
CS590-SWS/527 Software Security
Defense Mechanisms

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Kyriakos Ispoglou

https://nebelwelt.net/teaching/16-527-SoftSec/

Spring 2016

https://nebelwelt.net/teaching/16-527-SoftSec/

A model for Control-Flow Hijack attacks

Memory safety

Integrity

Location

Usage

Attack

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 2 / 41

Widely-adopted defense mechanisms

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 3 / 41

Widely-adopted defense mechanisms

Widely-adopted defense mechanisms

Hundreds of defense mechanisms were proposed.

Only few defense mechanisms have been adapted in practice.

What increases the chances of adaption?

Mitigation of the most imminent problem.

(Very) low performance overhead.

Fits into the development cycle.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 4 / 41

Widely-adopted defense mechanisms

How not to get your defense mechanism adapted

Require source code changes.

Have complicated dependencies.

Result in huge slowdown or have particularly bad worst-case
outliers.

Patent your defense mechanism and try to sell it.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 5 / 41

Data Execution Prevention

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 6 / 41

Data Execution Prevention

Data Execution Prevention (DEP)

Historically, the x86 ISA did not distinguish between code and
data.

Any data in the process could be interpreted as code.

The attack succeeds if an attacker can redirect the control flow
to attacker controlled data.

Assumption: if an attacker cannot inject code (as data), then a
code execution attack is not possible.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 7 / 41

Data Execution Prevention

DEP

Intel and AMD extended page tables and introduced the NX-bit
(No eXecute bit).

Thanks to the joy of marketing, Intel calls this bit XD (eXecute
Disable), AMD calls it Enhanced Virus Protection, and ARM
calls it XN (eXecute Never).

This is an additional bit for every mapped virtual page. If the bit
is set, then data on that page cannot be interpreted as code and
the processor will trap if control flow reaches that page.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 8 / 41

Data Execution Prevention

“Old-school” Page Tables

08162431 15 723

...
...

...
...

...
...

4
K

 m
e
m

o
ry

 p
a
g

e

10

32*

1210

Linear address:

page directory

32 bit PD
entry

CR3

*) 32 bits aligned to a 4-KByte boundary

page table

32 bit PT
entry

(c) RokerHRO, Wikimedia.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 9 / 41

Data Execution Prevention

“Old-school” Page Table Entry

Bit Position Content

0 (P) Present; must be 1 to map a 4-KB page
1 (R/W) Read/write; if 0, writes may not be allowed
2 (U/S) User/supervisor; if 0 access with CPL=3 not allowed
3 (PWT) Page-level write-through
4 (PCD) Page-level cache disable
5 (A) Accessed
6 (D) Dirty
7 (PAT) Page Attribute Table (PAT) indicator or reserved (0)
8 (G) Global
11:9 Ignored
31:12 Physical address of the 4-KB page

According to Intel 64 and IA-32 manual 3A, Table 4-6.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 10 / 41

Data Execution Prevention

Physical Address Extension (PAE) Page Tables

08162431 15 723

...
......

...

...
...

page-directory-
pointer table

Dir.Pointer
entry

Dir.Pointer
entry

Dir.Pointer
entry

Dir.Pointer
entry

page directory

64 bit PD
entry

Linear address:

page table

64 bit PT
entry

32*

CR3

*) 32 bits aligned to a 32-Byte boundary

4
K

 m
e
m

o
ry

 p
a
g

e

9 9 12

(c) RokerHRO, Wikimedia.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 11 / 41

Data Execution Prevention

PAE Page Table Entry

Bit Position Content

0 (P) Present; must be 1 to map a 4-KB page
1 (R/W) Read/write; if 0, writes may not be allowed
2 (U/S) User/supervisor; if 0 access with CPL=3 not allowed
3 (PWT) Page-level write-through
4 (PCD) Page-level cache disable
5 (A) Accessed
6 (D) Dirty
7 (PAT) Page Attribute Table (PAT) indicator or reserved (0)
8 (G) Global
11:9 Ignored
(M-1):12 Physical address of the 4-KB page
62:M Reserved (0)
63 (XD) If IA32 EFER.NXE = 1, execute-disable if 1

According to Intel 64 and IA-32 manual 3A, Table 4-11.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 12 / 41

Data Execution Prevention

x86-64 Page Tables

(c) Intel 64 and IA-32 manual 3A, Table 4-8.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 13 / 41

Data Execution Prevention

x86-64 Page Table Entry

Bit Position Content

0 (P) Present; must be 1 to map a 4-KB page
1 (R/W) Read/write; if 0, writes may not be allowed
2 (U/S) User/supervisor; if 0 access with CPL=3 not allowed
3 (PWT) Page-level write-through
4 (PCD) Page-level cache disable
5 (A) Accessed
6 (D) Dirty
7 (PAT) Page Attribute Table (PAT) indicator or reserved (0)
8 (G) Global
11:9 Ignored
(M-1):12 Physical address of the 4-KB page
51:M Reserved (0)
62:52 Ignored
63 (XD) If IA32 EFER.NXE = 1, execute-disable if 1

According to Intel 64 and IA-32 manual 3A, Table 4-19.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 14 / 41

Data Execution Prevention

Alternate approaches

Not all hardware supports PAE.

ExecShield by Ingo Molnar used code segment restrictions to
limit code execution on x86 for Linux.

OpenBSD’s WˆX follows the same idea.

PaX, also for Linux, is ExecShield on steroids with significant
remapping of code region (and may break applications).

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 15 / 41

Address Space Randomization

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 16 / 41

Address Space Randomization

Address Space Randomization (ASR)

Successful control-flow hijack attacks depend on the attacker
overwriting a code pointer with a known alternate target.

ASR changes (randomizes) the process memory layout.

If the attacker does not know where a piece of code (or data) is,
then it cannot be reused in an attack.

Attacker must first “learn” or recover the address layout.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 17 / 41

Address Space Randomization

Challenges for ASR

Information leakage (e.g., through side channels)

Brute forcing a secret value

Rerandomization (for “long” running processes)

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 18 / 41

Address Space Randomization

ASLR effectiveness

ASLR effectiveness

The security improvement of ASLR depends on (i) the entropy
available for each randomized location, (ii) the completeness of
randomization (i.e., are all objects randomized), and (iii) the lack of
any information leaks.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 19 / 41

Address Space Randomization

Candidates for randomization

Trade-off between overhead, complexity, and security benefit of
randomization.

Randomize start of heap

Randomize start of stack

Randomize start of code (for executable – PIE and for each
library – PIC)

Randomize mmap allocated regions

Randomize individual allocations (malloc)

Randomize the code itself, e.g., gap between functions, order of
functions, basic blocks

Randomize members of structs, e.g., padding, order

Related concept: software diversity

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 20 / 41

Address Space Randomization

ASLR entropy

Assuming all objects are randomized, entropy of each section is
key to security.

Attacker will follow path of least resistance, i.e., target the
object with the lowest entropy.

Early ASLR implementations had low entropy on the stack and
no entropy on x86 for the main executable.

Linux (through Exec Shield) uses 19 bits of entropy for the stack
(on 16 byte period) and 8 bits of mmap entropy (on 4096 byte
period).

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 21 / 41

Stack Canaries

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 22 / 41

Stack Canaries

Stack canaries

Most attacks in the early 2000s relied on a stack-based buffer
overflow to inject code.

Memory safety would mitigate this problem but adding full
safety checks is not feasible due to high performance overhead.

Instead of checking each dereference to detect arbitrary buffer
overflows we can add a check that checks the integrity of a
certain variable.

Assume we only want to prevent control-flow hijack attacks.

We therefore only need to protect the integrity of the return
instruction pointer.

Buffer overflows only happen if pointer arithmetic is involved.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 23 / 41

Stack Canaries

Stack canaries

Place a canary after a potentially vulnerable buffer and before
the return instruction pointer.

Check the integrity of the canary before the function returns.

The compiler may place all buffers at the end of the stack frame
and the canary just before the first buffer. This way, all
non-buffer local variables are protected as well.

Disadvantage: the stack canary only protects against continuous
overwrites iff the attacker does not know the canary.

Iff the attacker knows the secret or the attacker uses a direct
overwrite then the defense is not effective.

An alternative is to encrypt the return instruction pointer by
xoring it with a secret.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 24 / 41

Stack Canaries

Stack overflow – no stack protector

1 c h a r u n s a f e (c h a r ∗ v u l n) {
2 c h a r f o o [1 2] ;
3 s t r c p y (foo , v u l n) ;
4 r e t u r n f o o [1] ;
5 }
6

7 i n t main (i n t ac ,
8 c h a r ∗ av []) {
9 u n s a f e (a r g v [0]) ;

10 r e t u r n 0 ;
11 }

1 push %rbp
2 mov %rsp ,% rbp
3 sub $0x20 ,% r s p
4 mov %r d i ,−0 x18(%rbp)
5 mov −0x18(%rbp) ,% r d x
6 l e a −0x10(%rbp) ,% r a x
7 mov %rdx ,% r s i
8 mov %rax ,% r d i
9 c a l l q 400410 <s t r c p y @ p l t >

10 movzbl −0 x f (%rbp) ,% eax
11 l e a v e q
12 r e t q

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 25 / 41

Stack Canaries

Stack overflow – with stack protector

1 push %rbp ; mov %rsp ,% rbp
2 sub $0x20 ,% r s p
3 mov %r d i ,−0 x18(%rbp)
4

5

6

7 mov −0x18(%rbp) ,% r d x
8 l e a −0x10(%rbp) ,% r a x
9 mov %rdx ,% r s i

10 mov %rax ,% r d i
11 c a l l q <s t r c p y @ p l t >
12 movzbl −0 x f (%rbp) ,% eax
13

14

15

16

17 l e a v e q ; r e t q

1 push %rbp ; mov %rsp ,% rbp
2 sub $0x30 ,% r s p
3 mov %r d i ,−0 x28(%rbp)
4 mov %f s : 0 x28 ,% r a x
5 mov %rax ,−0 x8(%rbp)
6 x o r %eax ,% eax
7 mov −0x28(%rbp) ,% r d x
8 l e a −0x20(%rbp) ,% r a x
9 mov %rdx ,% r s i

10 mov %rax ,% r d i
11 c a l l q <s t r c p y @ p l t >
12 movzbl −0x 1 f (%rbp) ,% eax
13 mov −0x8(%rbp) ,% r c x
14 x o r %f s : 0 x28 ,% r c x
15 j e <u n s a f e+0x46>
16 c a l l q < s t a c k c h k f a i l @ p l t >
17 l e a v e q ; r e t q

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 26 / 41

Safe Exception Handling

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 27 / 41

Safe Exception Handling

Exceptions in C++

1 d o u b l e d i v (d o u b l e a , d o u b l e b) {
2 i f (b == 0)
3 throw ” D i v i s i o n by z e r o ! ” ;
4 r e t u r n (a/b) ;
5 }
6 . . .
7 t r y {
8 r e s u l t = d i v (foo , bar) ;
9 } c a t c h (c o n s t c h a r ∗ msg) {

10 . . .
11 }

Exceptions allow
handling of special
conditions.

Exception-safe code
safely recovers from
thrown conditions.

A “safe” alternative to
ugly goto statements.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 28 / 41

Safe Exception Handling

Exception implementation

Exception handling requires support from the code generator
(compiler) and the runtime system (libc or libc++).

There are two fundamental approaches: (a) inline exception
information in stack frame or (b) generate exception tables that
are used when an exception is thrown.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 29 / 41

Safe Exception Handling

Inline exception handling

The compiler generates code that registers exceptions whenever
a function is entered.

Individual exception frames are linked across stack frames.

When an exception is thrown, the runtime system follows the
chain of exception frames to find the corresponding handler to a
specific exception.

This approach is compact but results in some overhead for each
function call (as metadata about exceptions has to be allocated).

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 30 / 41

Safe Exception Handling

Exception tables

Code generation also emits tables that relate ranges of
instruction pointers to program state with respect to exception
handling.

Throwing an exception is tranlsated into a range query in these
table that determines the correct handler for the exception.

These tables are encoded very efficiently. This encoding may
lead to security problems.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 31 / 41

Safe Exception Handling

Windows exceptions

Microsoft Windows uses a combination of tables and inlined
exception handling. Each stack frame records (i) unwinding
information, (ii) the set of destructors that need to run, and (iii) the
exception handlers if a specific exception is thrown.

When entering a function, a structured exception handling (SEH)
record is generated, pointing to a table with address ranges for
try-catch blocks and destructors. Handlers are kept in a linked list:

1 t y p e d e f s t r u c t EXCEPTION REGISTRATION RECORD {
2 s t r u c t EXCEPTION REGISTRATION RECORD ∗Next ;
3 PEXCEPTION ROUTINE Hand l e r ;
4 } EXCEPTION REGISTRATION RECORD ,
5 ∗PEXCEPTION REGISTRATION RECORD ;

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 32 / 41

Safe Exception Handling

Attacking Windows exception handling

An attacker may overwrite the first SEH record on the stack and
point the handler to the first gadget.

Microsoft developed two defenses: SAFESEH and SEHOP.

SafeSEH forces the compiler to generate a list of allowed
targets. If a record points to an unknown target it is rejected.

SEHOP initializes the chain of registration records with a
sentinel. If the sentinel is not present, the handler is not
executed.

How strong are these defenses? Discuss.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 33 / 41

Safe Exception Handling

GCC exception handling

GCC encodes all exception information in external tables.

When an exception is thrown, the tables are consulted to learn
which destructors need to run and what handlers are registered
for the current IP location.

This results in less overhead in the non-exception case (as
additional code is only executed “on-demand” but otherwise
jumped over.

The information tables can become large and heavyweight
“compression” is used, namely an interpreter that allows
on-the-fly construction of the necessary data.

This interpreter can be (ab-)used for Turing-complete
execution1.

1James Oakley and Sergey Bratus, Exploiting the Hard-Working DWARF,
WOOT’11.
Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 34 / 41

Fortify source

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 35 / 41

Fortify source

Format strings

Format strings allow to generate formatted output.

Format strings also allow to write to memory through %n.

Format strings allow to jump over arguments and access stack
slots out-of-bounds through, e.g., %2$hn.

Format strings can be bad. Don’t let the user control the first
argument to printf.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 36 / 41

Fortify source

Format string mitigations

Deprecate use of %n (Windows).

Add extra checks for all format strings (Linux):
1 Check for buffer overflows if possible.
2 Check if the first argument is in a read-only area.
3 Check if all arguments are used.

Linux checks the following functions:
mem{cpy,pcpy,move,set}, st{r,p,nc}py, str{,n}cat,
{,v}s{,n}printf.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 37 / 41

Fortify source

Fortify source (buffers)

The GCC/GLIBC patch distinguishes between four cases:

1 Known correct: do not check.

2 Not known if correct, but checkable (i.e., compiler knows length
of target): do check.

3 Known incorrect: compiler warning, do check.

4 Not known if correct, not checkable: no check, overflows may
remain undetected.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 38 / 41

Summary and conclusion

Table of Contents

1 Widely-adopted defense mechanisms

2 Data Execution Prevention

3 Address Space Randomization

4 Stack Canaries

5 Safe Exception Handling

6 Fortify source

7 Summary and conclusion

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 39 / 41

Summary and conclusion

Summary

Several defense mechanisms have been adopted in practice.
Know their strengths and weaknesses.

Data Execution Prevenention stops code injection attacks, but
does not stop code reuse attacks.

Address Space Randomization is probabilistic, shuffles memory
space, prone to information leaks.

Stack Canaries is probabilistic, does not protect against direct
overwrites, prone to information leaks.

Safe Exception Handling protects exception handlers. Reuse
remains possible.

Fortify source protects static buffers and format strings.

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 40 / 41

Summary and conclusion

Questions?

?

Mathias Payer (Purdue University) CS590-SWS/527 Software Security 2016 41 / 41

	Widely-adopted defense mechanisms
	Data Execution Prevention
	Address Space Randomization
	Stack Canaries
	Safe Exception Handling
	Fortify source
	Summary and conclusion

