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Why Program Representations?

Original representations: source code, binary, test cases.

Hard to analyze and bad fit for automatic reasoning.

Software is translated (lossy or lossless) into certain
representations to help certain analyses.
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Control-Flow Graph

Control-Flow Graph (CFG)

The CFG is an abstract representation of a program that
captures all possible flows through the program.

A CFG is a graph that consists of basic blocks (nodes) and
possible control-flow paths (edges).

A basic block (BB) is a linear sequence of program statements
with a single entry and exit. Control-flow cannot exit or halt at
any point inside the basic block except at its exit point. Entry
and exit nodes coincide if the basic block has only one
statement.
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Control-Flow Graph

Control-Flow Graph: Definition

Control-Flow Graph

A control flow graph (or flow graph) G is defined as a finite set N of
nodes and a finite set E of edges. An edge (i, j) in E connects two
nodes ni and nj in N. We often write G = (N ,E ) to denote a flow
graph G with nodes given by N and edges by E.
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Control-Flow Graph

Control-Flow Graph

In a CFG, each BB becomes a node and edges are used to
indicate the flow of control between blocks.

And edge (i , j) connecting blocks bi and bj implies that control
may flow from block bi to block bj

1.

The graph, by convention, also has a start node and an end
node (also in N). The start node has no incoming edge while the
end node has no outgoing edge.

1Note that the graph is directed.
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Control-Flow Graph

CFG by Example
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Control-Flow Graph

Path

Path

Consider a flow graph G = (N ,E ). A sequence of k edges k > 0, (e1,
e2, ..., ek), denotes a path through the flow graph if the following
sequence condition holds:
Given that np, nq, nr , ns are nodes belonging to N, and 0 < i < k, if
ei := (np, nq) and ei+1 := (nr , ns) then nq ≡ nr .

A complete path is a path from start to end. A subpath is a
subsequence of a complete path.
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Control-Flow Graph

Feasible Paths

A path p through a flow graph for program P is considered feasible if
there exists at least one test case which when input to P produces
path p.

1 i n t func ( i n t n ) {
2 i n t i , r e t = n ;
3 f o r ( i = n−1; i >=1; i−−) {
4 r e t = r e t ∗ i ;
5 }
6 }

Start

1 2

End

p1 = (Start, 1, 2, 1,End)
p2 = (Start, 1,End)
perr = (Start, 1, 2,End)
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Control-Flow Graph

Number of Paths

A program may allow many distinct paths, depending on the
conditions in the program. A program without conditions
contains exactly one path from Start to End.

Each condition in the program increments the number of paths
by at least 1.

Conditions can have a multiplicative effect on the number of
paths.
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Control-Flow Graph

Simplified CFG

Each statement is represented by a node (and each basic block
therefore contains only one statement which is the entry and exit
statement).

A simplified CFG is easy to read and implement but not efficient.

A naive CFG construction algorithm starts with a simplified CFG
and merges nodes ni and ni+1 iff node ni has one outgoing edge
and node ni+1 has one incoming edge and edge e := (ni , ni+1).
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Control-Flow Graph

Dominator

Dominators

X dominates Y, iff all possible paths from Start to Y pass through X.
X strictly dominates Y, iff X dominates Y and X ! = Y .
X immediately dominates Y, iff X dominates Y and X is the last
dominator before Y on a path from Start to Y.
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Control-Flow Graph

Dominators: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e ( i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f ( ”Sum : %d” , sum) ;

1, 2

3 4, 5

7

sdom(7) = {1, 2; 3}
idom(7) = {3}
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Control-Flow Graph

Post-dominator

Post Dominators

X post-dominates Y, iff all possible paths from Y to End pass
through X.
X strictly post-dominates Y, iff X post-dominates Y and
X ! = Y .
X immediately post-dominates Y, iff X post-dominates Y and X
is the first post-dominator after Y on a path from Y to End.
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Control-Flow Graph

Post-dominators: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e ( i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f ( ”Sum : %d” , sum) ;

1, 2

3 4, 5

7

spdom(4, 5) = {3; 7}
ipdom(4, 5) = {3}
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Control-Flow Graph

Backward Edges

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e ( i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f ( ”Sum : %d” , sum) ;

1, 2

3 4, 5

7

A back edge is an edge whose head dominates its tail2.

2Back edges often identify loops.
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Cyclomatic Complexity
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Cyclomatic Complexity

Cyclomatic Complexity

Cyclomatic Complexity

Cyclomatic complexity is a software metric that measures the
quantitative complexity of a program by measuring the number of
linearly independent paths through a program’s source code. The
complexity M is defined as M = E − N + 2P, whereas E is the
number of edges, N the number of nodes, and P the number of
connected components (i.e., functions).

Rule of thumb:
if the complexity M of a function is larger than 10-15 then the
function should be split into multiple components.
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Cyclomatic Complexity

Cyclomatic Complexity: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e ( i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f ( ”Sum : %d” , sum) ;

1, 2

3 4, 5

7

E = 4, N = 4, P = 1.
M = E - N + 2P = 2.
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Program Dependence Graph
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Program Dependence Graph

Program Dependence Graph (PDG)

Nodes are formed by single statements, not basic blocks.

Data-Dependence Graph used to track data dependencies.

Control-Dependence Graph used to track control dependencies.

Widely used program representation!
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Program Dependence Graph

Data Dependence

Data Dependence

X is data dependent on Y, iff (i) there is a variable v defined at Y and
used at X and (ii) there exists a path of nonzero length from Y to X
along which v is not redefined.
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Program Dependence Graph

Data Dependence: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e ( i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f ( ”Sum : %d” , sum) ;

1, 2

3 4, 5

7

DataDep(sum, 7) = {5, 1}
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Program Dependence Graph

Difficulties with Data Dependence

Statically computing data dependencies is hard due to aliasing: a
variable can refer to multiple memory locations/objects.

1 i n t x , y , z , ∗p ;
2 x = . . . ;
3 y = . . . ;
4 p = &x ;
5 p = p + z ;
6 . . . = ∗p ;
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Program Dependence Graph

Control Dependence

Control Dependence

Y is control dependent on X, iff X directly determines whether Y
executes: statements inside one branch of a predicate are usually
control dependent on the predicate.

there exists a path from X to Y so that every node in the path
other than X and Y is post-dominated by Y.
(No such paths for nodes in a path between X and Y).

Y does not strictly post-dominate X.
(There is a path from X to End that does not pass Y or X==Y).

Reading assignment:
http://dl.acm.org/citation.cfm?id=24041
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Program Dependence Graph

Control Dependence: Example

X

Y...

all nodes post-dominated by Y

X not post-dominated by Y
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Program Dependence Graph

Using the PDG

A program dependence graph combines the control dependence graph
and the data dependence graph of the program.

In debugging: what statement possibly induced the fault?

In security: possible redefinitions?
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Super Control-Flow Graph
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Super Control-Flow Graph

Super Control-Flow Graph (SCFG)

Adds inter-procedural aspects to intra-procedural CFG.

Connect call sites to entry point of callee.

Connect return statements back to call site.
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Call Graph
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Call Graph

Call Graph (CG)

Each node represents a function;

each edge represents a function invocation.

The CG is useful when reasoning across function boundaries (e.g., for
profiling or debugging).
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Other Representations and Tools
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Other Representations and Tools

Other Representations

Points-to Graph

Static Single Assignment (SSA)

Mathias Payer (Purdue University) CS510 Software Engineering 2015 33 / 35



Other Representations and Tools

Analysis Tools

C/C++: LLVM, CIL, CBMC

Java: SOOT, Wala

Binary: Valgrind, Pin, Libdetox
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Other Representations and Tools

Questions?

?
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