
CS-527 Software Security
Mobile Security

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Kyriakos Ispoglou

https://nebelwelt.net/teaching/17-527-SoftSec/

Spring 2017

https://nebelwelt.net/teaching/17-527-SoftSec/

Android Security

Table of Contents

1 Android Security

2 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 2 / 15

Android Security

Android statistics

1.4 billion users (DMR stats, 9/29/15)

Android generates $31 billion revenue (Bloomberg, 1/21/16)

4,000+ different devices (DMR stats, 9/29/15)

Android OS with highest crash rate: Gingerbread (Greenbot,
3/27/14)

Percentage of Android devices running Marshmallow: 1.2%
(DMR stats, 2/2/16)

Percentage of Android devices running Lollipop: 34.1% (DMR
stats, 2/2/16)

Mathias Payer (Purdue University) CS-527 Software Security 2017 3 / 15

Android Security

Android history

2005: Google buys Android

2007: Initial SDK released

2008: First devices announced

2009: Cupcake (1.5, 3), Donut (1.6, 4), Eclair (2.0, 5)

2010: Froyo (2.2, 8), Gingerbread (2.3, 9)

2011: Honeycomb (3.0, 11), Ice Cream Sandwich (4.0.1, 14)

2012: Jelly Been (4.1.1, 16)

2013: KitKat (4.4, 19)

2014: Lollipop (5.0, 21)

2015: Marshmallow (6.0, 23)

2016: Nougat (7.0, 24-25)

2017: ?

Mathias Payer (Purdue University) CS-527 Software Security 2017 4 / 15

Android Security

Android security goals

Isolate individual applications

Protect system resources from applications

Vet applications “online”

Protect data of the user (until 5.0 single user)

Mathias Payer (Purdue University) CS-527 Software Security 2017 5 / 15

Android Security

Android security architecture

Architecture

The security of Android devices depends on a three tiered
architecture: (i) applications are carefully vetted server-side and only
approved applications can be installed from the “market”, (ii) each
application runs in a Java-like sandbox and is restricted to
user-granted permissions and can therefore only communicate
through well-defined API channels with other applications, and (iii)
the system is hardened against local user (app-based) attacks.

Mathias Payer (Purdue University) CS-527 Software Security 2017 6 / 15

Android Security

Android security fundamentals

Each apps runs in its own secure context/sandbox

Interactions between apps are restricted through the API

Each app has an associated policy, encoding the permissions

Apps are signed by the developer, vetted, and installed from a
central market.

Mathias Payer (Purdue University) CS-527 Software Security 2017 7 / 15

Android Security

Android kernel security

Hardened Linux kernel protects applications

Each application runs as its independent user

Stringent permissions on file systems (except sdcard)

SELinux to apply access control policies on processes

File system encryption (since 3.0)

Mathias Payer (Purdue University) CS-527 Software Security 2017 8 / 15

Android Security

Android user-space security for memory safety

Stack canaries, integer overflow protection, double free
protection (through allocator), and calloc instead of malloc (1.5)

Format string protection, NX, and mmap min addr (2.3)

ASLR (4.0), PIE, read only relocations, immediate binding,
avoid kernel address leaks (4.1)

fortify source, init script hardening, certificate pinning (4.2)

SELinux, no suid, ADB authentication, capability bounding,
more fortification (4.3)

Stronger SELinux, stronger fortification (4.4)

More SELinux/fortification, everything PIE, disk encryption (5.0)

Verified boot, hardware security, system hardening (6.0)

More service hardening, better updates (7.0)

Each release: security updates, patches, and toolchain updates

Mathias Payer (Purdue University) CS-527 Software Security 2017 9 / 15

Android Security

Android permissions

Android has many types of complex permissions.

Camera functions

Location data (GPS)

Bluetooth functions

Telephony functions

SMS/MMS functionality

Network/data connections

Mathias Payer (Purdue University) CS-527 Software Security 2017 10 / 15

Android Security

Android intents

Intent

An Intent is a simple message object that represents an “intention”
to do something. For example, if your application wants to display a
web page, it expresses its “Intent” to view the URL by creating an
Intent instance and handing it off to the system. The system locates
some other piece of code (in this case, the Browser) that knows how
to handle that Intent, and runs it. Intents can also be used to
broadcast interesting events (such as a notification) system-wide.a

aThis is Google’s definition of an intent.

Mathias Payer (Purdue University) CS-527 Software Security 2017 11 / 15

Android Security

Android attack vectors

Unauthorized intent receipt: attacker creates an intent filter and
receives intents from other apps that contain privileged
information (e.g., intent filter for web service that intercepts
online payment process)

Intent spoofing: attacker sends a malicious intent to an intent
processor (e.g., flooding the network with malicious messages)

Insecure storage: there are no access restrictions on the SD card
(why?), an attacker may read/write any data on the SD card

Insecure communication: an attacker may run wireshark to
intercept traffic

Overprivileged app: a bug in an app allows an attacker to
leverage these privileges.

Mathias Payer (Purdue University) CS-527 Software Security 2017 12 / 15

Summary and conclusion

Table of Contents

1 Android Security

2 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 13 / 15

Summary and conclusion

Summary

Android security evolved over time

Android systems are hardened against exploits

Developers sign their app and required permissions

Applications are vetted centrally and installed from the market

Mathias Payer (Purdue University) CS-527 Software Security 2017 14 / 15

Summary and conclusion

Questions?

?

Mathias Payer (Purdue University) CS-527 Software Security 2017 15 / 15

	Android Security
	Summary and conclusion

