
CS510 Software Engineering
Program Representations

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Scott A. Carr
Slides inspired by Xiangyu Zhang

http://nebelwelt.net/teaching/15-CS510-SE

Spring 2015

http://nebelwelt.net/teaching/15-CS510-SE

Why Program Representations?

Original representations: source code, binary, test cases.

Hard to analyze and bad fit for automatic reasoning.

Software is translated (lossy or lossless) into certain
representations to help certain analyses.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 2 / 35

Control-Flow Graph

Table of Contents

1 Control-Flow Graph

2 Cyclomatic Complexity

3 Program Dependence Graph

4 Super Control-Flow Graph

5 Call Graph

6 Other Representations and Tools

Mathias Payer (Purdue University) CS510 Software Engineering 2015 3 / 35

Control-Flow Graph

Control-Flow Graph (CFG)

The CFG is an abstract representation of a program that
captures all possible flows through the program.

A CFG is a graph that consists of basic blocks (nodes) and
possible control-flow paths (edges).

A basic block (BB) is a linear sequence of program statements
with a single entry and exit. Control-flow cannot exit or halt at
any point inside the basic block except at its exit point. Entry
and exit nodes coincide if the basic block has only one
statement.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 4 / 35

Control-Flow Graph

Control-Flow Graph: Definition

Control-Flow Graph

A control flow graph (or flow graph) G is defined as a finite set N of
nodes and a finite set E of edges. An edge (i, j) in E connects two
nodes ni and nj in N. We often write G = (N ,E) to denote a flow
graph G with nodes given by N and edges by E.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 5 / 35

Control-Flow Graph

Control-Flow Graph

In a CFG, each BB becomes a node and edges are used to
indicate the flow of control between blocks.

And edge (i , j) connecting blocks bi and bj implies that control
may flow from block bi to block bj

1.

The graph, by convention, also has a start node and an end
node (also in N). The start node has no incoming edge while the
end node has no outgoing edge.

1Note that the graph is directed.
Mathias Payer (Purdue University) CS510 Software Engineering 2015 6 / 35

Control-Flow Graph

CFG by Example

1

2 3

4

if-else condition

1

2

3

for/while loop

1

2

3

do-while loop

Mathias Payer (Purdue University) CS510 Software Engineering 2015 7 / 35

Control-Flow Graph

Path

Path

Consider a flow graph G = (N ,E). A sequence of k edges k > 0, (e1,
e2, ..., ek), denotes a path through the flow graph if the following
sequence condition holds:
Given that np, nq, nr , ns are nodes belonging to N, and 0 < i < k, if
ei := (np, nq) and ei+1 := (nr , ns) then nq ≡ nr .

A complete path is a path from start to end. A subpath is a
subsequence of a complete path.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 8 / 35

Control-Flow Graph

Feasible Paths

A path p through a flow graph for program P is considered feasible if
there exists at least one test case which when input to P produces
path p.

1 i n t func (i n t n) {
2 i n t i , r e t = n ;
3 f o r (i = n−1; i >=1; i−−) {
4 r e t = r e t ∗ i ;
5 }
6 }

Start

1 2

End

p1 = (Start, 1, 2, 1,End)
p2 = (Start, 1,End)
perr = (Start, 1, 2,End)

Mathias Payer (Purdue University) CS510 Software Engineering 2015 9 / 35

Control-Flow Graph

Number of Paths

A program may allow many distinct paths, depending on the
conditions in the program. A program without conditions
contains exactly one path from Start to End.

Each condition in the program increments the number of paths
by at least 1.

Conditions can have a multiplicative effect on the number of
paths.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 10 / 35

Control-Flow Graph

Simplified CFG

Each statement is represented by a node (and each basic block
therefore contains only one statement which is the entry and exit
statement).

A simplified CFG is easy to read and implement but not efficient.

A naive CFG construction algorithm starts with a simplified CFG
and merges nodes ni and ni+1 iff node ni has one outgoing edge
and node ni+1 has one incoming edge and edge e := (ni , ni+1).

Mathias Payer (Purdue University) CS510 Software Engineering 2015 11 / 35

Control-Flow Graph

Dominator

Dominators

X dominates Y, iff all possible paths from Start to Y pass through X.
X strictly dominates Y, iff X dominates Y and X ! = Y .
X immediately dominates Y, iff X dominates Y and X is the last
dominator before Y on a path from Start to Y.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 12 / 35

Control-Flow Graph

Dominators: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e (i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f (”Sum : %d” , sum) ;

1, 2

3 4, 5

7

sdom(7) = {1, 2; 3}
idom(7) = {3}

Mathias Payer (Purdue University) CS510 Software Engineering 2015 13 / 35

Control-Flow Graph

Post-dominator

Post Dominators

X post-dominates Y, iff all possible paths from Y to End pass
through X.
X strictly post-dominates Y, iff X post-dominates Y and
X ! = Y .
X immediately post-dominates Y, iff X post-dominates Y and X
is the first post-dominator after Y on a path from Y to End.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 14 / 35

Control-Flow Graph

Post-dominators: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e (i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f (”Sum : %d” , sum) ;

1, 2

3 4, 5

7

spdom(4, 5) = {3; 7}
ipdom(4, 5) = {3}

Mathias Payer (Purdue University) CS510 Software Engineering 2015 15 / 35

Control-Flow Graph

Backward Edges

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e (i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f (”Sum : %d” , sum) ;

1, 2

3 4, 5

7

A back edge is an edge whose head dominates its tail2.

2Back edges often identify loops.
Mathias Payer (Purdue University) CS510 Software Engineering 2015 16 / 35

Cyclomatic Complexity

Table of Contents

1 Control-Flow Graph

2 Cyclomatic Complexity

3 Program Dependence Graph

4 Super Control-Flow Graph

5 Call Graph

6 Other Representations and Tools

Mathias Payer (Purdue University) CS510 Software Engineering 2015 17 / 35

Cyclomatic Complexity

Cyclomatic Complexity

Cyclomatic Complexity

Cyclomatic complexity is a software metric that measures the
quantitative complexity of a program by measuring the number of
linearly independent paths through a program’s source code. The
complexity M is defined as M = E − N + 2P, whereas E is the
number of edges, N the number of nodes, and P the number of
connected components (i.e., functions).

Rule of thumb:
if the complexity M of a function is larger than 10-15 then the
function should be split into multiple components.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 18 / 35

Cyclomatic Complexity

Cyclomatic Complexity: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e (i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f (”Sum : %d” , sum) ;

1, 2

3 4, 5

7

E = 4, N = 4, P = 1.
M = E - N + 2P = 2.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 19 / 35

Program Dependence Graph

Table of Contents

1 Control-Flow Graph

2 Cyclomatic Complexity

3 Program Dependence Graph

4 Super Control-Flow Graph

5 Call Graph

6 Other Representations and Tools

Mathias Payer (Purdue University) CS510 Software Engineering 2015 20 / 35

Program Dependence Graph

Program Dependence Graph (PDG)

Nodes are formed by single statements, not basic blocks.

Data-Dependence Graph used to track data dependencies.

Control-Dependence Graph used to track control dependencies.

Widely used program representation!

Mathias Payer (Purdue University) CS510 Software Engineering 2015 21 / 35

Program Dependence Graph

Data Dependence

Data Dependence

X is data dependent on Y, iff (i) there is a variable v defined at Y and
used at X and (ii) there exists a path of nonzero length from Y to X
along which v is not redefined.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 22 / 35

Program Dependence Graph

Data Dependence: Example

1 i n t sum = 0 ;
2 i n t i = 1 ;
3 wh i l e (i<N) {
4 i += 1 ;
5 sum += i ;
6 }
7 p r i n t f (”Sum : %d” , sum) ;

1, 2

3 4, 5

7

DataDep(sum, 7) = {5, 1}

Mathias Payer (Purdue University) CS510 Software Engineering 2015 23 / 35

Program Dependence Graph

Difficulties with Data Dependence

Statically computing data dependencies is hard due to aliasing: a
variable can refer to multiple memory locations/objects.

1 i n t x , y , z , ∗p ;
2 x = . . . ;
3 y = . . . ;
4 p = &x ;
5 p = p + z ;
6 . . . = ∗p ;

Mathias Payer (Purdue University) CS510 Software Engineering 2015 24 / 35

Program Dependence Graph

Control Dependence

Control Dependence

Y is control dependent on X, iff X directly determines whether Y
executes: statements inside one branch of a predicate are usually
control dependent on the predicate.

there exists a path from X to Y so that every node in the path
other than X and Y is post-dominated by Y.
(No such paths for nodes in a path between X and Y).

Y does not strictly post-dominate X.
(There is a path from X to End that does not pass Y or X==Y).

Reading assignment:
http://dl.acm.org/citation.cfm?id=24041

Mathias Payer (Purdue University) CS510 Software Engineering 2015 25 / 35

http://dl.acm.org/citation.cfm?id=24041

Program Dependence Graph

Control Dependence: Example

X

Y...

all nodes post-dominated by Y

X not post-dominated by Y

Mathias Payer (Purdue University) CS510 Software Engineering 2015 26 / 35

Program Dependence Graph

Using the PDG

A program dependence graph combines the control dependence graph
and the data dependence graph of the program.

In debugging: what statement possibly induced the fault?

In security: possible redefinitions?

Mathias Payer (Purdue University) CS510 Software Engineering 2015 27 / 35

Super Control-Flow Graph

Table of Contents

1 Control-Flow Graph

2 Cyclomatic Complexity

3 Program Dependence Graph

4 Super Control-Flow Graph

5 Call Graph

6 Other Representations and Tools

Mathias Payer (Purdue University) CS510 Software Engineering 2015 28 / 35

Super Control-Flow Graph

Super Control-Flow Graph (SCFG)

Adds inter-procedural aspects to intra-procedural CFG.

Connect call sites to entry point of callee.

Connect return statements back to call site.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 29 / 35

Call Graph

Table of Contents

1 Control-Flow Graph

2 Cyclomatic Complexity

3 Program Dependence Graph

4 Super Control-Flow Graph

5 Call Graph

6 Other Representations and Tools

Mathias Payer (Purdue University) CS510 Software Engineering 2015 30 / 35

Call Graph

Call Graph (CG)

Each node represents a function;

each edge represents a function invocation.

The CG is useful when reasoning across function boundaries (e.g., for
profiling or debugging).

Mathias Payer (Purdue University) CS510 Software Engineering 2015 31 / 35

Other Representations and Tools

Table of Contents

1 Control-Flow Graph

2 Cyclomatic Complexity

3 Program Dependence Graph

4 Super Control-Flow Graph

5 Call Graph

6 Other Representations and Tools

Mathias Payer (Purdue University) CS510 Software Engineering 2015 32 / 35

Other Representations and Tools

Other Representations

Points-to Graph

Static Single Assignment (SSA)

Mathias Payer (Purdue University) CS510 Software Engineering 2015 33 / 35

Other Representations and Tools

Analysis Tools

C/C++: LLVM, CIL, CBMC

Java: SOOT, Wala

Binary: Valgrind, Pin, Libdetox

Mathias Payer (Purdue University) CS510 Software Engineering 2015 34 / 35

Other Representations and Tools

Questions?

?

Mathias Payer (Purdue University) CS510 Software Engineering 2015 35 / 35

	Control-Flow Graph
	Cyclomatic Complexity
	Program Dependence Graph
	Super Control-Flow Graph
	Call Graph
	Other Representations and Tools

