
CS-412 Software Security
Introduction

Mathias Payer

EPFL, Spring 2019

Mathias Payer CS-412 Software Security



Course outline

Secure software lifecycle
Security policies
Attack vectors
Defense strategies: mitigations and testing
Case studies: browser/web/mobile security

Mathias Payer CS-412 Software Security



Hack the planet!

Figure 1:

Mathias Payer CS-412 Software Security



About me

Instructor: Mathias Payer
Research area: software/system security

Memory/type safety
Mitigating control-flow hijacking
Compiler-based defenses
Binary analysis and reverse engineering

Avid CTF player (come join the polygl0ts)
Homepage: http://nebelwelt.net

Mathias Payer CS-412 Software Security

http://nebelwelt.net


Semester and master projects

Interested in security?
We supervise projects in software security!

Software testing: fuzzing
Software testing: sanitization
Mitigation
Program analysis

Ping me if interested

Figure 2:

Mathias Payer CS-412 Software Security



Internship/remote master project

Internship number 24346
“TLS Certificate analyser”
Who? DDPS, Marc Doudiet
Ping me if interested

Mathias Payer CS-412 Software Security



Why should you care?

Security impacts everybody’s day-to-day life
Security impacts your day-to-day life
User: make safe decisions
Developer: design and build secure systems
Researcher: identify flaws, propose mitigations

Mathias Payer CS-412 Software Security



Morris Worm

Figure 3:Mathias Payer CS-412 Software Security



Morris Worm: What it did

Brought down most of the internet in 2nd November, 1988
Buffer overflow in fingerd, injected shellcode and commands.
Debug mode in sendmail to execute arbitrary commands.
Dictionary attack with frequently used usernames/passwords.

Buggy worm: the routine that detected if a system was already
infected was faulty and the worm kept reinfecting the same
machines until they died.
Reverse engineering of the worm

Mathias Payer CS-412 Software Security

https://0x00sec.org/t/examining-the-morris-worm-source-code-malware-series-0x02/685


C and C++ are unsafe. Humans too.

Kostya Serebryany, Making C/C++ safer
Lots of scary bugs with scary names and logos
C and C++ are neither memory nor type safe

Root causes: read/write out-of-bounds (OOB) or after-free
(UAF), integer overflow, type confusion, . . .
Consequences: (remote) code execution, information leak,
privilege escalation, safety/reliability issues, . . .

Mathias Payer CS-412 Software Security

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C%2B%2B%20memory%20safe(r)%20-%20iSecCon%202018.pdf


Android

Figure 4:

Mathias Payer CS-412 Software Security



Google Chrome

Figure 5:

Mathias Payer CS-412 Software Security



Low-level software is highly complex

Low-level languages (C/C++) trade type safety and memory
safety for performance
Google Chrome: 76 MLoC
Gnome: 9 MLoC
Xorg: 1 MLoC
glibc: 2 MLoC
Linux kernel: 17 MLoC

Mathias Payer CS-412 Software Security



Software complexity (1/2)

Figure 6:

Mathias Payer CS-412 Software Security



Software complexity (2/2)

Figure 7:

~100 mLoC, 27 lines/page, 0.1mm/page equals roughly 370m

Mathias Payer CS-412 Software Security



Software Engineering versus Security

Software engineering aims for

Dependability: producing fault-free software
Productivity: deliver on time, within budget
Usability: satisfy a client’s needs
Maintainability: extensible when needs change

Software engineering combines aspects of PL, networking, project
management, economics, etc.
Security is secondary and often limited to testing.

Mathias Payer CS-412 Software Security



Definition: Security

Security is the application and enforcement of policies
through mechanisms over data and resources.

Policies specify what we want to enforce
Mechanisms specify how we enforce the policy (i.e., an
implementation/instance of a policy).

Mathias Payer CS-412 Software Security



Security best practices

Always lock your screen (on mobile/desktop)
Unique password for each service
Two-factor authentication
Encrypt your transport layer (TLS)
Encrypt your messages (GPG)
Encrypt your filesystem (DM-Crypt)
Disable password login on SSH
Open (unkown) executables/documents in an isolated
environment

Mathias Payer CS-412 Software Security



Definition: Software Security

Software Security is the area of Computer Science that
focuses on (i) testing, (ii) evaluating, (iii) improving, (iv)
enforcing, and (v) proving the security of software.

Mathias Payer CS-412 Software Security



Why is software security difficult?

Human factor (programmer, software architect, . . . )
Concept of weakest link
Performance
Usability
Lack of resources (time, money)

Mathias Payer CS-412 Software Security



Software security best practices?

Properly design software
Clear documentation (design and implementation)
Leverage frameworks (don’t reimplement functionality)
Code reviews
Add rigorous security tests to unit tests
Formal verification for components that can be verified
(protocols, small pieces of software)
Red team software
Offer bug bounties

Mathias Payer CS-412 Software Security



Definition: Software Bug

A software bug is an error, flaw, failure, or fault in a
computer program or system that causes it to produce an
incorrect or unexpected result, or to behave in unintended
ways. Bugs arise from mistakes made by people in either a
program’s source code or its design, in frameworks and
operating systems, and by compilers.

Source: Wikipedia

Mathias Payer CS-412 Software Security



Common bugs: spatial memory safety violation
void vuln() {

char buf[12];
char *ptr = buf[11];
*ptr++ = 10;
*ptr = 42;

}

Figure 8:
Mathias Payer CS-412 Software Security



Common bugs: temporal memory safety violation
void vuln(char *buf) {

free(buf);
buf[12] = 42;

}

Figure 9:

Mathias Payer CS-412 Software Security



Common bugs: type confusion
class Base {};
class Greeter : Base {};
class Exec : Base {};
Greeter *g = new Greeter();
Base *b = static_cast<Base*>(g);
Exec *e = static_cast<Exec*>(b);
...

Figure 10:

Mathias Payer CS-412 Software Security



Definition: Software Vulnerability

A vulnerability is a software weakness that allows an
attacker to exploit a software bug. A vulnerability requires
three key components (i) system is susceptible to flaw, (ii)
adversary has access to the flaw (e.g., through information
flow), and (iii) adversary has capability to exploit the flaw.

Mathias Payer CS-412 Software Security



Problem: broken abstractions

Figure 11:
Mathias Payer CS-412 Software Security



Course goals

Software running on current systems is exploited by attackers
despite many deployed defense mechanisms and best practices for
developing new software.

Goal: understand state-of-the-art software
attacks/defenses across all layers of abstraction: from
programming languages, compilers, runtime systems to
the CPU, ISA, and operating system.

Mathias Payer CS-412 Software Security



Learning outcomes

Understand causes of common weaknesses.
Identify security threats, risks, and attack vector.
Reason how such problems can be avoided.
Evaluate and assess current security best practices and defense
mechanisms for current systems.
Become aware of limitations of existing defense mechanisms
and how to avoid them.
Identify security problems in source code and binaries, assess
the associated risks, and reason about severity and
exploitability.
Assess the security of given source code.

Mathias Payer CS-412 Software Security



Syllabus: Basics

Secure software lifecycle: Design; Implementation; Testing;
Updates and patching
Basic security principles: Threat model; Confidentiality,
Integrity, Availability; Least privileges; Privilege separation;
Privileged execution; Process abstraction; Containers;
Capabilities
Reverse engineering: From source to binary; Process memory
layout; Assembly programming; Binary format (ELF)

Mathias Payer CS-412 Software Security



Syllabus: Policies and Attacks

Security policies: Compartmentalization; Isolation; Memory
safety; Type safety
Bug, a violation of a security policy: Arbitrary read;
Arbitrary write; Buffer overflow; Format string bug; TOCTTOU
Attack vectors: Confused deputy; Control-flow hijacking;
Code injection; Code reuse; Information leakage;

Mathias Payer CS-412 Software Security



Syllabus: Defenses

Mitigations: Address Space Layout Randomization; Data
Execution Prevention; Stack canaries; Shadow stacks;
Control-Flow Integrity; Sandboxing; Software-based fault
isolation
Testing: Test-driven development; Beta testing; Unit tests;
Static analysis; Fuzz testing; Symbolic execution; Formal
verification
Sanitizer: Address Sanitizer; Valgrind memory checker;
Undefined Behavior Sanitizer; Type Sanitization (HexType)

Mathias Payer CS-412 Software Security



Syllabus: Case studies

Browser security: Browser security model; Adversarial
computation; Protecting JIT code; Browser testing
Web security: Web frameworks; Command injection;
Cross-site scripting; SQL injection
Mobile security: Android market; Permission model; Update
mechanism

Mathias Payer CS-412 Software Security



Course material

Slides/homepage:
https://nebelwelt.net/teaching/19-412-SoSe/
Text book: Mathias Payer, Software Security: Principles,
Policies, and Protection
Moodle for discussions
Complementing books

Trent Jaeger, Operating System Security
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces

Labs and exercises

Mathias Payer CS-412 Software Security

https://nebelwelt.net/teaching/19-412-SoSe/
https://nebelwelt.net/SS3P/
https://nebelwelt.net/SS3P/
http://www.morganclaypool.com/doi/abs/10.2200/S00126ED1V01Y200808SPT001
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/


Text book: SS3P
Software Security: Principles, Policies, and Protection

There were no text books when I started developing this class.
There will be continuous updates, don’t print it (yet).
Feedback is encouraged: let me know if you find issues, missing
information, lack of context, or typos.

Main Topics
Software and System Security Principles
Secure Software Life Cycle
Memory and Type Safety
Defense Strategies
Attack Vectors
Case Studies: Mobile and Web

Mathias Payer CS-412 Software Security



SS3P: Software and System Security Principles
Basic security properties
Assessing the security of a system
Confidentiality, Integrity, and Availability
Isolation, Least Privilege, Compartmentalization
Threat Modeling

Mathias Payer CS-412 Software Security



Secure Software Life Cycle
Integration of security into design
Continuously assess security during implementation
Testing of software projects to vet security issues
Continuously track of security properties
Continuous project security management

Mathias Payer CS-412 Software Security



Memory and Type Safety
Two core policies
Memory safety: safe accesses to memory
Type Safety: typed accesses to objects

Mathias Payer CS-412 Software Security



Defense Strategies
Verify if the complexity of the code is manageable
Test as much as you can
Leverage mitigations to constrain the attacker on the remaining
attack surface.

Mathias Payer CS-412 Software Security



Attack Vectors
Goal: understand the goals of an attacker and how these goals may
be achieved starting from a program crash.

Mathias Payer CS-412 Software Security



Case Studies
Web security (including the browser security model)
Mobile security

Mathias Payer CS-412 Software Security



Bonus
Discussion on shellcode development
Reverse engineering

Mathias Payer CS-412 Software Security



Capture-The-Flag!
Security awareness is an acquired skill. This class heavily
involves programming and security exercises.
A semester long Capture-The-Flag (CTF) to train security
skills:

Binary analysis
Reverse engineering
Exploitation techniques
Web challenges

Start: 2019-02-28
Points are curved: first solver earns more points than last
solver; each additional solver reduces points for all previous
solvers

Mathias Payer CS-412 Software Security



Course project (1/2)
Design and implementation of a project in C++

GRASS: GRep AS a Service
Allow remote parties to send regular expressions that are then
evaluated against a text corpus.

Security evaluation of your peers’ applications
Fixing any reported security vulnerabilities
Teams of up to 3 people allowed

Mathias Payer CS-412 Software Security



Course project (2/2)
Use a source repository to check in solutions,
Organize your project according to a design document,
Peer review and comment the code of other students,
Work with a large code base, develop extensions.
C++ primer on Thursday 2019-02-19.

Mathias Payer CS-412 Software Security



TA Support

Barooti Khashayar khashayar.barooti@epfl.ch
“Cryptanalysis of lattice-based post-quantum cryptography.”
Kasra EdalatNejad kasra.edalat@epfl.ch “Scaling
decentralized privacy-preserving search.”
Solal Pirelli solal.pirelli@epfl.ch “Techniques to formally
verify real-world software.”

Mathias Payer CS-412 Software Security

mailto:khashayar.barooti@epfl.ch
mailto:kasra.edalat@epfl.ch
mailto:solal.pirelli@epfl.ch


Grading

Lab assignments (CTF): 25% (5 sets of challenges)
Programming project: 25%
Midterm: 20% (2019-04-02, 1 hour)
Final: 30% (2019-05-28, 2 hours)

Mathias Payer CS-412 Software Security



Academic Integrity

All work that you submit in this course must be your own.
Unauthorized group efforts are considered academic dishonesty.
You are allowed to discuss the problem with your peers but you may
not copy or reuse any part of an existing solution.
We will use automatic tools to compare your solution to those of
other current and past students. The risk of getting caught is too
high!

Mathias Payer CS-412 Software Security



Summary

Software Security is the area of Computer Science that focuses
on (i) testing, (ii) evaluating, (iii) improving, (iv) enforcing,
and (v) proving the security of software.
Learn to identify common security threats, risks, and attack
vectors for software systems.
Assess current security best practices and defense mechanisms
for current software systems.
Design and evaluate secure software.
Have fun!

Mathias Payer CS-412 Software Security


