
CS590-SWS/527 Software Security
Practical Defenses

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Kyriakos Ispoglou

https://nebelwelt.net/teaching/16-527-SoftSec/

Spring 2016

https://nebelwelt.net/teaching/16-527-SoftSec/

Fixing and Patching Vulnerabilities

Table of Contents

1 Fixing and Patching Vulnerabilities

2 Control-Flow Integrity

3 Code-Pointer Integrity

4 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 2 / 26

Fixing and Patching Vulnerabilities

Bug Fixing as an Insider

Assume you work for $BIGCOMPANY and you have found a severe
security bug in the code of one of the products. What do you do?

You report the vulnerability to the security team.

Together with the security team you will coordinate the
development of the fix for the vulnerability and devise how to
update the software.

You then devise a plan to update the software that is used in the
wild.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 3 / 26

Fixing and Patching Vulnerabilities

Bug Fixing as an Outsider

Assume you do not work for the company and you have found a
security bug. What do you do?

You have several options: report it to the company (responsible
disclosure), you announce it openly (full disclosure), you
stockpile the vulnerability, you sell it to the highest bidder, or
you exploit the vulnerability yourself. Depending on the country
you life in, the last two options are likely illegal.

Let’s assume you take the high road (responsible disclosure).

You report the vulnerability to the security team and establish a
time window when you will publicly release the vulnerability.
(Note that for many of the bug bounty programs you are not
allowed to publicly release the vulnerability.)

...

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 4 / 26

Fixing and Patching Vulnerabilities

Bug Fixing as an Outsider

Assume you do not work for the company and you have found a
security bug. What do you do?

.. you will not hear back for days, weeks, or months as the
security team coordinates the internal bug fixing process.

At one point you will hear back on how they handled “your”
vulnerability.

Orthogonally you can use a mediator like MITRE who will also
assign a CVE number (Common Vulnerability and Exposures) to
your vulnerability.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 5 / 26

Fixing and Patching Vulnerabilities

The Update and Patching Process

How do you distribute updates to your costumers?

You may send out disks/CDs for new versions.

You can provide the new releases on a website (e.g., most open
source software and Linux distributions use web sites)

Many software products nowadays have an automatic update
service and the software (or at least the automatic updater)
periodically polls for new updates.

New software patches can be delivered on regular intervals
(“patch Tuesday”), out-of order when an emergency update is
deemed to be required, or whenever a patch is available.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 6 / 26

Fixing and Patching Vulnerabilities

Software Updating

Software updating is an interesting and active research area that
addresses several problems.

How can you deliver patches more efficiently: binary delta
patching (e.g., Google Chrome) and rolling releases

How can you distribute the load for software updates among
millions of users.

How can you update a running software component without
needing to restart (otherwise, when do you update?).

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 7 / 26

Control-Flow Integrity

Table of Contents

1 Fixing and Patching Vulnerabilities

2 Control-Flow Integrity

3 Code-Pointer Integrity

4 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 8 / 26

Control-Flow Integrity

Control-Flow Integrity (CFI)

CFI Definition

CFI is a defense mechanism that protects applications against
control-flow hijack attacks. A successful CFI mechanism ensures that
the control-flow of the application never leaves the predetermined,
valid control-flow that is defined at the source code/application level.
This means that an attacker cannot redirect control-flow to alternate
or new locations.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 9 / 26

Control-Flow Integrity

Sketching an implementation

Each CFI implementation consists of a (static) analysis phase
that constructs a control flow graph and a dynamic enforcement
phase that restricts control-flow transfers.

The static analysis can be implemented through a simple static
points-to analysis that, for each indirect control flow transfer
location in the source code determines the set of targets it may
point to.

The policy enforcement can be implemented through either a set
check or through ID classes.

(Note that ID classes will increase the imprecision due to
coalescing to single ID classes.)

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 10 / 26

Control-Flow Integrity

Sketching an implementation

The original CFI proposal used a simple static analysis and ID
classes while later proposals mostly shifted towards set checks.

An interesting diversion was coarse-grained CFI that reduced the
amount of target classes to two or three (for function returns,
function calls, and indirect jumps).

Challenges for CFI implementations are modularity and source
compatibility.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 11 / 26

Control-Flow Integrity

Limitation of CFI

CFI allows the underlying bug to fire and the memory corruption
can be controlled by the attacker. The defense only detects the
deviation after the fact, i.e., when a corrupted pointer is used in
the program.

What kind of attacks are possible?

An attacker is free to modify the outcome of any JCC

An attacker can choose any of the allowed targets at each ICF
location

For return instructions: one set of return targets is too broad
and even localized return sets are too broad for most cases.

For indirect calls and jumps, attacks like COOP (Counterfeit
Object Oriented Programming) have shown that full functions
can be used as gadgets.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 12 / 26

Code-Pointer Integrity

Table of Contents

1 Fixing and Patching Vulnerabilities

2 Control-Flow Integrity

3 Code-Pointer Integrity

4 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 13 / 26

Code-Pointer Integrity

Setting

Memory corruption is abundant.

Strong defenses, building on memory safety, have not been
adopted.

Even weaker defenses like strong memory allocators have largely
been ignored.

Only defenses that have very low overhead are adapted.

What if we can have memory safety but only where it matters?

Assume we want to protect applications against control-flow
hijacking attacks. What data must be protected?

Code Pointer Integrity (CPI) ensures that all code pointers are
protected at all times.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 14 / 26

Code-Pointer Integrity

Attacker model

Attacker can read data, code (includes stack, bss, data, text,
heap).

Attacker can write data.

Attacker cannot modify code.

Attacker cannot influence the loading process.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 15 / 26

Code-Pointer Integrity

Quiz: what is a control-flow hijack attack?

What is the difference between a data-only attack and a
control-flow hijack attack?

For control-flow hijack attacks, the attacker captures and
redirects control-flow to an attacker-controlled location (that
would otherwise not be reached by a benign program execution).

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 16 / 26

Code-Pointer Integrity

Existing memory safety solutions

SoftBound+CETS 116% overhead, only partial support for
SPEC CPU2006

CCured: 56% overhead

AddressSanitizer: 73% overhead, only partial memory safety
(probabilistic spatial).

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 17 / 26

Code-Pointer Integrity

How to enforce memory safety?

1 char ∗ buf = ma l l o c (10) ;
2 b u f l o = p ; bu f up = p+10;
3 . . .
4 char ∗q = buf + i npu t ;
5 q l o = b u f l o ; q up = buf up ;
6 i f (q < q l o | | q >= q up)
7 abo r t () ;
8 ∗q = inpu t2 ;
9 . . .

10 (∗ f u n c p t r) () ;

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 18 / 26

Code-Pointer Integrity

A paradigm shift: protect select data

Protecting select data

Instead of protecting everything a little protect a little completely.
Strong protection for a select subset of data. Attacker may modify
any unprotected data.
By only protecting code pointers, CPI reduces the overhead of
memory safety from 116% to 8.4% while still deterministically
protecting applications against control-flow hijack attacks.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 19 / 26

Code-Pointer Integrity

What data must be protected?

Sensitive pointers are code pointers and pointers used to access
sensitive pointers.

We can over-approximate and identify sensitive pointer through
their types: all types of sensitive pointers are sensitive.

Over approximation only affects performance.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 20 / 26

Code-Pointer Integrity

Memory layout

The regular memory view is split into two views: control plane
and data plane.

The control plane is a view that only contains code pointers
(and transitively all related pointers).

The data plane contains only data, code pointers are left empty
(void/unused data).

As a software security specialist, what do you ask?

The two planes must be separated and data in the control plane
must be protected from pointer dereferences in the data plane.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 21 / 26

Code-Pointer Integrity

Safe stack

So far we covered the heap, but what about the stack?

Run a compiler analysis on each stack frame, push any unsafe
variable to an unsafe stack in the data plane, keep all safe
variables in the control plane.

How can we determine if a variable is safe?

Anything that escapes the stack frame is unsafe. Any unsafe
pointer arithmetic makes the variable unsafe.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 22 / 26

Code-Pointer Integrity

Implementation

Existing implementation builds on LLVM, protects FreeBSD and
a large set of applications.

Low overhead in practice: 8.4% for SPEC CPU2006 and 1.9%
for a weaker policy.

Key insight: memory safety for code pointers only.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 23 / 26

Summary and conclusion

Table of Contents

1 Fixing and Patching Vulnerabilities

2 Control-Flow Integrity

3 Code-Pointer Integrity

4 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 24 / 26

Summary and conclusion

Summary

Control-Flow Integrity (CFI) allows the memory safety error to
happen but restricts the attacker to choose targets for indirect
control flow transfers from a well-defined set.

CFI is a practical defense that can be implemented at very low
overhead.

CPI is a stronger defense that separates code pointers and
sensitive types from the attacker. An attacker can no longer
corrupt a code pointer.

SafeStack is now available in the LLVM sanitizer framework.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 25 / 26

Summary and conclusion

Questions?

?

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 26 / 26

	Fixing and Patching Vulnerabilities
	Control-Flow Integrity
	Code-Pointer Integrity
	Summary and conclusion

