CS-527 Software Security

Browser Security

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Kyriakos Ispoglou
https://nebelwelt.net/teaching/17-527-SoftSec/

Spring 2017


https://nebelwelt.net/teaching/17-527-SoftSec/

Web Environment

Table of Contents

@ Web Environment

Mathias Payer (Purdue University) CS-527 Software Security 2017 2 /16



Web Environment
Basics

@ Uniform Resource Locators (URLs) allow global identification of
retrievable documents, specifying both the protocol and location
of the resource.

@ Location is broken into hostname, port, path, query (a sequence
of variable=value statements with & as delimeter), and
fragment, e.g.,
protocol://hostname:port/path/?query#fragment

@ The Hyper Text Transfer Protocol (HTTP) allows a host to
fetch URLs from a remote server. HTTP is a simple stateless
protocol where a client requests a page (including some auxiliary
headers). The response contains the HT TP version, status code,
reason, headers, length, and data in a simple human readable
format.

Mathias Payer (Purdue University) CS-527 Software Security 2017 3/16



Web Environment
Browsers

@ Modern browsers have evolved into complex applications that
retrieve and display html documents retrieved over http.

@ The browser process handles entering and displaying of the URI.
Upon receiving a new display request the browser process asks
the browser engine if the location is cached; if not, it requests
the page over http.

@ The renderer process takes web page and renders it.

@ A window/frame uses a basic execution model that loops
between content loading, rendering, and reacting to events (user
actions, rendering, or timing).

Mathias Payer (Purdue University) CS-527 Software Security 2017 4 /16



Web Environment
Rendering

@ Rendering is not that simple.
@ A bunch of different parsers handle data in different formats.
@ There’'s HTML, JavaScript, CSS, Images, and many more.

@ All parsers and the JavaScript engine that allows dynamic code
to be executed, update the Document Object Model (DOM)
tree which is then “rendered”.

Mathias Payer (Purdue University) CS-527 Software Security 2017 5/ 16



Design Principles

Table of Contents

© Design Principles

Mathias Payer (Purdue University) CS-527 Software Security 2017 [}



Design Principles
Security goals

@ A tab cannot compromise data on the system.
@ A tab cannot compromise data in other tabs.

@ A tab cannot hijack and control other tabs.

Mathias Payer (Purdue University) CS-527 Software Security 2017 7 /16



Different threat models

@ Web attacker: may control a server and/or certificate. User
actively visits the page (or app or ad).

@ Network attacker: passive eavesdropper or active man in the
middle (MITM), or ARP/DNS poisoning attack.

@ OS attacker: exploit browser and control execution.

Mathias Payer (Purdue University) CS-527 Software Security



Browser isolation principles

Table of Contents

© Browser isolation principles

Mathias Payer (Purdue University) CS-527 Software Security 2017 9 /16



Browser isolation principles

Browser isolation

The browser isolates fault domains through processes.

The browser process controls a GPU process, a sandbox for each
renderer, and a set of sandboxes for different plugins.

Each sandbox is isolated from the system and other sandboxes.

Each sandbox is reduced to the least privilege.

(]

On Linux, chrome uses seccomp secured processes to enforce
isolation and least privilege.

Mathias Payer (Purdue University) CS-527 Software Security 2017 10 / 16



Attack vectors

Table of Contents

e Attack vectors

Mathias Payer (Purdue University) CS-527 Software Security 2017 11 /16



Attack vectors
Heap spraying

@ Browser sandboxes are very constrained but an attacker may
execute arbitrary code through JavaScript.

@ Vulnerabilities like use-after-free are often imprecise due to
variance in the heap (i.e., where objects are allocated).

o Idea: spray a large amount of the same object across the heap,
allocating many objects. Only one object will then have to be
hit in the exploit.

@ Heap spraying conceptually solves the same problem as NOP
slides.

@ How would you detect heap spraying?

Mathias Payer (Purdue University) CS-527 Software Security 2017 12 / 16



Attack vectors
Information leaks

@ Browsers have several side channels that allow an attacker to
identify “loaded” resources.

@ Web cache-based attacks: image/script load times
o ldentification: supported fonts, plugin versions, sites visited

@ System cache-based attacks: rowhammer, covert channels.

Mathias Payer (Purdue University) CS-527 Software Security 2017 13 /16



Summary and conclusion

Table of Contents

© Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 14 / 16



Summary and conclusion
Summary

@ Browsers leverage HTTP and URLs to retrieve HTML
documents.

@ Browsers run individual webpages at least privileges in isolation.

@ An attacker may control the content of the website at different
levels.

@ Vulnerabilities in the browser allow an attacker to escape and
escalate privileges.

@ Two examples of attack vectors are heap spraying and side
channels.

Mathias Payer (Purdue University) CS-527 Software Security 2017 15 / 16



Summary and conclusion

Questions?

Mathias Payer (Purdue University) i 2017 16 / 16



	Web Environment
	Design Principles
	Browser isolation principles
	Attack vectors
	Summary and conclusion

