
CS-527 Software Security
Browser Security

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Kyriakos Ispoglou

https://nebelwelt.net/teaching/17-527-SoftSec/

Spring 2017

https://nebelwelt.net/teaching/17-527-SoftSec/


Web Environment

Table of Contents

1 Web Environment

2 Design Principles

3 Browser isolation principles

4 Attack vectors

5 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 2 / 16



Web Environment

Basics

Uniform Resource Locators (URLs) allow global identification of
retrievable documents, specifying both the protocol and location
of the resource.

Location is broken into hostname, port, path, query (a sequence
of variable=value statements with & as delimeter), and
fragment, e.g.,
protocol://hostname:port/path/?query#fragment

The Hyper Text Transfer Protocol (HTTP) allows a host to
fetch URLs from a remote server. HTTP is a simple stateless
protocol where a client requests a page (including some auxiliary
headers). The response contains the HTTP version, status code,
reason, headers, length, and data in a simple human readable
format.

Mathias Payer (Purdue University) CS-527 Software Security 2017 3 / 16



Web Environment

Browsers

Modern browsers have evolved into complex applications that
retrieve and display html documents retrieved over http.

The browser process handles entering and displaying of the URI.
Upon receiving a new display request the browser process asks
the browser engine if the location is cached; if not, it requests
the page over http.

The renderer process takes web page and renders it.

A window/frame uses a basic execution model that loops
between content loading, rendering, and reacting to events (user
actions, rendering, or timing).

Mathias Payer (Purdue University) CS-527 Software Security 2017 4 / 16



Web Environment

Rendering

Rendering is not that simple.

A bunch of different parsers handle data in different formats.

There’s HTML, JavaScript, CSS, Images, and many more.

All parsers and the JavaScript engine that allows dynamic code
to be executed, update the Document Object Model (DOM)
tree which is then “rendered”.

Mathias Payer (Purdue University) CS-527 Software Security 2017 5 / 16



Design Principles

Table of Contents

1 Web Environment

2 Design Principles

3 Browser isolation principles

4 Attack vectors

5 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 6 / 16



Design Principles

Security goals

A tab cannot compromise data on the system.

A tab cannot compromise data in other tabs.

A tab cannot hijack and control other tabs.

Mathias Payer (Purdue University) CS-527 Software Security 2017 7 / 16



Design Principles

Different threat models

Web attacker: may control a server and/or certificate. User
actively visits the page (or app or ad).

Network attacker: passive eavesdropper or active man in the
middle (MITM), or ARP/DNS poisoning attack.

OS attacker: exploit browser and control execution.

Mathias Payer (Purdue University) CS-527 Software Security 2017 8 / 16



Browser isolation principles

Table of Contents

1 Web Environment

2 Design Principles

3 Browser isolation principles

4 Attack vectors

5 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 9 / 16



Browser isolation principles

Browser isolation

The browser isolates fault domains through processes.

The browser process controls a GPU process, a sandbox for each
renderer, and a set of sandboxes for different plugins.

Each sandbox is isolated from the system and other sandboxes.

Each sandbox is reduced to the least privilege.

On Linux, chrome uses seccomp secured processes to enforce
isolation and least privilege.

Mathias Payer (Purdue University) CS-527 Software Security 2017 10 / 16



Attack vectors

Table of Contents

1 Web Environment

2 Design Principles

3 Browser isolation principles

4 Attack vectors

5 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 11 / 16



Attack vectors

Heap spraying

Browser sandboxes are very constrained but an attacker may
execute arbitrary code through JavaScript.

Vulnerabilities like use-after-free are often imprecise due to
variance in the heap (i.e., where objects are allocated).

Idea: spray a large amount of the same object across the heap,
allocating many objects. Only one object will then have to be
hit in the exploit.

Heap spraying conceptually solves the same problem as NOP
slides.

How would you detect heap spraying?

Mathias Payer (Purdue University) CS-527 Software Security 2017 12 / 16



Attack vectors

Information leaks

Browsers have several side channels that allow an attacker to
identify “loaded” resources.

Web cache-based attacks: image/script load times

Identification: supported fonts, plugin versions, sites visited

System cache-based attacks: rowhammer, covert channels.

Mathias Payer (Purdue University) CS-527 Software Security 2017 13 / 16



Summary and conclusion

Table of Contents

1 Web Environment

2 Design Principles

3 Browser isolation principles

4 Attack vectors

5 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 14 / 16



Summary and conclusion

Summary

Browsers leverage HTTP and URLs to retrieve HTML
documents.

Browsers run individual webpages at least privileges in isolation.

An attacker may control the content of the website at different
levels.

Vulnerabilities in the browser allow an attacker to escape and
escalate privileges.

Two examples of attack vectors are heap spraying and side
channels.

Mathias Payer (Purdue University) CS-527 Software Security 2017 15 / 16



Summary and conclusion

Questions?

?

Mathias Payer (Purdue University) CS-527 Software Security 2017 16 / 16


	Web Environment
	Design Principles
	Browser isolation principles
	Attack vectors
	Summary and conclusion

