
CS412 Software Security
Secure Software Lifecycle

Mathias Payer

EPFL, Spring 2019

Mathias Payer CS412 Software Security



Software liveliness

Software is not a one-shot effort
Software development, production, and maintenance are
cost/labor intensive
Software life-time can outlive hardware

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution

Figure 1:
Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Configuration: safe defaults
Subsystems: enable flexibility
Mandatory Access Control (MAC): compartmentalization
Filesystem encryption: secure data at rest
Trusted Platform Module: tamper proofing
Userspace Hardening: mitigations
Kernel Hardening: mitigations
See https://wiki.ubuntu.com/Security/Features

Mathias Payer CS412 Software Security

https://wiki.ubuntu.com/Security/Features


Example: Ubuntu security evolution
Configuration: safe defaults

No Open Ports;
Password hashing;
SYN cookies;
Automatic security updates;
Kernel Livepatches

Figure 2:

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Subsystems: flexibility

Filesystem Capabilities;
Configurable Firewall;
Cloud PRNG seed;
PR_SET_SECCOMP

Figure 3:

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Mandatory Access Control (MAC): compartmentalization

AppArmor;
SELinux;
SMACK

Figure 4:

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Filesystem encryption: secure data at rest

Encrypted LVM;
eCryptfs

Figure 5:

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Trusted Platform Module: tamper proof

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Userspace Hardening (1/2): mitigations

Stack Protector;
Heap Protector;
Pointer Obfuscation;
Address Space Layout Randomisation (ASLR):

Stack ASLR;
Libs/mmap ASLR;
Exec ASLR;
brk ASLR;
VDSO ASLR

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Userspace Hardening (2/2): mitigations

Built as PIE;
Built with Fortify Source;
Built with RELRO;
Built with BIND_NOW;
Non-Executable Memory;
/proc/$pid/maps protection;
Symlink restrictions;
Hardlink restrictions;
ptrace scope

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Kernel Hardening (1/2): mitigations

0-address protection;
/dev/mem protection;
/dev/kmem disabled;
Block module loading;
Read-only data sections;
Stack protector;
Module RO/NX;
Kernel Address Display Restriction;
Kernel Address Space Layout Randomisation

Mathias Payer CS412 Software Security



Example: Ubuntu security evolution
Kernel Hardening (2/2): mitigations

Blacklist Rare Protocols;
Syscall Filtering;
dmesg restrictions;
Block kexec;
UEFI Secure Boot (amd64)

Mathias Payer CS412 Software Security



Secure SE versus SE

What is the difference between software engineering and secure
software engineering?
If we have secure SE, why not also {reliable | robust | resilient |
reproducible | trusted | verifiable | . . . } SE?

Figure 6:

Mathias Payer CS412 Software Security



Secure SE versus SE
Software engineering (SE) is concerned with developing and
maintaining software systems that behave reliably and efficiently, are
affordable to develop and maintain, and satisfy all the requirements
that customers have defined for them. It is important because of the
impact of large, expensive software systems and the role of software
in safety-critical applications. It integrates significant mathematics,
computer science and practices whose origins are in engineering.
See http://computingcareers.acm.org/?page_id=12

Mathias Payer CS412 Software Security

http://computingcareers.acm.org/?page_id=12


Why do we need secure SE?
Prevent loss/corruption of data
Prevent unauthorized access to data
Prevent unauthorized computation
Prevent escalation of privileges
Prevent downtime of resources

Note, this is not a SE class. We will not focus on waterfall,
incremental, extreme, spiral, agile, or continuous
integration/continuous delivery. Examples on the slides follow a
traditional SE approach, generalization to other SE approaches is
left to the reader.

Mathias Payer CS412 Software Security



Secure SE lifecycle

Requirements/Specification
Design
Implementation
Testing
Updates and patching

Figure 7:

Mathias Payer CS412 Software Security



Requirements/Specification
Regular SE requirement specification plus
Security specification
Asset identification
Assess environment
Use cases and abuse cases

Mathias Payer CS412 Software Security



Design
Regular SE design plus
Threat modeling
Security design
Execution environment and actors
Design review
Design documentation (prose)

Mathias Payer CS412 Software Security



Implementation
Regular SE implementation plus
Source code repository/version control
Coding standards (assertions, documentation)
Source code review process

Mathias Payer CS412 Software Security



Testing
Regular SE testing plus
Security test plans
Automatic testing

Fuzzing
Symbolic execution
Formal verification

Red team testing
Continuous integration testing (Jenkins, Travis, etc)

Mathias Payer CS412 Software Security



Updates and patching
Dedicated security response team
Continuous process: new features, security issues
Regression testing
Secure update deployment

Figure 8: Source:
https://www.wired.com/story/petya-plague-automatic-software-updates/

Mathias Payer CS412 Software Security



Summary

Software lives and evolves
Security must be first class citizen

Secure Requirements/specification
Security-aware Design (Threats?)
Secure Implementation (Reviews?)
Testing (Red team, fuzzing, unit)
Updates and patching

Example: Ubuntu security features

Mathias Payer CS412 Software Security


