
CS510’15 Project #2 Call Graph Generation

using LLVM

(Due: Feb-26, 2015)

February 6, 2015

1 Goal

In this project, you will learn to write an LLVM pass that will generate a call
graph and find all the allocation sites in a C program. Your pass and analysis
will be interprocedural. Meaning it will operate across the whole program, not
just one function. Your pass and analysis will also be flow-sensitive. Meaning it
should not include paths that can be statically determined to be unreachable.

2 Call Graphs

A call graph is a directed graph that represents calling relationships between
functions in a program. Each node represents a function and each edge (f, g)
indicates that function f calls function g. Keep in mind that function calls can
be recursive.

3 Flow-sensitive Static Analysis

Your analysis will be flow-sensitive. Note that whether a given condition is true
or false is undecidable in the general case. When your analysis encounters a
statically undecidable condition it should consider all branches from that condi-
tion to be possible. However, when your analysis reaches a statically decidable
condition it should only take the appropriate path. Consider the two following
examples:

1

1 #include <stdio.h>

2 int main(int argc , char** argv) {

3 int x = 1;

4 if (x == 1) {

5 printf("hello\n");

6 } else {

7 printf("bye\n");

8 }

9 return 0;

10 }

Listing 1: Statically Decidable

1 #include <stdio.h>

2 int main(int argc , char** argv) {

3 if (argc == 1) {

4 printf("hello\n");

5 } else {

6 printf("bye\n");

7 }

8 return 0;

9 }

Listing 2: Statically Undecidable

In Listing 1 we can statically determine the program will always take the
”if” branch. In Listing 2 we cannot statically determine which branch will be
taken because we don’t statically know the value for argc. Keep in mind that
constants can be passed as parameters (requires a global analysis).

4 Function Pointers

Your call graph must include both direct function calls and calls through func-
tion pointers. In general, statically determining which function a function
pointer points to is undecidable. Keep in mind that function pointers can be
passed as parameters (requires a global analysis). For this project we limit our
test cases to three statically decidable cases:

2

4.1 Case 1: direct assignment

1 void foo() { }

2

3 int main(int argc , char** argv) {

4 void (*p)();

5 p = &foo;

6 ...

7 p();

8 return 0;

9 }

Note that ”...” on line 6 represents arbitrary code. The only restriction is
that p is not modified. You of course need to correctly handle cases like:

1 void foo() { }

2 void bar() { }

3

4 int main(int argc , char** argv) {

5 void (*p)();

6 p = &foo;

7 ...

8 p = &bar;

9 p();

10 return 0;

11 }

Because you can statically know that p points to bar when it is called.

4.2 Case 2: function pointer members of structs

For example:

1 typedef struct {

2 void (*p)();

3 int n;

4 } apple;

5

6 void foo() { }

7

8 int main(int argc , char** argv) {

9 apple a;

10 a.p = &foo;

11 ...

12 a.p();

13 return 0;

14 }

3

4.3 Case 3: function pointer from pointers to structs

For example:

1 typedef struct {

2 void (*p)();

3 int n;

4 } apple;

5

6 void foo() { }

7

8 int main(int argc , char** argv) {

9 apple *a = malloc(sizeof(apple));;

10 a->p = &foo;

11 ...

12 a->p();

13 }

Keep in mind that in all three cases the ”...” can represent any arbitrary
code that doesn’t reassign the function pointer value. We make no guarantee
that each function pointer will only be assigned once. However, none of our test
cases will include more than one direction, i.e., a->b->c will not appear in our
test cases.

4.4 Call Graph Output Format

Your pass should print the call graph output to stderr. The format is:

1 [func1]:[callee1],[callee2],...,[calleeN]

2 [func2]:[callee1],[callee2],...,[calleeN]

3 ...

4 [funcN]:[callee1],[callee2],...,[calleeN]

Note that we don’t require a specific ordering for the callees or the callers.
Specifically you could reorder the rows and the output is still correct, or for
each row you could reorder the callees and the output is still correct.

For example this program:

4

1 void a() {

2 b();

3 }

4

5 void b() { }

6

7 void c() {

8 a();

9 b();

10 }

11

12 int main(int argc , char** argv)) {

13 c();

14 return 0;

15 }

Would yield the following output:

1 [main]:[c]

2 [a]:[b]

3 [b]:

4 [c]:[a],[b]

5 Memory Allocations

Your pass will identify all the memory allocations in the program. For each
memory allocation, you will record the containing function, the type of the
allocated variable, and the amount of memory allocated (in byte) if statically
determined. If the amount of memory allocated is statically undecidable then
output ”unknown” in the size field for that allocation.

We’re analyzing C programs so all memory will be allocated with malloc,
calloc, realloc, and alloca (please explain why alloca is special and in what
form).

5.1 Memory Allocations Output Format

1 [func1]:[type1 ,size1],...,[typeN ,sizeN]

2 ...

3 [funcN]:[typeN ,sizeN],...,[typeN ,sizeN]

For example consider the following program:

5

1 struct apple {

2 int x;

3 double a;

4 };

5

6 void bar() { }

7

8 void foo() {

9 double *y = malloc (42);

10 struct apple *a = malloc(sizeof(struct apple));

11 bar();

12 }

13

14 int main(int argc , char** argv) {

15 int *x = malloc (100);

16 foo();

17 return 0;

18 }

The output for this program would be:

1 [main]:[int*,100]

2 [foo]:[double *,42],[% struct.apple*, 16]

3 [bar]:

Note that %struct.apple* in LLVM is equivalent to struct apple* in
C. Your pass should output the LLVM types so you don’t have to do string
manipulation.

6 Building LLVM

For this project, you will need to build LLVM from source. There are many
guides on the web for building LLVM.

At a minimum you must read and understand http://llvm.org/docs/

GettingStarted.html. This page gives a high level summary of the LLVM
project. Note this page explains how to build using configure, but you’re re-
quired to build with cmake for this project.

6.1 Building with cmake

The TA strongly suggests you get started by building the unmodified LLVM
source to make sure your build environment works. The TA has added the
LLVM source to each of your repositories, so all you need to do is clone it,
cmake, and build. Specifically, run the following commands:

6

http://llvm.org/docs/GettingStarted.html
http://llvm.org/docs/GettingStarted.html

1 git clone <your repository repo >

2 cd <your repository name >

3 cd project2

4 mkdir build

5 cd build

6 cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \

7 -DLLVM_INCLUDE_TESTS=OFF -DLLVM_TARGETS_TO_BUILD=X86 \

8 ../ llvm

9 make -j8

Listing 3: Build Commands

If this worked, go ahead and read the documentation in the next section
then start working on your pass. Note that this requires clang and clang++

to be installed on your system. We also recommend you install ld gold on your
machine. If you’re on a recent Ubuntu run:

1 sudo apt -get install binutils -gold binutils -dev

2 cd /usr/bin

3 sudo rm ld

4 sudo ln -s ld.gold ld

7 Writing your pass

It is essential that you read http://llvm.org/docs/WritingAnLLVMPass.html.
In your repository there is a directory called project2/llvm/lib/Transforms/CallGraphPass.
There is a file in this directory called ”CallGraphPass.cpp” with stub code. Im-
plement your entire project in this file.

8 Extra Credit

8.1 Tracking non-local variables

You will receive extra credit if your analysis can produce the correct output on
more advanced test cases. All previous examples dealt with local variables –
variables whose reaching definition and use are in the same function. However
real programs often assign a value to a variable in one function and use it in
another.

For a function pointer example consider:

7

http://llvm.org/docs/WritingAnLLVMPass.html

1 void bar() { };

2

3 void foo(void (*fn)()) {

4 fn();

5 }

6

7 int main(int argc , char** argv) {

8 void (*p)();

9 p = &bar;

10 foo(p);

11 return 0;

12 }

The correct output is:

1 [main]:[foo]

2 [foo]:[bar]

3 [bar]:

The same idea applies for finding unreachable paths. Consider:

1 void bar() {};

2 void baz() {};

3

4 void foo(int x) {

5 if (x == 0) {

6 bar()

7 } else {

8 baz();

9 }

10 }

11

12 int main(int argc , char** argv) {

13 int y = 0;

14 foo(y);

15 return 0;

16 }

The correct output is:

1 [main]:[foo]

2 [foo]:[bar]

3 [bar]:

4 [baz]:

Beware that this analysis is quiet tricky for more complicated programs.
That’s why it’s extra credit. For example, in this program:

8

1 void bar() {};

2 void baz() {};

3 void buz(int x) {

4 foo(x);

5 }

6

7 void foo(int x) {

8 if (x == 0) {

9 bar()

10 } else {

11 baz();

12 }

13 }

14

15 int main(int argc , char** argv) {

16 int y = 0;

17 foo(y);

18 buz(argc);

19 return 0;

20 }

It is not statically decidable that foo will never call baz, so the correct
output is:

1 [main]:[foo]

2 [foo]:[bar],[baz]

3 [bar]:

4 [baz]:

5 [buz]:[foo]

8.2 DOT file output

For extra credit, have your pass produce a DOT file (http://en.wikipedia.
org/wiki/DOT_%28graph_description_language%29) called ”CallGraph.dot”
in the current working directory that represents the call graph of the program
you’re analyzing. DOT files can be used to generate graph visualizations.

9 How to submit

Like project1, you will submit your code in BitBucket. All your code should be
in the directory project2/llvm/lib/Transforms/CallGraph/Pass.

10 Grading

Your code needs to compile on Ubuntu 14.04 in order to be graded. This will
not be an issue if you followed the instruction to only add code to CallGraph-

9

http://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
http://en.wikipedia.org/wiki/DOT_%28graph_description_language%29

Pass.cpp.
To build your code, the TA will use the exact same set of commands you

used to build your code in Listing 3. It is your responsibility to make sure your
code builds using those exact commands.

To run the test cases, the TA will first build your code, then from the build
directory run:

1 bin/opt -load lib/LLVMCallGraphPass.so -CallGraphPass < test.bc > /

dev/null

10

	Goal
	Call Graphs
	Flow-sensitive Static Analysis
	Function Pointers
	Case 1: direct assignment
	Case 2: function pointer members of structs
	Case 3: function pointer from pointers to structs
	Call Graph Output Format

	Memory Allocations
	Memory Allocations Output Format

	Building LLVM
	Building with cmake

	Writing your pass
	Extra Credit
	Tracking non-local variables
	DOT file output

	How to submit
	Grading

