Mathias Payer CS412 Software Security

Start files (2/2)
...
00000000004004c0 <deregister_tm_clones>: ...
00000000004004f0 <register_tm_clones>: ...
0000000000400530 <__do_global_dtors_aux>: ...
0000000000400550 <frame_dummy>: ...
0000000000400580 <__libc_csu_init>: ...
00000000004005f0 <__libc_csu_fini>: ...
00000000004005f4 <_fini>: ...

Mathias Payer CS412 Software Security

ELF format
ELF allows two interpretations of each file: sections and
segments
Segments contain permissions and mapped regions. Sections
enable linking and relocation
OS checks/reads the ELF header and maps individual segments
into a new virtual address space, resolves relocations, then
starts executing from the start address
If .interp section is present, the interpreter loads the
executable (and resolves relocations)
More: http:
//www.skyfree.org/linux/references/ELF_Format.pdf

Mathias Payer CS412 Software Security

http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf

ELF format

Figure 6

Mathias Payer CS412 Software Security

ELF tools
readelf and objdump to display information
readelf -h a.out for basic information
readelf -l a.out program headers
readelf -S a.out sections to relocate executable

Mathias Payer CS412 Software Security

Stack and heap layout

Loader maps runtime sections of shared objects into virtual
address space
Loader calls global init functions
libc initializes heap through sbrk, enables malloc

Mathias Payer CS412 Software Security

Stack and heap

Figure 7

Mathias Payer CS412 Software Security

Stack frame layout (1/2)

Figure 8

Mathias Payer CS412 Software Security

Stack frame layout (2/2)
Note that rbp is only saved if the register is used as base pointer
through explicit code. On 32-bit using a frame base pointer was
standard, on 64-bit the default has changed.

Mathias Payer CS412 Software Security

Calling convention
How are arguments passed between functions
In which order are arguments passed

Left to right or right to left?

Register ownership (caller or callee saved)
Registers used to pass arguments
Handling of variadic functions, pass by value, corner cases

Mathias Payer CS412 Software Security

Calling convention examples
x86, cdecl: right to left
x64, cdecl: right to left, plus rdi, rsi, rdx, rcx, r8, r9 for first 6
arguments

Mathias Payer CS412 Software Security

Shared libraries

Global Offset Table contains pointers to symbols in other
shared objects
Procedure Linkage Table contains code that transfers control
through the GOT to a symbol in another shared object
The entries in the GOT that point to functions are initialized
with the loader’s address to resolve it on-the-fly

Mathias Payer CS412 Software Security

Shared libraries

Figure 9

Mathias Payer CS412 Software Security

Interaction with the Operating System

Processes interact with the operating system through system
calls
. . . or faults (such as protection fault, segmentation fault, or
FP exception)

Mathias Payer CS412 Software Security

System calls
int 0x80: x86, old way, Linux specific
sysenter: x86, only saves subset of state, requires “call gate”
syscall: x64 way
int 0x21: x86, DOS
int 3: debug interrupt
svc: “supervisor call”, ARM way

Mathias Payer CS412 Software Security

System calling convention
Special calling convention, pack all request data into registers.
Information is Linux specific.

rax/eax contains system call number
Parameters are passed in registers

x86: %ebx, %ecx, %edx, %esi, %edi, %ebp
x64: %rdi, %rsi, %rdx, %rcx, %r8, %r9
More than 6 arguments: pass on stack

Mathias Payer CS412 Software Security

Assembly example
.section .rodata

.LC0:
.string "Hello world"
.text
.globl main

main:
pushq %rbp
movq %rsp, %rbp
leaq .LC0(%rip), %rdi
call puts@PLT
movl $0, %eax
popq %rbp
ret

Run: gcc hello.s

Mathias Payer CS412 Software Security

System call example
.text
.global _start
_start: movl $len,%edx # 3: message length.

movl $msg,%ecx # 2: pointer to message.
movl $1,%ebx # 1: file handle (stdout).
movl $4,%eax # syscall nr: sys_write.
int $0x80
movl $0,%ebx # 1: exit code.
movl $1,%eax # syscall nr: sys_exit
int $0x80

.data
msg: .ascii "Hello, world!\n"

len = . - msg # length

Mathias Payer CS412 Software Security

Linking and running
as hello.s -o hello.o
ld -s -o hello hello.o
./hello

More details:
https://web.archive.org/web/20120822144129/http:
//www.cin.ufpe.br/~if817/arquivos/asmtut/index.html

Mathias Payer CS412 Software Security

https://web.archive.org/web/20120822144129/http://www.cin.ufpe.br/~if817/arquivos/asmtut/index.html
https://web.archive.org/web/20120822144129/http://www.cin.ufpe.br/~if817/arquivos/asmtut/index.html

Reverse engineering

Understand what the program/a function is doing
Be aware of architecture/environment
What does the function expect, where to focus?

Mathias Payer CS412 Software Security

Static binary analysis
Binaries are truthful modulo obfuscation
Quick glance: file binary, checksec binary
Look at the code: objdump, r2, ida6q

Mathias Payer CS412 Software Security

Understanding binaries
for (int b = 0; b < a; b++) { x; }

movl $0, -4(%rbp)
jmp .L6

.L7:
movl -4(%rbp), %eax
movl %eax, %esi
leaq .LC2(%rip), %rdi
movl $0, %eax
call printf@PLT
addl $1, -4(%rbp)

.L6:
movl -4(%rbp), %eax
cmpl -20(%rbp), %eax
jl .L7

Mathias Payer CS412 Software Security

Understanding binaries
if (a) { x; } else { y; }

cmpl $2, -4(%rbp)
jne .L2
leaq .LC0(%rip), %rdi
movl $0, %eax
call printf@PLT
jmp .L4

.L2:
leaq .LC1(%rip), %rdi
movl $0, %eax
call printf@PLT

.L4:

Mathias Payer CS412 Software Security

Testing compilation
gcc -S test.c
Play with different optimization settings

Mathias Payer CS412 Software Security

Understanding binaries
while (it != NULL) {

if (it->val == i) return it;
it = it->next;

}

movq root(%rip), %rax
testq %rax, %rax
je .L3
cmpl 8(%rax), %edi
jne .L7
jmp .L3

.L8: cmpl %edi, 8(%rax)
je .L3

.L7: movq (%rax), %rax
testq %rax, %rax
jne .L8

.L3: rep ret

Mathias Payer CS412 Software Security

Dynamic binary analysis
Inspect the program at runtime
ltrace lists library functions
strace lists system calls
gdb allows fine-grained introspection

Mathias Payer CS412 Software Security

gdb
Breakpoints: stop execution if hit
Watchpoint: stop if an address is read/written
Inspect memory, registers
Inspect code
gdb is scriptable!

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Mathias Payer CS412 Software Security

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

We may have a core dump to look at

Figure 10

Mathias Payer CS412 Software Security

gdb scripting (based on example)
python

p = gdb.lookup_type('long').pointer()

def deref(addr):
val = gdb.Value(addr).cast(p).dereference()
return int(val) & 0xffffffff

start = gdb.Value(0x601060).cast(p).dereference()

while start != 0x0:
#print(start)
char = deref(start + 8) ^ 0x23
sys.stdout.write(chr(char))
start = deref(start)

CTRL-D

Mathias Payer CS412 Software Security

Summary

Processes execute programs in virtual address spaces
Programs are encoded as data on a given ISA
Binaries can be inspected statically or dynamically
Get a basic understanding first, then focus on details
Don’t try to understand everything, leverage abstractions

Mathias Payer CS412 Software Security

