
CS-527 Software Security
Memory Safety

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Kyriakos Ispoglou

https://nebelwelt.net/teaching/17-527-SoftSec/

Spring 2017

https://nebelwelt.net/teaching/17-527-SoftSec/

Eternal War in Memory

Table of Contents

1 Eternal War in Memory

2 Memory safety
Spatial memory safety
Temporal memory safety
Towards a definition

3 Enforcing memory safety

4 SoftBound

5 CETS

6 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 2 / 38

Eternal War in Memory

The Eternal War in Memory

Memory corruption is as old as operating systems and networks.

First viruses, worms, and trojan horses appeared with the
creation of operating systems.

All malware abuses a security violation, either user-based,
hardware-based, or software-based.

Early malware tricked users into running code (e.g., as part of
the boot process on a floppy disk).

The Morris worm abused stack-based buffer overflows in
sendmail, finger, and rsh/exec to gain code execution on a large
part of the Internet in 1988.

A plethora of other software vulnerabilities continued to allow
malware writers to gain code execution on systems.

Mathias Payer (Purdue University) CS-527 Software Security 2017 3 / 38

Eternal War in Memory

Control-flow hijack attack

The attacker wants to control the execution of a program by
redirecting control-flow to an attacker-controlled location.

First, the attacker must overwrite a code pointer (return
instruction pointer on the stack, target of an indirect jump, or
target of an indirect call).

Second, the attacker forces the program to follow the modified
code pointer (this can be explicit or implicit).

Third, the attacker keeps modifying code pointers so that the
process now executes the attacker’s code.

Mathias Payer (Purdue University) CS-527 Software Security 2017 4 / 38

Eternal War in Memory

Control-flow hijack attack

Memory Safety

Integrity

Randomization

Flow Integrity

Successful Attack!

1 v o i d v u l n (c h a r ∗u1) {
2 /∗ a s s e r t (s t r l e n (u1) < MAX) ; ∗/
3 c h a r tmp [MAX] ;
4 s t r c p y (tmp , u1) ;
5 r e t u r n strcmp (tmp , ” f o o ”) ;
6 }
7 v u l n (e x p l o i t) ;

Mathias Payer (Purdue University) CS-527 Software Security 2017 5 / 38

Eternal War in Memory

Quick attack overview

Code corruption.

Code injection and control-flow hijacking.

Code reuse and control-flow hijacking.

Control-flow bending.

Controlling a Turing-complete interpreter inside an application
(constrained execution).

Mathias Payer (Purdue University) CS-527 Software Security 2017 6 / 38

Eternal War in Memory

Attacks: Escalate

Mathias Payer (Purdue University) CS-527 Software Security 2017 7 / 38

Memory safety

Table of Contents

1 Eternal War in Memory

2 Memory safety
Spatial memory safety
Temporal memory safety
Towards a definition

3 Enforcing memory safety

4 SoftBound

5 CETS

6 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 8 / 38

Memory safety

Memory safety

Definition: Memory safety

Memory safety is a property that ensures that all memory accesses
adhere to the semantics defined by the source programming
language. The gap between the operational semantics of the
programming language and the underlying instructions provided by
the hardware allow an attacker to step out of the restrictions imposed
by the programming language and access memory out of context.
Memory unsafe languages like C/C++ do not enforce memory safety
and data accesses can occur through stale/illegal pointers.

Mathias Payer (Purdue University) CS-527 Software Security 2017 9 / 38

Memory safety

Memory safety

Memory safety is a general property that can apply to a
program, a runtime environment, or a programming language1.

A program is memory safe, if all possible executions of that
program are memory safe.

A runtime environment is memory safe, if all possible programs
that can run in the environment are memory safe.

A programming language is memory safe, if all possible programs
that can be expressed in that language are memory safe.

If memory safety is enforced, then a list of bad things can never
happen. This list includes buffer overflows, NULL pointer
dereferences, use after free, use of uninitialized memory, or
illegal frees.

1See Mike Hicks definition of memory safety
http://www.pl-enthusiast.net/2014/07/21/memory-safety/.
Mathias Payer (Purdue University) CS-527 Software Security 2017 10 / 38

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory safety

Memory safety

Memory safety violations rely on two conditions that must both be
fulfilled:

A pointer either goes out of bounds or becomes dangling.

This pointer is used to either read or write.

Mathias Payer (Purdue University) CS-527 Software Security 2017 11 / 38

Memory safety Spatial memory safety

Spatial memory safety

Definition: Spatial memory safety

Spatial memory safety is a property that ensures that all memory
dereferences are within bounds of their pointer’s valid objects. An
object’s bounds are defined when the object is allocated. Any
computed pointer to that object inherits the bounds of the object.
Any pointer arithmetic can only result in a pointer inside the same
object. Pointers that point outside of their associated object may not
be dereferenced. Dereferencing such illegal pointers results in a
spatial memory safety error and undefined behavior.

Mathias Payer (Purdue University) CS-527 Software Security 2017 12 / 38

Memory safety Spatial memory safety

Spatial memory safety

1 c h a r ∗ p t r = m a l l o c (2 4) ;
2 f o r (i n t i = 0 ; i < 2 6 ; ++i) {
3 p t r [i] = i +0x41 ;
4 }

Mathias Payer (Purdue University) CS-527 Software Security 2017 13 / 38

Memory safety Temporal memory safety

Temporal memory safety

Definition: Temporal memory safety

Temporal memory safety is a property that ensures that all memory
dereferences are valid at the time of the dereference, i.e., the
pointed-to object is the same as when the pointer was created. When
an object is freed, the underlying memory is no longer associated to
the object and the pointer is no longer valid. Dereferencing such an
invalid pointer results in a temporal memory safety error and
undefined behavior.

Mathias Payer (Purdue University) CS-527 Software Security 2017 14 / 38

Memory safety Temporal memory safety

Temporal memory safety

1 c h a r ∗ p t r = m a l l o c (2 4) ;
2 f r e e (p t r) ;
3 f o r (i n t i = 0 ; i < 2 4 ; ++i) {
4 p t r [i] = i +0x41 ;
5 }

Mathias Payer (Purdue University) CS-527 Software Security 2017 15 / 38

Memory safety Towards a definition

Memory safety

Assume we have defined (allocated) and undefined memory.
Assume that deallocated memory is never reused. Memory
safety is violated if undefined memory is accessed.

Pointers can be seen as capabilities, they allow access to a
certain region of (allocated) memory. Each pointer consists of
the pointer itself, a base pointer, and bounds for the pointer.

When creating a pointer, capabilities are initialized. When
updating a pointer, the base and bounds remain the same.
When copying a pointer, the capabilities are propagated. When
dereferencing a pointer, the capabilities are checked.

Capabilities cannot be forged or constructed by the programmer
but are inherently added and enforced by the compiler.

Mathias Payer (Purdue University) CS-527 Software Security 2017 16 / 38

Memory safety Towards a definition

Memory safety

Capability-based memory safety is a form of type safety with two
types: pointer-types and scalars.

Pointers (and their capabilities) are only created in a safe way.
The capabilities are created as a side-effect of creating the
pointer.

Pointers can only be dereferenced if they point to their assigned
memory region and that region is still valid.

Mathias Payer (Purdue University) CS-527 Software Security 2017 17 / 38

Memory safety Towards a definition

Memory unsafety?

Super Mario arbitrary code execution

In short: I manipulate where the moving objects (sprites) are located
or where they despawn, then I swap the item in Yoshi’s mouth with a
flying ?-block (thus the yellow glitched shell) and using a glitch
(stunning) to spawn a sprite which isn’t used by SMW and since it
tries to jump to the sprite routine location, it indexes everything
wrong and jumps to a place I manipulated earlier with the sprites
(OAM) and because of the P-Switch it jumps to controller registers
and from there the arbitrary code execution is started.
Even shorter: Magic.
(by Masterjun3)

https://www.youtube.com/watch?v=OPcV9uIY5i4

Mathias Payer (Purdue University) CS-527 Software Security 2017 18 / 38

https://www.youtube.com/watch?v=OPcV9uIY5i4

Memory safety Towards a definition

Memory Safety: Attack Paths

Memory safety

Integrity

Confidentiality

Flow Integrity

Bad things

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

Mathias Payer (Purdue University) CS-527 Software Security 2017 19 / 38

Enforcing memory safety

Table of Contents

1 Eternal War in Memory

2 Memory safety
Spatial memory safety
Temporal memory safety
Towards a definition

3 Enforcing memory safety

4 SoftBound

5 CETS

6 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 20 / 38

Enforcing memory safety

Memory safety enforcement

We know how memory safety violations look like. How can we
protect against them?

Verification?

Testing?

Fuzzing?

Symbolic Execution?

Yes, these are all correct but will either not find all bugs, are not
complete, or have high overhead.

We need to enforce memory safety at runtime by checking the
security property at strategic locations.

Mathias Payer (Purdue University) CS-527 Software Security 2017 21 / 38

Enforcing memory safety

Bounds checking approaches in C/C++

Tripwire: use few bits of state for each byte of memory, place
red-zones between blocks (e.g., Valgrind’s memory
checker, Google’s AddressSanitizer)

Pointer based: fat pointers are used to check dereferences (e.g.,
Cyclone, CCured)

Object based: must point within same object, check pointer
manipulations (e.g., SafeCode)

All mechanisms are challenged by (i) high runtime overheads, (ii)
incompleteness handling casts, (iii) incompatible pointer
representations (e.g., syscalls), (iv) code incompatibilities.

Mathias Payer (Purdue University) CS-527 Software Security 2017 22 / 38

SoftBound

Table of Contents

1 Eternal War in Memory

2 Memory safety
Spatial memory safety
Temporal memory safety
Towards a definition

3 Enforcing memory safety

4 SoftBound

5 CETS

6 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 23 / 38

SoftBound

SoftBound

Compiler-based transformation that enforces spatial memory
safety2

No source code changes necessary, compiler-based

No memory layout changes necessary, disjoint meta data (fat
pointers)

Simple, intra-procedural analysis

Effective, no false positives/negatives

Low(-ish) overhead of 67% for SPEC CPU2006

2SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.
Santosh Nagarakatte et al, PLDI’09.
Mathias Payer (Purdue University) CS-527 Software Security 2017 24 / 38

SoftBound

Alternative approaches

Object based: Cannot detect sub-object overflows, overhead for
range lookups. But meta data is disjoint, therefore high
compatibility.

Fat pointers: Low compatibility through inline meta data. Can detect
sub-object overflows.

Both fail to protect against arbitrary casts (across
incompatible types). Notable exception is CCured with
pointer classification.

Mathias Payer (Purdue University) CS-527 Software Security 2017 25 / 38

SoftBound

SoftBound approach

1 s t r u c t BankAccount {
2 c h a r a c c t I D [3] ; i n t b a l a n c e ;
3 } b ;
4 b . b a l a n c e = 0 ;
5 c h a r ∗ i d = &(b . a c c t I D) ;
6 l o o ku p (& i d)−>bse = &(b . a c c t I D) ;
7 l o o ku p (& i d)−>bnd = &(b . a c c t I D) +3;
8 c h a r ∗p = i d ; // l o c a l , r e m a i n s i n r e g i s t e r
9 c h a r ∗ p b s e = lo o k u p (& i d)−>bse ;

10 c h a r ∗p bnd = lo o k u p (& i d)−>bnd ;
11 do {
12 c h a r ch = r e a d c h a r () ;
13 check (p , p bse , p bnd) ;
14 ∗p = ch ;
15 p++;
16 } w h i l e (ch) ;

Mathias Payer (Purdue University) CS-527 Software Security 2017 26 / 38

SoftBound

SoftBound instrumentation

Initialize (disjoint) metadata for pointer when it is assigned.

Assignment covers both creation of pointers and propagation.

Check bounds whenever pointer is dereferenced.

1 i f (p < p b s e) a b o r t () ;
2 i f (p + s i z e > p bnd) a b o r t () ;
3 v a l u e = ∗p

Check results in five x86 instructions: cmp, br, add, cmp, br.

Mathias Payer (Purdue University) CS-527 Software Security 2017 27 / 38

SoftBound

SoftBound details

Many small nits requires so that it works out.

Separate compilation and library code are issues.

Function pointers and variadic arguments are problematic.

memcpy needs to be handled in a special way.

Illegal (but “working”) casts can be problematic.

Mathias Payer (Purdue University) CS-527 Software Security 2017 28 / 38

CETS

Table of Contents

1 Eternal War in Memory

2 Memory safety
Spatial memory safety
Temporal memory safety
Towards a definition

3 Enforcing memory safety

4 SoftBound

5 CETS

6 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 29 / 38

CETS

Compiler-Enforced Temporal Safety for C

Temporal memory safety is an orthogonal problem to spatial
memory safety.

The same memory area can be allocated to new object.

Mathias Payer (Purdue University) CS-527 Software Security 2017 30 / 38

CETS

Heap-based temporal safety error

1 i n t ∗p , ∗q , ∗ r ;
2 p = m a l l o c (8) ;
3 . . .
4 q = p ;
5 . . .
6 f r e e (p) ;
7 r = m a l l o c (8) ;
8 . . .
9 . . . = ∗q ;

Mathias Payer (Purdue University) CS-527 Software Security 2017 31 / 38

CETS

Stack-based temporal safety error

1 i n t ∗q ;
2 v o i d f o o () {
3 i n t a ;
4 q = &a ;
5 }
6 i n t main () {
7 f o o () ;
8 . . . = ∗q ;
9 }

Mathias Payer (Purdue University) CS-527 Software Security 2017 32 / 38

CETS

Compiler-Enforced Temporal Safety (CETS) for C

How do you ensure that a pointer references the new object and
not the old object? How do you detect stale pointers?

One solution is garbage collection (free is noop but periodically
scan for unused memory areas with no pointers to them).

Another is to not reuse memory.

A third is to use versioning. Each allocated memory object and
pointer is assigned a unique version. Upon dereference, check if
the pointer version is equal to the version of the memory object.
Two failure conditions: area was deallocated and version is
smaller (0) or area was reallocated to new object and the version
is bigger.

Mathias Payer (Purdue University) CS-527 Software Security 2017 33 / 38

CETS

Existing approaches and drawbacks

Simple approaches track validity based on the location of
memory objects. Unfortunately, these approaches cannot
distinguish between a reference to a reallocated object and the
original object.

SafeC used a global set for memory objects and fat pointers to
store validity data with the drawback of high overhead due to
the set lookups.

Follow up work introduced specific lock addresses and lock
tables that stored validity information, removing the need for a
potentially high overhead hash lookup to find the target address.

Mathias Payer (Purdue University) CS-527 Software Security 2017 34 / 38

CETS

CETS mechanism

1 Identify all memory allocation functions and assign a unique
version to the memory area. Assign the same version to the
initial pointer that is returned from the allocation function.

2 Identify all memory deallocation functions and destroy (zero out)
the version of the associated memory area.

3 When a pointer is assigned, propagate the version from the rhs.

4 When a pointer is dereferenced, check if the version of the
pointer and pointed-to object match.

Mathias Payer (Purdue University) CS-527 Software Security 2017 35 / 38

Summary and conclusion

Table of Contents

1 Eternal War in Memory

2 Memory safety
Spatial memory safety
Temporal memory safety
Towards a definition

3 Enforcing memory safety

4 SoftBound

5 CETS

6 Summary and conclusion

Mathias Payer (Purdue University) CS-527 Software Security 2017 36 / 38

Summary and conclusion

Summary

Memory safety has been an issue for generations of programmers
and has severe security implications.

Distinguish between spatial and temporal memory safety
violations.

SoftBound protects against spatial memory safety errors, CETS
against temporal memory safety errors.

Reading assignments:

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.
SoK: Eternal war in memory. IEEE S&P’13. http:

//nebelwelt.net/publications/files/13Oakland.pdf.
Santosh Nagarakatte, Milo M. K. Martin, Steve Zdancewic.
Everything You Want to Know About Pointer-Based Checking.
http://drops.dagstuhl.de/opus/volltexte/2015/5026/

pdf/16.pdf.

Mathias Payer (Purdue University) CS-527 Software Security 2017 37 / 38

http://nebelwelt.net/publications/files/13Oakland.pdf
http://nebelwelt.net/publications/files/13Oakland.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5026/pdf/16.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5026/pdf/16.pdf

Summary and conclusion

Questions?

?

Mathias Payer (Purdue University) CS-527 Software Security 2017 38 / 38

	Eternal War in Memory
	Memory safety
	Spatial memory safety
	Temporal memory safety
	Towards a definition

	Enforcing memory safety
	SoftBound
	CETS
	Summary and conclusion

