
SoK: Challenges and Paths Toward Memory Safety for eBPF

Kaiming Huang
The Pennsylvania State University

kzh529@psu.edu

Jack Sampson
The Pennsylvania State University

jms1257@psu.edu

Mathias Payer
École Polytechnique Fédérale de Lausanne

mathias.payer@nebelwelt.net

Gang Tan
The Pennsylvania State University

gxt29@psu.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Trent Jaeger
University of California, Riverside

trentj@ucr.edu

Abstract—The extended Berkeley Packet Filter (eBPF) subsys-
tem in Linux enables the extension of kernel functionality with-
out modifying kernel code. In addition to its use in networking,
eBPF provides the flexibility to perform tracing, add security
checks, etc. To ensure that eBPF does not enable attackers to
compromise the kernel, eBPF includes a verifier to validate
every eBPF program before its execution, which includes
checks that aim to prevent eBPF programs from modifying
kernel memory due to memory errors. However, numerous
vulnerabilities have been identified in the eBPF subsystem,
including the verifier itself, which greatly violate expectations,
leading to concerns about the threats of memory safety brought
by eBPF. This paper presents the first systematic analysis
of the memory safety risks inherent in the eBPF ecosystem,
focusing on the challenges faced by the limitations of the eBPF
verifier and current kernel defenses. We then evaluate proposed
research mitigation strategies that apply isolation techniques,
runtime checks, and static validation, highlighting their contri-
butions and gaps. Our study finds that only 1.62-3.74% (37-85)
of the memory operations in public eBPF programs cannot be
proven memory safe comprehensively, motivating actionable
insights towards enforcing comprehensive memory safety while
accounting for performance and compatibility.

1. Introduction

The extended Berkeley Packet Filter (eBPF) [1], [2]
enables the dynamic execution of user-defined programs
in kernel space. Originally developed to enhance network
packet filtering [3], [4], [5], [6], [7], eBPF now supports a
broad range of applications beyond networking, including
performance monitoring [8], [9], [10], [11], [12], security
enforcement [13], [14], [15], [16], [17], and system trac-
ing [18], [19], [20], [21], [22]. eBPF defines a bytecode for-
mat that can be either interpreted or JIT-compiled, enabling
verification of both its semantics and security properties.
eBPF has reshaped how developers monitor and control the
system by enabling direct interaction with kernel functions
and data, making it possible to build high-performance,
customizable programs without constantly modifying the

kernel. This unique capability allows eBPF programs to
operate with exceptional efficiency, bypassing traditional
overheads such as context switching, which are critical in
high-throughput, latency-sensitive environments. However,
these powerful capabilities come with significant security
challenges, such as cross-container attacks [23], transient
execution attacks [24], [25], and particularly, memory safety
within kernel space.

The privileged execution of eBPF programs in the kernel
context, though performance-oriented, opens the system to
potential memory error exploitations that can compromise
the entire kernel [26]. In fact, the Linux eBPF has been
blamed as a new privilege escalation technique in 2022 [27],
and has been used as an effective measure to enhance at-
tacker’s capabilities and expanding the exploitability of ker-
nel vulnerabilities [28], [29]. Memory safety is essential in
eBPF’s architecture, as flaws here can lead to severe security
issues, including arbitrary code execution, privilege escala-
tion, data corruption, and denial of service. To mitigate these
risks, the Linux kernel integrates the eBPF verifier [30],
a static analysis tool designed to assess eBPF programs
for safety violations before allowing their execution. The
verifier enforces various security checks, such as validating
memory access bounds and ensuring proper pointer usage.
Despite these precautions, the verifier has shown limitations
in comprehensively blocking unsafe operations [31]. These
gaps are especially concerning given the expanding attack
surface presented by eBPF’s deep integration into the kernel.

Recent years have seen a surge (see Section 3) in reports
of eBPF-related vulnerabilities [32], highlighting the grow-
ing demand for more resilient memory safety mechanisms.
Notably, many malicious eBPF programs can bypass verifier
checks intentionally by leveraging complex program struc-
tures or exploiting specific verification weaknesses, resulting
in vulnerabilities that can lead to critical kernel corruption.
Over the years, kernel maintainers keep adding checks into
the eBPF verifier to prevent such circumvention and to
support new features added to the eBPF subsystem. In Linux
kernel version v6.11, the verifier contains more than 22k
lines of code, which is 11x more than its initial version
v3.18. For example, 93 lines of code were added into the



verifier in 2024 to prevent an integer overflow [33], and
595 lines of code were added into the verifier in 2023 for
supporting verification on open-coded iterator loops [34].
Unfortunately, even as the verifier is refined, sophisticated
attacks continue to find ways to evade, suggesting that
memory safety in eBPF is far from ensured. In 2024 alone,
over 100 bugs related to memory errors were discovered in
the eBPF subsystem, with 45 of them still unaddressed [35].
Furthermore, a substantial number of CVEs regarding mem-
ory errors have been linked to eBPF since 2023, underscor-
ing the need for improved memory safety solutions.

Beyond the verifier, other components in the eBPF
ecosystem pose additional security risks. For instance, eBPF
helper functions are APIs provided by the kernel that al-
low eBPF programs to perform specific operations, such
as accessing packet data or managing eBPF maps—data
structures that facilitate communication between user space
and kernel space. These helper functions, however, generally
lack internal safety checks, relying instead on the verifier
to enforce safe usage. This reliance creates a trust chain
that can be easily broken if an unsafe eBPF program slips
past the verifier. Consequently, flawed or malicious eBPF
programs can exploit unchecked helper functions to access
or corrupt kernel memory, bypassing isolation mechanisms
designed to protect the kernel. The risk is compounded by
the complexity of interactions within the eBPF subsystem,
where unchecked data in maps or pointers manipulated by
helpers can lead to memory errors that escape the verifier.

To address these challenges, various defense strate-
gies have been proposed. Isolation techniques, including
both software-based fault isolation [36], [37] and hardware-
assisted mechanisms [38], [39], aim to contain eBPF pro-
grams within safe memory boundaries. While isolation pro-
vides an essential layer of defense, it is often insufficient
to fully address the spectrum of memory vulnerabilities
due to indirect kernel interactions (e.g., cross-boundary
interface vulnerabilities (CIVs) [40], [41] through eBPF
helpers). Static and dynamic verification enhancements have
also been explored [42], [43], [44], [45], [46], [47], [48],
[49], such as refining the verifier’s capabilities to track
dependencies and reject unsafe memory operations. Efforts
to migrate eBPF towards memory-safe languages, such as
Rust [31], offer the potential to eliminate certain classes of
memory errors at the source level. Nevertheless, each of
these approaches presents trade-offs, such as performance
overhead, limited coverage, or compatibility challenges.

Based on the facts discussed above, we assert that while
awareness is growing around the eBPF subsystem’s threat
to kernel memory safety1, the specific weaknesses and flaws
within each component, across the workflow, and in existing
defenses remain alarmingly unaddressed. There is an urgent
need to systematically document not only the current threats
eBPF poses to kernel memory, but also the limitations of
existing defenses. By +identifying and summarizing these
weaknesses, this work aims to further point out essential

1. We will only focus on memory safety of eBPF, other security concerns
(e.g., concurrency bugs and side channels) are excluded from the scope.

future directions for effective and comprehensive memory
safety solutions within the eBPF framework, advancing
toward a more secure foundation for the Linux kernel amid
mounting and potentially catastrophic vulnerabilities.

In this paper, we start with a summary of the workflow
and trust model of the eBPF subsystem (Section 2), reveal-
ing that the trust model relies critically on the eBPF verifier.
However, we then show that the eBPF verifier has proven
unreliable, with numerous vulnerabilities allowing unsafe
programs to bypass its checks, making it a significant source
of kernel memory safety issues (Section 3). To address the
sources of these vulnerabilities, we provide a detailed study
that classifies the weaknesses of the eBPF verifier into three
categories using concrete CVEs (Section 4), reflecting that
the checks are unsound, incomplete, and have a limited
scope that prevents comprehensive validation of memory
safety. The Linux kernel includes both eBPF-specific and
general defenses to mitigate issues arising from an unreliable
verifier, but we find that eBPF-specific defenses are hindered
by optional configurations and limited enforcement of priv-
ilege restrictions, while general defenses lack the coverage
needed to fully prevent eBPF-based attacks, leaving the
kernel vulnerable (Section 5).

Researchers have recognizes these shortcomings in the
eBPF verifier and current kernel defenses and proposed a
variety of defenses aiming to prevent memory errors and/or
their exploitation. This paper systematically reviews these
research advances to enhance eBPF memory safety, includ-
ing improvements to static verification, isolation, runtime
checks, fuzzing, and migration to memory-safe languages
(Section 6). While each approach offers specific security
benefits, they also present limitations: static verification
struggles with validating complex runtime interactions, iso-
lation contains memory access but can be bypassed in-
directly, and runtime checks improve safety but are per-
formance intensive. Fuzzing helps uncover vulnerabilities
yet lacks full coverage, and language migration introduces
compatibility issues and requires significant changes to the
kernel. Effective security for eBPF requires balancing these
strategies to meet both memory safety requirements and
high-performance/flexibility demands.

We identify the key weaknesses in the current eBPF
security model, including limited privilege restrictions, in-
complete checks by the verifier, lack of safeguards in eBPF
helpers, and coarse-grained isolation techniques. Addition-
ally, runtime checks prove too costly for high-performance
eBPF use cases, exposing vulnerabilities and potential at-
tack vectors that could exploit these gaps (Section 7). We
evaluate public and malicious eBPF programs to determine
how many unsafe memory operations that need attention and
propose potential directions for enforcing memory safety
comprehenisvely (Section 8). We aim to provide actionable
research directions to prevent the exploitation of memory
errors, enabling safe deployment within the Linux kernel.
We make the following contributions in this paper:
• What can go wrong: We conduct the first systematic study

of the memory safety threats that the eBPF subsystem
poses to the Linux Kernel.



User Space Kernel Space

User
Application

eBPF Program 
Machine Code

eBPF Map

eBPF Verifier

Other Kernel Resources 
and Modules

eBPF 
Program
Source

Read

Write
Produce

Check
Validate

Load

eBPF Helpers

Invoke

Read
Write

Untrusted Component Trusted Component

Read
Write

eBPF 
Program
Bytecode

Compile 

JIT Compile

Figure 1: Overview of the eBPF workflow and its trust model.

• How does it go wrong: We conduct the first systematic
study of the weaknesses in the workflow of the current
eBPF subsystem that introduces memory safety threats.

• Has the issue been resolved: We conduct the first com-
prehensive study of currently deployed and research de-
fenses by classes, highlighting their contributions while
pinpointing individual shortcomings.

• How to fix it: We provide guidance for potential future
research directions for enhancing eBPF memory safety.

2. eBPF Workflow and Trust Model

The extended Berkeley Packet Filter (eBPF [50]) frame-
work allows user-defined programs to execute within the
Linux kernel in a secure, sandboxed environment, but eBPF
programs stand apart from regular programs. These pro-
grams are subject to stricter regulations due to their direct in-
teraction with the kernel, and are highly performant through
the JIT compilation. Originally created for network packet
filtering, eBPF now supports a broad range of critical tasks,
including tracing, security, and performance monitoring.

In the current Linux kernel security model, the trust hi-
erarchy establishes which components are trusted and which
are not, as shown in Figure 1. Initially, the eBPF programs
are untrusted since they originate from untrusted user-space
applications and are installed in the context of untrusted
users. These programs are written by users, compiled into
bytecode, and vetted by the eBPF verifier before they can
execute within the kernel. The verifier is a critical, trusted
component that performs static analysis on eBPF programs,
checking for memory safety, pointer integrity, stack/register
usage, and enforcing limits on loops and instruction counts
to prevent unsafe operations. Only after passing these checks
can an eBPF program be loaded, JIT compiled into machine
code, then executed in the kernel.

Once verified and loaded, eBPF programs are trusted to
perform only benign memory accesses. eBPF programs rely
on trusted eBPF helper functions, which are kernel-provided
APIs that offer trusted access to kernel operations like packet
parsing, map management, and limited memory access. Us-
ing eBPF helpers, eBPF programs may access kernel data
structures shared with the eBPF subsystem. Examples of
such data structures include eBPF maps and other kernel

resources, such as ring buffers, Perf buffers, and tracepoints.
For example, eBPF maps serve as intermediaries for data ex-
change between user and kernel memory, providing data per-
sistence across program executions. User-space applications
can access the eBPF map through system calls (i.e., BPF()).
Beyond the eBPF subsystem, eBPF programs can indirectly
affect other kernel resources and modules through eBPF
helpers e.g., bpf_skb_load_bytes. These resources,
again, depend on the verifier and helpers to enforce memory
safety and access control to prevent unauthorized access.

Notably, the chain of trust from verified eBPF programs
to other kernel resources, is only as strong as the eBPF
verifier. If the eBPF verifier fails to identify unsafe behaviors
or vulnerabilities in an eBPF program, no further checks on
ensuring memory safety of eBPF program occur at runtime.
Specifically, eBPF helper functions, though trusted, rely on
the eBPF verifier to ensure that eBPF programs use them
safely; they do not perform additional validation of memory
access or pointer safety. Consequently, if a malicious or
flawed eBPF program bypasses the verifier, it could misuse
helpers to manipulate kernel memory, such as forging a
pointer or modifying map data in a way that grants unautho-
rized access to broader kernel memory, potentially leading
to kernel memory corruption or privilege escalation. Thus,
any weaknesses in the verifier can compromise the entire
trust chain, exposing the kernel to significant security risks
from untrusted eBPF programs (see examples in Section 4).

TA 1. aThe eBPF trust model relies critically on the
eBPF verifier to enforce memory safety; If the veri-
fier fails, untrusted or malicious eBPF programs may
corrupt kernel memory (e.g., misuse eBPF helpers).

a. We identify key observations as “Take-Aways”. TAs with key in-
sights are highlighted in bold, other TAs are summaries of knowledge.

3. Memory Safety Issues in the eBPF Verifier

The eBPF verifier serves as the only defense in the
Linux kernel to analyze and reject unsafe eBPF programs.
Unfortunately, it also has become a significant source of
bugs. A substantial amount of CVEs have been reported for
bugs identified in the eBPF verifier, including 46 from year
2024 after kernel maintainers became reluctant to assign
CVEs to kernel bugs [51], [52]. In fact, the verifier serves
as the most vulnerable components in terms of the number
of CVEs discovered in the eBPF subsystem [53]. These
bugs enable attackers to bypass security checks, and the
eBPF subsystem has been becoming a hotbed for intro-
ducing memory safety vulnerabilities into the kernel. To
date, Syzbot reported a total of 325 bugs that are caused by
memory errors [32] since eBPF was added into the Linux
kernel in version 4.4 [54] (Jan 2016), making the eBPF
subsystem the fourth-ranked subsystem in the Linux kernel
in terms of the number of bugs. More importantly, more
than half (169) were identified since 2023, and 45 of them
remain unfixed [35].



Specifically, all aforementioned bugs were triggered
by eBPF programs generated by the kernel fuzzer,
SyzKaller [55], indicating that all of them can bypass the
eBPF verifier checks and get loaded into the kernel. The
reported bugs, if exploited by an attacker, may cause serious
consequences to the kernel, such as privilege escalation,
arbitrary code execution, and DoS. The sharp increase in
identified bugs since 2023, with many remaining unresolved,
highlights the weakness of the eBPF verifier to identify
unsafe operations that may lead to memory errors, resulting
in the ongoing and growing challenge of ensuring that eBPF
programs satisfy memory safety.

TA 2. The eBPF verifier, intended as the Linux ker-
nel’s primary defense to reject unsafe eBPF programs,
has failed to reject programs that may violate memory
safety, becoming a major source of vulnerabilities.

4. Attack Flawed Verification

In this section, we will provide a detailed analysis of
the weaknesses of the eBPF verifier in identifying memory
safety threats. We examined the complete set of memory
safety vulnerabilities discovered in 2024 that have concrete
PoCs and reproducers, including 85 Syzbot generated re-
ports and 17 CVEs. Based on the investigation, we found
that existing checks in the eBPF verifier have shown weak-
nesses in three aspects (1) Unsound - checks are imple-
mented in an unsound way that can be bypassed, such
as [56], [57], [58], [59], [60]; (2) Incomplete - necessary
checks needed to achieve full memory safety are missing,
such as [61], [62], [63], [64], [65]; (3) Limited scope -
checks are only conducted towards eBPF bytecode, ignoring
other components in the eBPF subsystem, such as [66], [67],
[68], [69], [70]. We use real-world vulnerabilities as exam-
ples to concretly demonstrate how these weaknesses allow
eBPF programs to violate memory safety. All examples are
shown to bypass all the currently deployed kernel defenses
listed in Table 1 and damage the kernel.

4.1. Bypass Unsound Checks

Declared checks in the eBPF verifier can be unsound,
enabling an attacker to bypass existing checks. For ex-
ample, one of the eBPF verifier’s functionalities is path
pruning [71], which skips redundant execution paths to
improve verification performance. However, accurate path
pruning depends on precise tracking of dependencies among
registers. If the verifier fails to track a dependency between
registers accurately, unsafe paths may be mistakenly pruned
as safe. CVE-2023-2163 [72] is one such case. This issue
allows attackers to exploit the verifier’s path-pruning mecha-
nism to bypass memory safety checks, potentially leading to
privilege escalation and arbitrary memory write operations.

Specifically, when an eBPF program executes pointer
arithmetic operations, all registers involved in such oper-
ations should be tracked. For instance, if register r1 un-

1 SEC("socket")
2 int exploit_prog(struct sk_buff *skb){
3 int *data; //address stored in r1
4 data = bpf_ringbuf_reserve(&ringbuf, 64, 0);
5 if (!data) return -1;
6 // Exploiting path pruning by passing an out-of-

bounds pointer in r1
7 // Here, r2 is the offset that exceeds bounds
8 bpf_ringbuf_submit(data + 128, 0);
9 // r1 = data + 128, r2 = 128

10 return 0;
11 }

Listing 1: Example PoC for CVE-2023-2163.

dergoes pointer arithmetic involving r2 (e.g., r1=r1+r2),
the verifier should recognize that r1’s value depends on
r2. This dependency requires the verifier to explore all
paths involving r1 under the influence of r2. However,
in CVE-2023-2163, the verifier mistakenly ignores r2 as
a dependency of r1, leading it to prune paths prematurely.
This premature pruning means that when r1 points to mem-
ory locations (base) influenced by r2 (offset), the verifier
incorrectly assumes it is always within safe bounds, leading
to out-of-bounds access. By crafting eBPF programs with
pointer operations involving r1 and r2, attackers can cause
r1 to point outside its allocated boundary.

To exploit this vulnerability, the attacker must craft a
malicious eBPF program that tricks the verifier into disre-
garding the dependency between r1 and r2, thereby pre-
maturely pruning the verification of the path corresponding
to r1 = r1 + r2. The PoC shown in Listing 1 demon-
strates how this vulnerability can be easily exploited. data
representing a pointer to the reserved memory block (size
64), is stored in r1. For simplicity, the comment at line 6
represents the steps that the attacker deceives the verifier,
the details are illustrated in the CVE writeup [73], [74].
The bpf_ringbuf_submit function is then called with
an out-of-bounds pointer (data+128). Here, 128 (stored in
r2) acts as an offset applied to r1, shifting it beyond the
bound. Because of the missing dependency tracking between
r1 and r2 (triggered by attacker), the verifier assumes the
memory access is within bounds and prunes this path (i.e.,
the call at line 8) as if it were safe, allowing the out-of-
bounds access to occur unchecked. This flaw grants the
attacker the arbitrary memory accesses in kernel memory.

TA 3. Optimizations that improve verifcation perfor-
mance of the the eBPF verifier can be unsound. Flaws
in removing checks by optimizations allow attackers
to instantiate programs that violate memory safety.

4.2. Exploit Gaps in Incomplete Checks

Checks performed by the verifier are insufficient to
guarantee comprehensive memory safety, i.e., checks that
should be included are missing. CVE-2021-4204 [75] is a
vulnerability found in the eBPF subsystem that stems from
a lack of proper argument validation for helper functions,
which permits out-of-bounds memory accesses that can lead
to privilege escalation. The eBPF verifier, which should
report such an improper argument specification, let the
program pass the verification, resulting in the vulnerability.



One of the responsibilities of the eBPF verifier is validat-
ing that the use of helper functions obeys the required calling
conventions [30]. Each helper function must follow its pre-
defined structure provided by struct bpf_func_proto,
specifying argument types and return values. The verifier
checks that these arguments are valid before the program
can be loaded. For example, bpf_strtol() accepts a
pointer to memory and the size of the memory block as its
arguments. The verifier uses the size argument to validate
that the size of memory block is correct, preventing out-of-
bounds memory access, as shown below in Listing 2.
1 const struct bpf_func_proto bpf_strtol_proto = {
2 .func = bpf_strtol,
3 .gpl_only = false,
4 .ret_type = RET_INTEGER,
5 .arg1_type = ARG_PTR_TO_MEM, // Pointer to string
6 .arg2_type = ARG_CONST_SIZE, // Size of the string
7 .arg3_type = ARG_ANYTHING, // Additional argument
8 .arg4_type = ARG_PTR_TO_LONG,// Pointer to result
9 };

Listing 2: Signature of bpf strtol()

Argument 1 (ARG_PTR_TO_MEM) is a pointer to a
memory block. Argument 2 (ARG_CONST_SIZE) speci-
fies the size of the memory block. The verifier ensures
that the pointer passed in the first argument is valid and
that the length specified in the second argument cor-
rectly matches the allocated memory. If the size is in-
correct, the verifier will reject the program. For example,
if bpf_strtol("hello",100,0,&res) is attempted,
the eBPF verifier rejects this eBPF program because the pro-
vided size (100) exceeds the length of the string ”hello”.

The cause of CVE-2021-4204 is that the defini-
tion of helper functions bpf_ringbuf_submit() and
bpf_ringbuf_discard() do not have the size argu-
ment of memory block as part of their expected calling
convention. These functions take a pointer to allocated
memory (PTR_TO_ALLOC_MEM) as the first argument, but
they lack a size argument for the verifier to validate the
memory block’s size, as shown in Listing 3.
1 const struct bpf_func_proto bpf_ringbuf_submit_proto={
2 .func = bpf_ringbuf_submit,
3 .ret_type = RET_VOID,
4 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
5 .arg2_type = ARG_ANYTHING,};
6
7 const struct bpf_func_proto bpf_ringbuf_discard_proto={
8 .func = bpf_ringbuf_discard,
9 .ret_type = RET_VOID,

10 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
11 .arg2_type = ARG_ANYTHING,};

Listing 3: Flawed Helper Function Signature Definition.

In Listing 3, both of the function signatures de-
fine the first argument as a pointer to allocated memory
(PTR_TO_ALLOC_MEM). However, the verifier will not
perform size validation for the memory block, since there
is no parameter in the function signature that specify the
legitimate size for the eBPF verifier to check. In this case,
the verifier simply skips such checks, rather than rejecting
the program or at least issuing a warning. The lack of proper
size validation allows a user to pass out-of-bounds pointers
easily by using input of arbitrary length that is referenced by
the first argument of the function signature, leads to memory
corruption in the kernel memory.

1 SEC("xdp_prog")
2 int my_prog(struct xdp_md *ctx) {
3 void *sample;
4 // Reserve a memory block in the ring buffer
5 sample = bpf_ringbuf_reserve(&ringbuf, 64, 0);
6 if (!sample)
7 return XDP_ABORTED;
8 // Perform some operation on the buffer
9 bpf_probe_read(sample, 64, "data");

10 // Exploit: Call with an out-of-bounds pointer
11 bpf_ringbuf_submit(sample + 128, 0);
12 // OOB pointer, bypasses size check
13 return XDP_PASS;
14 }

Listing 4: Example PoC of the Vulnerability.

To exploit this vulnerability, the attacker just needs
to reserve memory in the ring buffer2, then write data
into the allocated memory block, and finally invoke
bpf_ringbuf_submit() with an out-of-bounds pointer
as parameter. As shown in the example PoC in Listing 4, the
malicious eBPF program reserves 64 bytes of memory in the
ring buffer, then the flawed bpf_ringbuf_submit()
helper function is called with an out-of-bounds pointer
sample+128 at line 11, bypassing the intended memory
bounds. Since there is no size check for the pointer passed
to bpf_ringbuf_submit() the attacker can manipulate
the internal logic of the ring buffer to execute arbitrary code
in kernel space, leading to privilege escalation.

TA 4. The eBPF verifier trusts eBPF helpers uncon-
ditionally, checks that are required for comprehen-
sive memory safety are missing in the verifier.

4.3. Exploiting Limited Protection Scope

The eBPF trust model has fundamental weaknesses.
Specifically, the eBPF verifier places implicit trust in eBPF
helper functions, assuming they are always used safely
by programmers. Thus, verifier checks are only limited to
the eBPF bytecode without going into other parts of the
subsystem (e.g., eBPF helpers).

For example, the eBPF verifier’s temporal memory
safety checks are limited to eBPF bytecode [76], with
little detail on how or which cases are covered. The
only documented checks apply strictly to Kfunc param-
eters [77], and other sources provide no clear detec-
tion mechanisms [78]. Thus, this not only reiterates that
the implemented checks are incomplete (Section 4.2), but
also emphasizes that memory errors that are not pre-
sented in the bytecode (e.g., in the helpers) still exist
in the wild. For instance, a program may result in use-
before-initialization using dev_map_lookup_elem(),
as mentioned in a Syzbot bug report [79]. eBPF helpers
generally ignore memory safety checks and trust that
the eBPF program uses them properly, as the source
code of dev_map_lookup_elem() shows in Listing 5.
dev_map_lookup_elem() retrieves an entry from a
dev_map using the provided key without verifying whether

2. Ring buffer is another kind of intermediate data structure between
kernel, eBPF program, and user space, similar to eBPF map



the entry has been initialized. The function relies solely on
rcu_dereference_check() to ensure safe concurrent
access but does not validate that obj is initialized. This
leaves opportunities for attacks, for example, the C repro-
ducer in the bug report [80], as shown in Listing 6.

1 static void *__dev_map_lookup_elem(
2 struct bpf_map *map, u32 key){
3 struct bpf_dtab *dtab =
4 container_of(map, struct bpf_dtab, map);
5 struct bpf_dtab_netdev *obj;
6 if (key >= map->max_entries)
7 return NULL;
8 obj = rcu_dereference_check(dtab->netdev_map[key],
9 rcu_read_lock_bh_held());

10 return obj;
11 }

Listing 5: Source Code of dev map lookup elem()

1 SEC("classifier")
2 int example_prog(struct __sk_buff *skb) {
3 int index = 0; // Key for accessing dev_map
4 int *dev_ifindex;
5 // Use dev_map_lookup_elem to retrieve the interface
6 dev_ifindex = dev_map_lookup_elem(&dev_map, &index);
7 if (!dev_ifindex) {
8 return TC_ACT_SHOT; // Drop packet if fails
9 }

10 // Uninitialized memory access
11 *dev_ifindex += 1; // KMSAN uninit warning
12 // Final decision to accept or drop the packet
13 return TC_ACT_OK;
14 }

Listing 6: Reproducer eBPF Program of UBI in Syzbot Report [80]

The issue arises when dev_map_lookup_elem is
used to retrieve an entry from the dev_map. If this entry
is uninitialized, the dev pointer returned may point to
uninitialized memory. Subsequently, modifying ifindex
without prior initialization leads to undefined behavior, as
this memory location may contain arbitrary data. This causes
a temporal memory safety violation, which KMSAN de-
tect by flagging accesses to uninitialized memory. Since
dev_map_lookup_elem does not ensure initialization
before any use, the responsibility falls on the eBPF program
to verify or initialize entries, creating an exploitable gap
since the existing verifier does not verify it as well.

TA 5. Checks of the verifier are limited to the eBPF
bytecode, but they should be extended to all components
in the subsystem.

5. Kernel Mitigation Circumvention

It has long been known that the eBPF verifier may have
bugs that can cause it to execute malicious eBPF programs
that should have been rejected [38], [81]. In addition to
the eBPF verifier, the Linux kernel has deployed three
other eBPF-specific defenses designed to prevent attacks by
malicious eBPF programs, as listed in Table 1, namely the
CAP BPF capability [82], BPF LSM [83], and BTF/CO-
RE [84]. These defenses are not required, and sometimes
disabled intentionally (e.g., BPF LSM is often disabled for
performance reasons), so malicious eBPF programs may
bypass these optional protections when they are not en-

abled. The Linux kernel recently introduced CAP BPF3

privilege [82], [86] in Linux 5.8 (Aug 2020) to block unpriv-
ileged users from attaching eBPF programs [87]. However,
this CAP BPF restriction is not a hard constraint, meaning
that unprivileged users can still opt out of this restriction
and attach their eBPF programs into the kernel [88]. In
fact, requiring privileges to run eBPF programs significantly
limits their flexibility and portability [36]. Many vendors
rely on eBPF’s unprivileged execution model for ease of
use and deployment. For instance, Cilium [89], a popular
eBPF-based networking and security platform, takes ad-
vantage of unprivileged eBPF programs to ensure seamless
integration across multiple environments, including cloud-
based systems. As a result, vendors continue to operate with
unprivileged eBPF [90]. This tradeoff reflects the challenges
in balancing security and usability in real-world applications
of eBPF, highlighting that privilege separation is not a
panacea. Finally, even enforcing CAP BPF does not prevent
attackers from exploiting memory errors in (mistakenly) ver-
ified eBPF programs to gain unauthorized kernel access [72]
(e.g., root privilege), such attacks [91], [92] are shown to
not be prevented by the defenses in Table 1.

In addition to specific eBPF defenses, some general-
purpose kernel defenses (listed at the bottom of Table 1)
that aim to prevent kernel memory error exploitation provide
additional protection of the memory safety of eBPF. How-
ever, these defenses face two primary limitations. First, they
are incomplete in scope: While they address certain attack
vectors, they do not cover all the unique vulnerabilities
introduced by eBPF, leaving some attack surfaces exposed.
Second, these defenses can be circumvented by advanced
exploits, making it possible for attackers to exploit kernel
memory despite the presence of these mechanisms. Even
in combination, these general defenses are insufficient to
fully secure the kernel against the range of threats posed by
malicious eBPF programs.

In summary, while all defenses listed in Table 1 col-
lectively enhance security, they cannot fully address the
memory safety threats created by erroneously “verified”
eBPF programs. New defenses are needed to address these
threats directly and comprehensively.

TA 6. The Linux kernel’s eBPF-specific defenses are
limited by optional settings and left room for attacks
with limited privilege, while general defenses fail to
fully block eBPF-based attacks.

6. Summary of State-of-the-art Solutions

eBPF has become a crucial vehicle for extending kernel
functionality. Despite its versatility, this extensibility intro-
duces a significant threat to memory safety. This section
reviews recent advancements aimed at addressing such chal-

3. Directly assigning root privilege is undesirable, equivalent to granting
an arbitrary user-level program root permission, so defenses to split BPF
permissions from root privileges has become a trend [85].



Category Kernel Defensive Features Description
Required Defense eBPF Verifier Validates security of eBPF programs.

Optional Defense
Capability CAP BPF Permits only privileged users to attach eBPF programs.
BPF LSM (Linux Security Modules) Enforces access control over eBPF programs
BPF Type Format (BTF) and CO-RE Validates data type and version compatibility.

General Defense

CFI and Execute-Only Memory (XOM) Prevents control flow hijacking and code reuse attacks.
Memory Tagging Prevents pointers from being tampered and forged.
Shadow Stacks Protects return addresses.
kASAN Detects memory errors at runtime.
kASLR Randomizes memory layout.
SMAP and SMEP Prevents unauthorized user-space memory access in kernel mode.

TABLE 1: Summary of kernel defenses on eBPF: classified as Required/Optional for eBPF, or General for kernel.

Fuzzer Description eBPF-Specific

General-purpose fuzzers for
identifying memory errors,
need specific configuration
for eBPF fuzzing.

✗
Syzkaller [55]
libFuzzer [93]
AFL [94]

eBPF-specific fuzzers that are
effective in generating eBPF
programs that pass verifier
checks using different
techniques.

✓

Buzzer [95]
BRF [96]
BpfChecker [97]
LKL Fuzzer [53]

TABLE 2: Summary of Fuzzing Tools for eBPF

lenges in categories. Note that we will only focus on mem-
ory safety enforcement. Orthogonal attacks, such as side
channels and transient execution attacks, are not discussed.

6.1. Fuzzing

One approach to improving the accuracy of the eBPF
verifier is to test it more thoroughly. Fuzzing helps detect
eBPF memory safety issues by generating random program
inputs that test for vulnerabilities such as buffer overflows
and invalid memory accesses. As shown in Table 2, general
fuzzing tools such as Syzkaller [55] and libFuzzer [93]
explore diverse paths in eBPF programs and associated ker-
nel code. In general, fuzzer generated eBPF programs that
cause issues in the kernel indicate a missing or an incorrect
check in verifier. However, general fuzzers like AFL and
Syzkaller need specific configurations for effective eBPF
fuzzing [94]. Dedicated input generation and harnessing
eBPF-kernel interactions are necessary to uncover eBPF-
specific vulnerabilities.

6.1.1. Dedicated eBPF fuzzing. Many eBPF-specific
fuzzers have been proposed recently, as shown in Table 2.
Buzzer [95] is designed to test the eBPF verifier’s logic by
generating large volumes of eBPF programs, which it then
passes through the verifier and executes in a running kernel
to detect unsafe behavior. Buzzer’s dedicated eBPF program
generation strategies and instrumentation make it effec-
tive at identifying complex bugs in eBPF’s safety checks.
Similarly, BRF (BPF Runtime Fuzzer) [96] enhances the
verification and testing of the eBPF runtime environment.
Unlike conventional fuzzers, BRF is specifically customized
to generate semantically correct eBPF programs that can

pass the verifier’s safety checks. To accomplish this, BRF
incorporates an iterative, error-driven approach to enforce
eBPF-specific semantics and to satisfy syscall dependencies
for correct program loading, attaching, and execution. This
methodology enables BRF to explore deeper execution paths
within the eBPF runtime and has demonstrated its effec-
tiveness, achieving significantly higher code coverage and
detecting previously unknown vulnerabilities.

Unlike traditional fuzzers that rely primarily on crash
detection, BpfChecker [97] is designed to identify issues
across eBPF runtimes. BpfChecker adopts a different ap-
proach by performing differential testing, where it compares
the execution states of multiple eBPF runtimes (e.g., Solana
rBPF, vanilla rBPF, and Windows eBPF) to detect incon-
sistencies that may signal potential flaws. BpfChecker uses
a specialized eBPF-specific intermediate representation (IR)
and constrained mutations to produce semantically correct
programs, enabling deep exploration of runtime behaviors.
Additionally, LKL-based Fuzzer [53] outperforms existing
solutions by leveraging the Linux Kernel Library (LKL)
to run multiple lightweight kernel instances simultaneously,
effectively enhancing fuzzing speed and efficiency.

6.1.2. Limitations of Fuzzing. Specialized eBPF fuzzing
faces two challenges: (1) achieving a high success rate in
generating verifier-approved eBPF programs and (2) effec-
tively producing programs that trigger exploitable memory
vulnerabilities. While state-of-the-art approaches such as
BPFChecker struggle with verifier acceptance (i.e., 18%),
BRF significantly improves on this with a 97% success
rate. However, BRF’s high acceptance rate exposes another
crucial limitation. It reported only 1 memory error among
six identified vulnerabilities, fewer than other methods. This
reveals that even sophisticated semantic aware schemes such
as BRF grapple with generating unsafe operations that both
pass verifier checks and uncover critical memory issues.

TA 7. Fuzzing is useful in identifying vulnerabilities
in the eBPF verifier. However, fuzzing is inherently
incomplete due to the near-infinite state space, and
eBPF presents challenges in improving the coverage and
generating programs that pass verification.



6.2. Isolation

Isolation techniques have matured to efficiently separate
the kernel from its submodules [98], [99], [100], leverag-
ing program isolation analysis for automation [101], [102].
In the context of eBPF, these methods aim to restrict all
memory operations of the eBPF subsystem within a limited
protection domain, preventing unintended interactions with
the host kernel. Software-based solutions, such as Software
Fault Isolation (SFI) [103], enforce strict memory access
policies to ensure that eBPF programs cannot compromise
kernel memory. Meanwhile, hardware-assisted isolation, uti-
lizing features like Intel MPK or ARM MTE, provides
a hardware-enforced safeguard, restricting eBPF programs
from accessing unauthorized memory regions.

6.2.1. Software-based Fault Isolation. SandBPF [36] and
SafeBPF [37] enhance runtime memory safety in eBPF
through SFI, confining eBPF programs to defined memory
regions to prevent unauthorized access to kernel memory.
SandBPF sandboxes eBPF programs using binary rewriting
to manage both memory access and control-flow operations.
This includes address masking for spatial memory safety and
monitored control-flow transfers to ensure eBPF programs
only access approved memory regions. Similarly, SafeBPF
uses SFI to enforce spatial memory safety by masking all
eBPF memory addresses, redirecting out-of-bounds accesses
back into a sandbox. Together, these approaches strengthen
eBPF’s runtime memory protection, with modest overhead,
shielding the kernel from spatial memory error exploits that
static verification may overlook.

6.2.2. Hardware-assisted Isolation. HIVE [39] introduces
a hardware-assisted isolated execution environment for
eBPF on AArch64 to enhance memory safety. While eBPF
programs traditionally operate with direct access to kernel
memory, HIVE isolates eBPF programs as if they were
independent kernel-mode applications. It achieves this by
creating a dedicated “BPF space” for eBPF data, while
keeping eBPF code in kernel memory, thereby ensuring
that eBPF programs are fully compartmentalized and cannot
access kernel memory directly. HIVE leverages hardware
features (e.g., Pointer Authentication) to enforce strict access
boundaries dynamically, providing robust memory safety
without complex static analysis. This approach effectively
prevents eBPF programs from accessing or modifying kernel
memory. Additionally, MOAT [38] is designed to isolate
eBPF programs using Intel Memory Protection Keys (MPK).
This approach aims to prevent malicious eBPF programs
from tampering with kernel memory by isolating them in
a secure domain. MOAT introduces a two-layer isolation
scheme, with the first layer using MPK to create distinct
memory domains for eBPF programs, the kernel, and shared
resources. The second layer involves isolating eBPF pro-
grams in their own address spaces.

6.2.3. Limitation of Isolation. Proposed isolation tech-
niques effectively contain the memory accesses of eBPF

programs, mitigating unauthorized access to kernel memory
that are caused by memory errors in eBPF programs mem-
ory. However, these defenses primarily focus on preventing
attacks originating solely from the eBPF program’s memory
accesses directly, some of them only focus on spatial safety.
Advanced attacks usually exploit interactions between an
eBPF program and the kernel, such as: (1) forging pointers
in the corrupted eBPF program memory and then passing
those into the kernel, potentially allowing unverified pointers
to trigger harmful operations to kernel memory (e.g., arbi-
trary memory accesses) to enhance attacker’s capability of
exploitations [28], [29], and (2) by directly misusing eBPF
helpers and other kernel APIs to corrupt kernel memory in
unsafe ways (e.g., creating a use-after-free vulnerability, as
shown in Section 4.3), also known as Cross-boundary In-
terface Vulnerabilities (CIVs) [40], [41], [104]. Addressing
those issues will require more robust validation of memory
access using cross-boundary interfaces between the kernel
and eBPF program (e.g., eBPF helper functions) and deeper
scrutiny of kernel-eBPF interactions, similar to the thorough
security vetting needed for kernel-driver interfaces [99],
[105], [106].

TA 8. Isolation confines eBPF program to reduce
unauthorized kernel accesses; however, approaches
rely on hardware support, incur notable overhead,
and do not address risks from indirect kernel access.

6.3. Runtime Memory Safety Enforcement

Ensuring memory safety during eBPF program execution
is crucial, as eBPF programs operate directly within kernel
memory, where unchecked memory accesses could lead to
kernel exploitation. To mitigate these risks, advanced tech-
niques enhance eBPF verification with runtime enforcement,
preventing accesses that may violate memory safety or aim
to exploit memory errors.

6.3.1. Summary of Proposed Runtime Defenses. Jin et
al. [107] propose a hybrid model for enforcing memory
safety in eBPF by combining static analysis with selective
runtime symbolic execution. Their approach begins with fast
static analysis to identify potentially unsafe paths, reserving
symbolic execution only for flagged paths during runtime,
dynamically verifying memory access risks in real-time and
reducing overhead. Alternatively, Jia et al. [108] enhance
system call security within the kernel through Seccomp-
eBPF, enabling eBPF to enforce policies based on current
execution context. By introducing custom helper functions,
their method manages complex memory interactions safely,
limits exploitable code paths, and reduces the kernel’s at-
tack surface while retaining eBPF’s flexibility. Interestingly,
WebAssembly offers an alternative runtime memory safety
model that could inform eBPF development [109]. By us-
ing a sandboxed execution approach with dynamic runtime
checks, Wasm isolates untrusted code from the host environ-



ment, eliminating the need for a static verifier and enforcing
strict bounds on memory and control flow.

6.3.2. Limitations of Runtime Memory Safety Enforce-
ment. Runtime enforcement techniques offer important
eBPF memory safety controls but have notable limitations.
Seccomp-eBPF, while improving system call security, only
partially protects memory by targeting specific system calls
rather than general access, leaving gaps exploitable through
other eBPF interactions. Similarly, Jin et al.’s hybrid model
narrows runtime checks to risky paths but faces scalability
issues with symbolic execution, potentially allowing mem-
ory errors to bypass detection. Together, these methods
enhance security but do not ensure full memory safety.
Approaches similar to the memory safety model in Wasm,
while guaranteeing comprehensive memory safety, have sig-
nificant runtime overheads that render it impractical for
latency-sensitive and high-performance eBPF applications.

TA 9. Runtime checks can mitigate memory errors
in eBPF programs to protect kernel, but their effec-
tiveness is limited by incomplete coverage and the re-
source constraints of eBPF (discussed in Section 7.5).

6.4. Enhancing Static Validation

Ensuring the memory safety of eBPF programs requires
enhanced static validation than the current eBPF verifier.
Researchers have proposed a variety of enhancements to
eBPF verification to improve accuracy, as shown in Table 3.
However, these techniques do not ensure that all memory
safety vulnerabilities can be detected (i.e., are not sound),
leaving potential vulnerabilities unindentified.

6.4.1. Validating a Single eBPF Program. In the scope
of validating single eBPF programs, Vishwanathan et al.
[42] improve validation by enhancing tnum arithmetic pre-
cision4, optimizing operations like addition and subtraction,
and introducing an efficient multiplication algorithm, which
boosts verifier performance. Follow-up works [43], [44]
target formally verifying range analysis in the eBPF verifier,
automating constraint generation from kernel C code and
using SMT solvers for direct validation. This work also
introduces differential synthesis to auto-generate eBPF test
programs that detect semantic mismatches, revealing previ-
ously unknown bugs and establishing validation soundness.
Nelson et al. [45], [111] propose a proof-carrying approach
that shifts verification to user-space, allowing the kernel to
focus on proof-checking, thus simplifying verification.

Recently, Sun et al. [46] introduce state embedding as
a method to enhance static verification in the eBPF verifier
by uncovering logic bugs that may allow unsafe programs
to bypass checks. Their technique embeds specific concrete

4. In the eBPF verifier, “tnum” refers to a way of tracking uncertain
or partially known values by representing each value as a combination
of known and unknown bits. This representation is particularly useful for
analyzing indirect memory accesses or data derived from untrusted inputs.

states into eBPF programs, enabling the verifier to validate
these states against its approximations; any mismatch signals
a logic flaw. This approach enables precise bug detection
without additional specifications, thus greatly improving the
accuracy of eBPF verification. Similarly, HyperBee [47]
proposes the notion of a verifer chain, which includes a
set of verifiers on top of the existing eBPF verifier for
additional customized verification. The verifier chain allows
HyperBee to customize the security checks based on the dif-
ferent guest environments’ specific needs and threat models,
such as user-defined security policies, signature validation,
and malware detection. Additionally, recent efforts such as
PREVAIL [112] propose enhancing the eBPF verifier by
integrating advanced static analysis techniques to reduce
false classifications of memory operations, while Kflex [113]
proposes replacing current eBPF extension mechanisms to
enhance isolation and security policy enforcement.

6.4.2. Validating the Composition of eBPF Programs.
The challenge is complicated when dealing with the com-
position of eBPF programs. The advantages of such compo-
sition are exemplified by BMC [48], where eBPF is used to
intercept network-level requests before they reach the full
network stack, resulting in substantial performance gains.
However, such composition must be carefully managed
to avoid compromising system safety. For example, So-
maraju [110] highlights a critical issue in such compositions,
noting that combining multiple eBPF programs, where all
of them passed the verification individually, can still lead
to stack overflows. The eBPF verifier, which checks each
program in isolation, does not account for the collective
influence of multiple programs interacting at runtime. One
approach to prevent vulnerabilities in eBPF program com-
position is taken in KFuse [49], a framework that enhances
both the security and performance of eBPF compositions by
merging chains of eBPF programs post-verification. KFuse
ensures that performance bottlenecks (e.g., indirect jumps)
are mitigated without undermining the verifier’s security
guarantees. This highlights the dual nature of eBPF com-
position: it can offer significant performance improvements
but requires careful management to ensure memory safety.

6.4.3. Limitations of Static Verification Techniques.
Despite progress in eBPF verification, unresolved challenges
persist. While static verification techniques such as verifier
chains and proof-carrying code avoid runtime overhead,
they add complexity and compatibility issues within the
kernel. Tools for verifying tnum arithmetic, effective for
validating single programs, fail to scale across multiple
interacting eBPF programs, as essential constraints may
be lost across program boundaries. Composition-oriented
solutions such as KFuse, which merges verified programs
to reduce indirect jump costs, assume no further memory
safety issue is introduced by interaction of eBPF programs,
overlooking exploits through indirect memory access across
eBPF programs that are not detectable in isolated checks.
BMC, meanwhile, bypasses built-in deeper validation lay-
ers within the kernel, weaken the kernel’s original ability



Approach Key Contributions Single Program Composition

Enhanced Arithmetic [42] Improves arithmetic precision and efficiency ✓
Range Analysis [43] Automates condition generation with SMT solvers ✓
Proof-Carrying Verification [45] Shifts verification to user-space ✓
State Embedding [46] Embeds states to detect verifier logic bugs ✓
Verifier Chain [47] Layers multiple verifiers for flexible validation ✓
Spatial Safety in Composition [110] Identifies stack overflow risks in multi-eBPF interactions ✓
Program Fusion [49] Merges eBPF chains post-verification for security ✓

TABLE 3: Summary of eBPF memory safety approaches with focus on enhancing verification.

of validation. Thus, validating eBPF programs separately
for composed eBPF programs leave unaddressed security
gaps in the interdependent environments. Furthermore, all
abovementioned methods, similar to the eBPF verifier, lack
formal verification, leaving the potential for bypasses.

TA 10. Advanced static verifications improve eBPF
memory safety. However, challenges remain as exist-
ing techniques are not sound and validate composite
eBPF programs based on incomplete assumptions.

7. Summary of Root Causes

In this section, we summarize the root causes of the
memory safety concerns introduced by eBPF. The aim is
to explain why these issues persist, despite all existing
efforts described in the previous sections, even if they were
implemented perfectly.

7.1. The Dilemma of Privilege Restrictions

Requiring privileges for eBPF execution introduces a
challenge of choosing between enhancing security and main-
taining deployment flexibility. As discussed in Section 5,
while privilege restrictions can prevent unprivileged users
from exploiting the kernel through attaching malicious eBPF
programs, these controls are optional and sometimes dis-
abled for performance, allowing potential security gaps. Al-
though limiting privileges can enhance security, it not only
limits eBPF’s usability in flexible deployment environments
where unprivileged execution is favored for simplicity, but
also cannot fully address memory safety challenges, as
attackers [91], [92] may still pursue privilege escalation
with limited privileges.

7.2. eBPF Verifier’s Validation is Untenable

The eBPF verifier is claimed to ensure the safety, secu-
rity, and correctness of eBPF programs before they are ex-
ecuted. However, as discussed in Section 4, memory safety
checks implemented by the eBPF verifier are incomplete and
unsound. The eBPF verifier’s validation is widely considered
untenable [31], [36], [37] due to a combination of structural
and operational shortcomings that contribute to persistent
vulnerabilities. One of the primary issues is its incomplete
memory safety model. While the verifier provides some
safeguards against spatial errors, such as bounds checking,

it lacks robust mechanisms for enforcing temporal safety.
This partial approach to memory safety leaves critical gaps,
particularly as more complex memory management patterns
emerge in eBPF programs, creating exploitable vulnerabili-
ties that are difficult to detect or prevent at runtime.

A major factor contributing to the verifier’s limitations
is its reactive and unstructured evolution, which has led to
a complex codebase [31] (22k lines in one file). Rather
than following a proactive design strategy, the verifier has
grown in an ad-hoc manner, with new features and bug fixes
added piecemeal when problems arose. This uncoordinated
expansion has resulted in a fragmented structure, prone to
inconsistencies and increasingly challenging to validate for
soundness. The lack of formal specification leads to an
unsound and incomplete verification process. Over the years,
this reactive growth has caused the verifier’s codebase to
expand tenfold in size, introducing complexity that makes it
difficult to validate reliably. As the codebase becomes larger
and more intricate, it not only obscures subtle errors but also
creates numerous entry points that attackers can exploit. This
escalating complexity underscores the verifier’s vulnerability
and highlights the challenges in ensuring robust security
within an ever-growing eBPF ecosystem.

Adding to these challenges, modern compiler optimiza-
tions often generate code that conflicts with the verifier’s
underlying assumptions [37]. For example, optimizations
from LLVM, commonly used for compiling eBPF programs,
may produce instruction sequences that the verifier cannot
accurately assess [114]. To bypass these conflicts, devel-
opers are often forced to make adjustments to their code
specifically to meet the verifier’s requirements.

7.3. eBPF Helpers Ignore Memory Safety

eBPF helpers lack memory safety checks and uncon-
ditionally trust the eBPF verifier (and vice versa). As
shown in the Listings 5 in Section 4.3, the eBPF helper
functions’ source code contain zero security checks. eBPF
helper functions are designed with the assumption that all
verified eBPF programs are benign and use eBPF helpers
correctly, thus, there are no security checks inside the helper
functions’ code [31], [37], [115]. Since the eBPF verifier is
responsible for ensuring that all eBPF programs adhere to
strict safety and security constraints before executing, the
eBPF helper functions do not include additional memory
safety checks. This design choice optimizes performance by
avoiding redundant checks, relying on the initial validation
to ensure that any inputs to the helper functions are already



safe. However, as described above, once a malicious eBPF
program tricks the verifier to get loaded, the eBPF helper
will not able to help mitigate any attempted exploits.

7.4. Isolation Defenses Are Insufficient Alone

Isolation techniques have emerged as a primary focus
for addressing memory safety in eBPF, aiming to con-
tain potentially unsafe operations within protection domain
boundaries to prevent unauthorized access to kernel memory.
These proposed approaches, which include both software-
based and hardware-assisted solutions, focus on creating
strict memory access restrictions for eBPF programs.

However, isolation alone does not ensure comprehensive
memory safety for the kernel. Isolation techniques primarily
address spatial memory issues [37], preventing unautho-
rized accesses to kernel memory through corrupted eBPF
programs. Yet they often fall short in protecting against
temporal memory errors, which require dynamic, real-time
memory validation. Additionally, hardware-assisted isola-
tion methods are not universally compatible or feasible,
depending on what specialized hardware support is avail-
able in the deployment environments. More importantly,
hardware features themselves may suffer from weaknesses
that allow attacker to circumvent their protections [116],
[117]. Also, as mentioned in Section 6.2.3, current isolation
approaches do not account for indirect access to kernel
memory. Moreover, isolation by itself does not address the
security of interactions between the eBPF program and the
external modules it interacts with. Any data shared with
the eBPF program or any accessible functionalities must be
protected according to their location, target, and the desired
semantics, precisely identifying such data is required.

Thus, while isolation enhances memory safety for eBPF,
it is insufficient on its own. Isolation must be supplemented
by precise static checks or additional runtime memory
checks to fully address memory safety comprehensively.

7.5. Low Budget for Runtime Checks

The budget for applying runtime checks to enforce
memory safety in eBPF is limited, primarily due to two
constraints: (1) the need for high efficiency and (2) the limits
on memory usage and instruction counts. While runtime
checks are a common solution for enforcing memory safety,
intensive usage of runtime checks, such as described in
Section 6.3.1 are not well-suited to these constraints.

First, eBPF is designed for high-performance use cases,
such as networking and security monitoring, where effi-
ciency is main goal. Introducing runtime checks would
add extra processing overhead, slowing eBPF program ex-
ecution. This overhead can severely impact performance,
particularly in latency-sensitive tasks like packet filtering,
where eBPF’s strength lies in handling large data volumes
with minimal delay. Even minor increases in execution time
due to runtime enforcement could accumulate into signifi-
cant performance bottlenecks, undermining eBPF’s primary
advantage in time-critical operations.

Second, eBPF programs operate under strict constraints
on both memory usage [118] and instruction counts [119].
Currently, while eBPF allows a maximum of 1 million
instructions to be executed at runtime, a program must be
no more than 4,096 instructions long [115]. Implementing
runtime checks would require instrumenting additional in-
structions to verify memory safety, possibly consuming the
limited instruction budget and leaving less room for essential
program logic. Developers are then forced to implement the
intended functionality as multiple eBPF programs, making
verification harder, as stated in Section 6.4. Additionally,
runtime checks may add memory overhead that contradicts
eBPF’s requirements for minimal memory usage (e.g., 512
bytes for maximum stack size [115], [120]), making run-
time checks impractical for scenarios where efficiency and
resource economy are critical.

TA 11. eBPF’s memory safety issues arise from
inherent design trade-offs (e.g., balancing privilege
restrictions, flexibillity, usability, and performance)
and from incomplete safety enforcements (e.g., un-
sound verifier and unprotected helper functions).
Additionally, the limited capacity for runtime checks
and isolation further compounds the issues, leaving
eBPF still susceptible to memory errors despite var-
ious countermeasures operating on multiple level.

8. Towards Memory-Safe eBPF

In this section, we aim to explore the efficacy of address-
ing the limitations found in current defenses and research
efforts discussed in prior sections to enforce memory safety
for the eBPF subsystem.

8.1. Full Memory Safety: How Far are We?

Given the expectations that eBPF programs are not
supposed to tamper with kernel memory and that only unsafe
memory operations may result in memory errors [121], we
aim to determine how far the eBPF subsystem is from
enforcing full memory safety as a guide to discuss future
directions for improving eBPF security.

To estimate how far eBPF programs are from full mem-
ory safety, we apply static memory safety validation [122]
to eBPF programs to quantify their unsafe operations. We
can then compare memory safety threats in eBPF to normal
C programs computed elsewhere [123], [124]. We aim to
cover memory safety comprehensively, which includes in
following three classes, defined by Huang et al. [124].
• Spatial Safety: All accesses of a memory object must only

access memory within the object’s allocated region.
• Type Safety: All accesses of a memory object must only

access the same data types for each offset and each field.
• Temporal Safety: All accesses of a memory object must

not access the object’s allocated region before allocation
nor after the object’s deallocation.



We compute the fraction of unsafe memory operations
in C and eBPF programs. Specifically, we compare three
categories of programs listed below.
• Public eBPF programs: eBPF programs that are publicly

available for various purposes. For this evaluation, we pick
the eBPF programs in Linux Kernel and BCC for their
broad usage and significance. The Linux kernel includes
foundational eBPF programs, while BCC, the most starred
(21K) eBPF-related repository on GitHub, serves as a key
reference for building custom eBPF programs.

• Malicious eBPF programs: eBPF programs with veri-
fied exploits to cause memory corruptions. The malicious
eBPF programs in our evaluation are all extracted from
verified Syzbot bug reports (serving as reproducers) or
PoC of CVEs. The validation can naturally be extended
to other intentionally crafted malicious eBPF programs,
such as those generated by the EPF approach [29].

• C programs: User-level programs that are originally eval-
uated by DataGuard and Uriah [123], [124].

To conduct memory safety validation, we adapt the
analysis in DataGuard [123] for validating stack memory
accesses comprehensively, and Uriah [124] for validating
heap memory accesses for spatial and type safety. As no
general static analysis for computing temporal safety viola-
tions on the heap precisely, we employ escape analysis [125]
to over-approximate such cases. The over-approximation of
temporally unsafe operations identified by escape analysis
has only a minimal impact on results, as heap usage is un-
common within eBPF programs5. We manually inspected all
the helpers used in the eBPF programs we tested and found
no memory safety checks in any of them (e.g., Listing 5).
This aligns with the claim in Section 7.3 that helpers ignore
memory safety. Because of this, we did not implement our
analysis in a way aware of the potential helper checks.

Our analyses are for the default Linux ecosystem. For
public eBPF programs, we select all 31 programs in the
Linux Kernel [128] and all 126 programs in the BCC
project [129]. We selected 102 malicious eBPF programs
(85 from Syzbot, 17 CVEs) for the evaluation, representing
the complete set of memory safety vulnerabilities discovered
in 2024 that have concrete PoCs and reproducers. Unlike
the public eBPF programs selected (written in C code and
aligned with LLVM compiler tool chain to be compiled
into LLVM Bitcode for memory safety validation analyses),
the malicious eBPF programs extracted from Syzbot reports
are presented in bytecode. To make them compatible with
LLVM toolchain, we used an IDA Pro plugin [130] to lift
(i.e., disassemble and decompile) the eBPF bytecode to C
source code. For C programs, we used all programs that
are originally evaluated in DataGuard and Uriah papers; the
goal is to use such data to serve as an comparison of unsafe
operations between eBPF programs and C programs.

However, precisely validating memory safety for eBPF
programs requires extracting kernel-specific constraints,
such as the size of kernel data accessed by eBPF (e.g., eBPF

5. eBPF programs cannot manage heap memory internally [126], [127].
The data that they generally access are on the kernel heap, e.g., eBPF maps.

8.81%

1.62%

7.16%
2.12%

3.09%

0%

2%

4%

6%

8%

10%

12%

C Program Public eBPF Malicious eBPF

Lower Bound Upper Bound

Figure 2: Fraction of Unsafe Memory Operations.

maps). The state-of-the-art static memory safety validation
approaches that we utilized [123], [124] lack support for this
cross-boundary constraint extraction, so constraints from the
kernel are not recognized by the memory safety validation.
To assess the impact of these kernel constraints, we mea-
sured the fraction of unsafe operations under two scenarios:
(1) computing the upper bound of unsafe operations by
identifying all pointers that could possibly violate one of
the three classes of memory safety in eBPF when associated
kernel constraints are available and (2) computing the lower
bound of unsafe operations by finding operations that would
be unsafe under any kernel constraints (i.e., use variable
lengths and perform unsafe type casts). Note that, we do
not classify all pointer arithmetic or type cast operations
as unsafe, for the ones whose constraints can be retrieved
with eBPF program for them to be validated as safe, such
as the constant size or the concrete types, we classify such
operation as safe by leveraging DataGuard/Uriah analyses.
In other words, the availability of the kernel constraints are
the only cause of the gap between the lower and upper bound
of unsafe operations. This reveals the potential to close the
gap by pushing the upper bound toward the lower bound
through effectively extracting kernel constraints.

As shown in Figure 2, the fraction of unsafe memory
operations in public eBPF programs is relatively low, given
the intense nature of memory accesses of eBPF programs
for their functionality. While 8.81% of memory operations
may be unsafe in the tested C programs, only 1.62%-
3.74% of memory operations would be unsafe in public
eBPF programs. Even the fraction of unsafe operations in
malicious (syzbot-generated) eBPF programs is comparable
to C programs, which we attribute to the fact that (1) the
eBPF verifier limits the number of unsafe operations, even
when generating malicious eBPF programs, and (2) they are
built solely for exploiting memory errors (e.g., by Syzbot),
and thus do not contain many meaningful operations for
functionalities. Based on these, the higher fraction of unsafe
operations in malicious eBPF programs is expected.

Notably, although malicious eBPF programs have a
comparable fraction of unsafe operations as C programs,
the number of individual unsafe operations is orders of
magnitude smaller. For example, nginx (one of the evaluated
C programs that has a smaller fraction of unsafe operations
than average) has more than two million instructions in
total of which around 30% are memory operations, where



eBPF-Only Shared Objs

Spatial Type Temp Spatial Type Temp

Public 33.5% 2.1% 5.8% 48.9% 2.5% 7.2%
Malicious 31.1% 5.3% 8.1% 43.7% 5.6% 6.0%

eBPF Verifier [30] V
HyperBee [47] V
KFuse [49] V
PREVAIL [112] V
SandBPF [36] II
SafeBPF [37] II
HIVE [39] II
MOAT [38] II
Prevail2Radius [107] T
Seccomp-eBPF [131] T
TnumArith [43] T
RangeAnalysis [44] T

TABLE 4: Protection Scope of Defenses, ”V” stands for validation ap-
proaches, ”II” stands for isolation approaches, ”T” stands for target de-
fenses for specific partterns.

58,347 of them are unsafe memory operations. For all
evaluated eBPF programs, recalling that the maximum in-
struction count per eBPF program is 4,096 (see Section 7.5),
the average number of unsafe memory operations is only
37 (lower bound) and 85 (upper bound) for public eBPF
programs, and 29 (lower bound) to 41 (upper bound) for
malicious eBPF programs6. The drastically smaller number
of unsafe memory operations in eBPF programs compared
to general C programs, suggests that less effort (i.e., fewer
runtime checks and/or code modifications) is necessary to
prevent unsafe memory operations from exploiting the eBPF
subsystem than general C programs comprehensively.

8.2. Protection Scope of Existing Defenses

To better understand the limitations of existing defenses,
we categorize each unsafe operation identified by the static
memory safety validation (Section 8.1) along two dimen-
sions. First, we classify the type of memory safety violation
as either spatial, type, or temporal. Second, we determine
whether the operation accesses memory local to the eBPF
program (eBPF-only) or interacts with memory shared with
the kernel (shared). We also distinguish between public and
malicious eBPF programs. This categorization provides the
basis for systematically evaluating the scope of defenses.

Table 4 presents our evaluation of these defenses. The
top portion of the table reports the distribution of unsafe
operations by memory safety category and whether the op-
erations target eBPF-only objects or objects shared with the
kernel. This breakdown highlights that a significant portion
of unsafe operations involve shared memory, which many
defenses fail to adequately protect. The bottom portion of
the table lists defenses grouped by their primary strategy:
verification for static/dynamic/symbolic validation, isola-
tion for isolation approach, or targeted for defenses de-
signed to mitigate specific bug patterns. Our evaluation

6. Malicious eBPF programs are smaller than public ones, as they focus
solely on exploiting vulnerabilities without actual functionalities, resulting
in fewer unsafe operations but a higher proportion overall.

combines experimental evidence and fundamental design
analysis.

The legend used in the table are:
• ” ” indicates that the defense attempts comprehensive

coverage of a violation category but relies on ad hoc
checks that may be unsound, missing attack vectors.

• ” ” denotes defenses that confine accesses to eBPF-only
memory but do not protect data shared with the kernel,
leaving part of the attack surface unguarded.

• ” ” represents targeted defenses that address specific
vulnerabilities, without providing general coverage for the
entire class of violations.

• ” ” means no protection is provided for that category.
Clearly, none of the defenses, whether currently de-

ployed or proposed in research, fully or soundly cover any
category of unsafe operations. Therefore, we do not include
a legend symbol representing complete protection.

8.3. Enhancing Static Memory Safety Validation

The limitations of current defenses (discussed in Sec-
tion 6 and Section 8.2) highlight a need for a stronger focus
on improving the eBPF verifier’s capability to validate mem-
ory safety before the eBPF program is loaded into kernel.
Approaches such as DataGuard and Uriah [123], [124] and
the Rust compiler provide valuable insights for enhancing
memory safety validation, enabling the prevention of a wide
range of memory error exploitations without relying on
costly runtime checks or incomplete isolation techniques.

The hypothesis of static memory safety validation is that
most objects in a program are only accessed via safe mem-
ory operations across all aliases, enabling comprehensive
and efficient memory safety enforcement through isolation,
as examined in DataGuard and Uriah [123], [124]. In Fig-
ure 2, the gap between the upper and lower bounds of unsafe
operations is significant, with the upper bound exceeding the
lower bound by more than a factor of two for public eBPF
programs and showing over a 40% increase for malicious
programs. This discrepancy highlights the conservativeness
of static analysis in the absence of complete kernel informa-
tion. To address this, we performed a conservative targeted
analysis that extracts kernel constraints from only the as-
sociated submodule using available information exist in the
eBPF program ((e.g., header files, map definitions)). This
refined analysis reduced the proportion of unsafe operations
to 1.74% for public and 8.63% for malicious eBPF programs
for upper bound, a 95% and 53% drop respectively from
the gap between original lower and upper bounds, demon-
strating the importance of incorporating kernel constraints
to improve the precision of static memory safety validation.

A promising approach lies in extending the memory
safety validation in the eBPF verifier to incorporate the
kinds of memory safety guarantees offered by languages like
Rust [132]. Rust’s memory model, which ensures strict own-
ership [133], borrowing [134], and lifetimes [135], could
serve as a blueprint for enhancing the eBPF verifier’s static
analysis capabilities. However, the challenge of extract-
ing kernel-specific constraints lies in accurately identifying



aliases and the memory objects that are accessed across
eBPF and kernel boundaries, as mentioned in Section 8.1.
Alias analysis, which determines whether two pointers ref-
erence the same memory location, becomes complex in the
context of eBPF because pointers may interact with both
kernel and user data through helper functions. These inter-
actions complicate the verifier’s ability to maintain precise
safety constraints, as it must account for indirect accesses
caused by helper functions or shared kernel data structures.
To address this, a refined alias-tracking mechanism (such
as combining data-flow-based and type-based alias analy-
sis [136], [137], [138]), and an analysis that can determine
the data that is shared between eBPF program and kernel
(e.g., KSplit [99]) need to be integrated into the validation.

Moving forward, syntactic annotations (e.g., Checked-
C [139], [140] and Rust extensions) could be employed to
improve the accuracy of memory safety validation. Although
providing complete memory safety guarantees for all eBPF
programs is challenging, the verifier could adopt a fall-
back approach: rejecting any programs that lack sufficient
safety information, thereby prompting developers to refine
their code to meet validation requirements. This fallback
model, successfully implemented in frameworks such as
CRT-C [141] and EC [142] for privilege separation and
program compartmentalization, supports safer development
by combining static analysis with developer responsibility.
Applying the same model to memory safety validation
would not only enhance security but also create a devel-
opment process that encourages careful memory handling
in eBPF, leading to a more secure codebase. As mentioned
in Section 8.1, the adopted analyses are unaware of helper
checks, which may lead to overapproximated results by
flagging unsafe operations that are actually prevented by
existing checks. Enhancing the analysis to recognize such
checks and validations is a promising direction for future
work, as demonstrated by [143].

Meanwhile, recent efforts such as PREVAIL [112] of-
fer promising techniques for augmenting or even replacing
the default eBPF verifier with a more robust validation
mechanism. PREVAIL’s modular design allows for the in-
corporation of language-based safety properties similar to
those provided by Rust, further strengthening eBPF secu-
rity. Moreover, we consider the approach of Kflex [113],
which proposes an alternative extension mechanism to the
current eBPF framework. By substituting existing extension
mechanisms with Kflex, we can facilitate stronger isolation
and more precise enforcement of security policies at the
boundary between eBPF programs and kernel code.

8.4. Protecting eBPF from Unsafe Operations

Enhancing memory safety validation offers a robust
solution for identifying unsafe memory operations that need
attention. Additional memory safety enforcement can be
employed specifically to unsafe operations.

8.4.1. Adding Runtime Checks Strategically. Deploying
intensive runtime checks on every memory operation is

infeasible given the nature of eBPF (see Section 7.5). While
deploying runtime checks extensively is impractical for
eBPF due to performance constraints, strategically placed
runtime checks can still be beneficial in high-risk scenarios.
By selectively applying these checks to the operations that
are most vulnerable, eBPF can achieve a balance between
safety and efficiency. As discussed in Section 8.1, the low
number and fraction of unsafe memory operations in public
eBPF programs suggests that only a modest number of
runtime checks may be necessary, which may limit the
impact of these overheads while enforcing memory safety.
Use of the Uriah system [124] for heap memory safety
validation was shown to reduce the overhead of runtime
checks commensurate with the fraction of runtime checks
removed from the objects found safe.

Complementing this, runtime checks can be restricted
to critical interactions with sensitive kernel data, ensuring
essential protections are in place without compromising per-
formance. This layered approach, combining precise static
validation with selectively placed runtime checks, could
secure kernel memory safety with efficient use of computa-
tional resources. Note that, though fuzzing is generally con-
sidered incomplete in terms of coverage, effective fuzzing
can be introduced using a similar insight that only the unsafe
operations need to be targeted for testing. Such directed
fuzzing approaches can more precisely generate eBPF inputs
that both pass the eBPF verifier and trigger vulnerabilities,
enhancing the detection of memory vulnerabilities.

8.4.2. Advancing Finer-grained Isolation. Current isola-
tion techniques primarily focus on preventing kernel mem-
ory corruption directly from eBPF memory, but often over-
look other threats, such as the malicious use of unchecked
eBPF helpers (discussed in Section 6.2.3). These cross-
boundary interface vulnerabilities (CIVs) have been demon-
strated in recent studies, notably in CIVScope [40] and
ConfFuzz [104], where attackers forge pointers or misuse
helper functions to indirectly compromise kernel memory.

A finer-grained isolation model is needed to address
these vulnerabilities more precisely. Memory safety valida-
tion can play a crucial role in guiding the application of
isolation measures. For example, eBPF helpers that perform
inherently safe memory operations need not be isolated,
whereas operations flagged as unsafe could be sandboxed
or subjected to additional runtime checks. This targeted
approach not only tightens security where it is most needed
but also avoids the performance penalties associated with
blanket isolation. Moreover, emerging hardware-assisted
isolation technologies [38], [39] offer promising avenues to
reinforce these defenses. Unexplored hardware features such
as ARM’s Memory Tagging Extension (MTE) [144] and
the CHERI (Capability Hardware Enhanced RISC Instruc-
tions) [145] architecture provide mechanisms for enforcing
strict memory access boundaries, facilitating more dynamic,
fine-grained isolation schemes.

8.4.3. Migrating to Memory Safe Language. Migrating
eBPF programs to a memory-safe language like Rust, rather



than relying solely on the verifier to catch errors, can be an
effective way to fundamentally enhance memory safety in
the eBPF ecosystem. Jia et al. [31] highlight that while the
eBPF verifier is essential for safety, it cannot fully address
memory safety challenges, especially when multiple eBPF
programs or complex interactions are involved. Shifting to
Rust-based eBPF programs could sidestep many of these
issues by embedding runtime memory safety checks directly
into the programs at compile time, reducing the reliance
on separate runtime verification. With Rust’s strict memory
and ownership rules, vulnerabilities common in C could be
minimized or eliminated, allowing eBPF to maintain high
performance while ensuring stronger safety guarantees.

However, integrating Rust for eBPF introduces chal-
lenges. Supporting Rust in the Linux kernel requires adapt-
ing dependencies of Rust tooling and ensuring compatibility
without adding runtime overhead (e.g., integrating a Rust
compiler to the kernel or its trusted computing base). For
example, Aya [146] enables writing eBPF programs in Rust
but still relies entirely on the standard eBPF compilation and
verification pipeline. Additionally, Rust’s safety guarantees
introduce extra instructions that might push eBPF programs
to their instruction limits. Despite these obstacles, Rust
could offer a substantial security improvement for eBPF,
but successful integration requires careful handling of the
above-mentioned issues.

9. Conclusion

eBPF has brought transformative capabilities to the
Linux kernel, but it also introduces critical memory safety
threats. We conducted the first comprehensive analysis of the
root causes of eBPF’s memory safety issues, revealing lim-
itations in existing defenses and bug detection approaches,
such as the verifier, isolation mechanisms, fuzzing, and
runtime checks. Our findings indicate that current solutions
are inadequate in ensuring comprehensive memory safety.
We propose future directions for addressing these gaps,
focusing on improving static validation, refining isolation,
learning and borrowing from memory-safe languages, and
strategically deploying runtime checks. These directions aim
to guide future developments toward achieving comprehen-
sive memory safety without compromising the performance
and flexible functionality requirements for eBPF.

Acknowledgment

We would like to thank our Shepherd and anonymous
reviewers for their constructive suggestions and insight-
ful feedback. Special thanks to Tao Lyu, Aditya Basu,
and Yongzhe Huang for their invaluable input on the
eBPF context. This work was supported by NSF CNS-
1801534, the European Research Council (ERC) Horizon
2020 grant 850868 (Funded by the European Union), and
SNSF PCEGP2 186974. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views

of the U.S. Government, the NSF, the European Union,
the European Research Council Executive Agency, or the
SNSF. These views should not be interpreted as official
policies or endorsements, expressed or implied, of the above
government, organizations, or their affiliates.

References

[1] eBPF.io, eBPF, https://ebpf.io/.

[2] B. Gregg, “BPF: A New Type of Software,” 2019, accessed:
2023-11-01. [Online]. Available: https://www.brendangregg.com/
blog/2019-12-02/bpf-a-new-type-of-software.html

[3] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and
lessons learned,” in 2018 IEEE 19th International Conference on
High Performance Switching and Routing (HPSR), 2018, pp. 1–8.

[4] M. Xhonneux, F. Duchene, and O. Bonaventure, “Leveraging ebpf
for programmable network functions with ipv6 segment routing,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT ’18), 2018.

[5] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacı́fico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet processing with
ebpf and xdp: Concepts, code, challenges, and applications,” ACM
Comput. Surv., vol. 53, no. 1, Feb. 2020.

[6] C. Liu, Z. Cai, B. Wang, Z. Tang, and J. Liu, “A protocol-
independent container network observability analysis system based
on ebpf,” in 2020 IEEE 26th International Conference on Parallel
and Distributed Systems (ICPADS), 2020, pp. 697–702.

[7] K. Suo, Y. Zhao, W. Chen, and J. Rao, “vnettracer: Efficient and
programmable packet tracing in virtualized networks,” in 2018 IEEE
38th International Conference on Distributed Computing Systems
(ICDCS), 2018, pp. 165–175.

[8] B. Gregg, BPF Performance Tools: Using eBPF for System Perfor-
mance Monitoring, 2020.

[9] Elastic Observability Labs, “Elastic Universal Profiling
Agent Now Open Source,” 2023, accessed: 2023-11-01.
[Online]. Available: https://www.elastic.co/observability-labs/blog/
elastic-universal-profiling-agent-open-source

[10] C. Cassagnes, L. Trestioreanu, C. Joly, and R. State, “The rise of
ebpf for non-intrusive performance monitoring,” in 2020 IEEE/IFIP
Network Operations and Management Symposium, 2020.

[11] D. C. Panaite, “Evaluating the performance of ebpf-based security
software in a virtualized 5g cluster,” 2024. [Online]. Available:
https://webthesis.biblio.polito.it/31760/

[12] S. Sundberg, “Evolved passive ping: Passively monitor network
latency from within the kernel,” 2024. [Online]. Available: https:
//www.diva-portal.org/smash/get/diva2:1852360/FULLTEXT02.pdf

[13] G. Fournier, “Return to sender: Detecting kernel exploits with ebpf,”
in Blackhat USA, 2022. [Online]. Available: https://i.blackhat.com/
USA-22/Wednesday/US-22-Fournier-Return-To-Sender.pdf

[14] HardenedVault, “Ved-ebpf: Kernel exploit and rootkit detection
using ebpf,” 2023. [Online]. Available: https://github.com/
hardenedvault/ved-ebpf

[15] Z. Wang, Y. Guang, Y. Chen, Z. Lin, M. Le, D. K. Le, D. Williams,
X. Xing, Z. Gu, and H. Jamjoom, “SeaK: Rethinking the design
of a secure allocator for OS kernel,” in 33rd USENIX Security
Symposium (USENIX Security 24), 2024.

[16] Z. Wang, Y. Chen, and Q. Zeng, “PET: Prevent discovered errors
from being triggered in the linux kernel,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023.

[17] H. J. Hadi, M. Adnan, Y. Cao, F. B. Hussain, N. Ahmad, M. A.
Alshara, and Y. Javed, “ikern: Advanced intrusion detection and
prevention at the kernel level using ebpf,” Technologies, 2024.

https://ebpf.io/
https://www.brendangregg.com/blog/2019-12-02/bpf-a-new-type-of-software.html
https://www.brendangregg.com/blog/2019-12-02/bpf-a-new-type-of-software.html
https://www.elastic.co/observability-labs/blog/elastic-universal-profiling-agent-open-source
https://www.elastic.co/observability-labs/blog/elastic-universal-profiling-agent-open-source
https://webthesis.biblio.polito.it/31760/
https://www.diva-portal.org/smash/get/diva2:1852360/FULLTEXT02.pdf
https://www.diva-portal.org/smash/get/diva2:1852360/FULLTEXT02.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Fournier-Return-To-Sender.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Fournier-Return-To-Sender.pdf
https://github.com/hardenedvault/ved-ebpf
https://github.com/hardenedvault/ved-ebpf


[18] M. Craun, K. Hussain, U. Gautam, Z. Ji, T. Rao, and D. Williams,
“Eliminating ebpf tracing overhead on untraced processes,” in Pro-
ceedings of the ACM SIGCOMM 2024 Workshop on EBPF and
Kernel Extensions (eBPF ’24), 2024.

[19] J. Jia, M. V. Le, S. Ahmed, D. Williams, H. Jamjoom, and T. Xu,
“Fast (trapless) kernel probes everywhere,” in 2024 USENIX Annual
Technical Conference (USENIX ATC 24), 2024.

[20] L. Caviglione, W. Mazurczyk, M. Repetto, A. Schaffhauser, and
M. Zuppelli, “Kernel-level tracing for detecting stegomalware and
covert channels in linux environments,” Computer Networks, 2021.

[21] B. Sharma and D. Nadig, “ebpf-enhanced complete observability
solution for cloud-native microservices,” in IEEE International Con-
ference on Communications, 2024.

[22] G. Budigiri, “Secure and scalable policy management in cloud native
networking,” in Proceedings of the 24th International Middleware
Conference (Middleware ’23), 2023.

[23] Y. He, R. Guo, Y. Xing, X. Che, K. Sun, Z. Liu, K. Xu, and Q. Li,
“Cross container attacks: The bewildered eBPF on clouds,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023.

[24] D. Jin, A. J. Gaidis, and V. P. Kemerlis, “BeeBox: Hardening
BPF against transient execution attacks,” in 33rd USENIX Security
Symposium (USENIX Security 24), 2024.

[25] O. Kirzner and A. Morrison, “An analysis of speculative type
confusion vulnerabilities in the wild,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[26] H. Sun, Y. Xu, J. Liu, Y. Shen, and N. Guan, “Finding correctness
bugs in ebpf verifier with structured and sanitized program,” in
Proceedings of the European Conference on Computer Systems
(EuroSys), 2024.

[27] M. Liber, “The good, bad and compromisable aspects
of linux ebpf,” 2022, accessed: 2024-10-22. [Online].
Available: https://pentera.io/wp-content/uploads/2022/07/pentera-
labs-the-good-bad-and-compromisable-aspects-of-linux-ebpf.pdf

[28] Q. Liu, W. Shen, J. Zhou, Z. Zhang, J. Hu, S. Ni, K. Lu, and
R. Chang, “Interp-flow hijacking: Launching non-control data attack
via hijacking ebpf interpretation flow,” in 29th European Symposium
on Research in Computer Security, 2024.

[29] D. Jin, V. Atlidakis, and V. P. Kemerlis, “EPF: Evil packet filter,”
in 2023 USENIX Annual Technical Conference (ATC’ 23), 2023.

[30] eBPF Verifier, 2024, https://docs.kernel.org/bpf/verifier.html.

[31] J. Jia, R. Sahu, A. Oswald, D. Williams, M. V. Le, and T. Xu,
“Kernel extension verification is untenable,” in Proceedings of the
19th Workshop on Hot Topics in Operating Systems (HotOS), 2023.

[32] Syzkaller, “Syzkaller upstream dashboard.” [Online]. Available:
https://syzkaller.appspot.com/upstream

[33] Y. Song, “bpf: Fix a sdiv overflow issue,” 2024. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/
commit/?id=7dd34d7b7dcf9309fc6224caf4dd5b35bedddcb7

[34] A. Nakryiko, “bpf: add support for open-coded itera-
tor loops,” 2024, accessed: 2024-10-22. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/
commit/?id=06accc8779c1d558a5b5a21f2ac82b0c95827ddd

[35] S. Team, “Bpf subsystem overview and open is-
sues,” 2024, accessed: 2024-10-22. [Online]. Available:
https://syzkaller.appspot.com/upstream/s/bpf#open

[36] S. Y. Lim, X. Han, and T. Pasquier, “Unleashing Unprivileged eBPF
Potential with Dynamic Sandboxing,” in SIGCOMM Workshop on
eBPF and Kernel Extensions. ACM, 2023.

[37] S. Y. Lim, T. Prasad, X. Han, and T. Pasquier, “SafeBPF: Hardware-
assisted Defense-in-depth for eBPF Kernel Extensions,” in Cloud
Computing Security Workshop (CCSW), Sep. 2024, in Cloud Com-
puting Security Workshop (CCSW).

[38] H. Lu, S. Wang, Y. Wu, W. He, and F. Zhang, “MOAT: Towards
safe BPF kernel extension,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024.

[39] P. Zhang, C. Wu, X. Meng, Y. Zhang, M. Peng, S. Zhang, B. Hu,
M. Xie, Y. Lai, Y. Kang, and Z. Wang, “HIVE: A hardware-assisted
isolated execution environment for eBPF on AArch64,” in 33rd
USENIX Security Symposium (USENIX Security 24), 2024.

[40] Y. Chien, V.-A. Bădoiu, Y. Yang, Y. Huo, K. Kaoudis, H. Lefeuvre,
P. Olivier, and N. Dautenhahn, “Civscope: Analyzing potential mem-
ory corruption bugs in compartment interfaces,” in Proceedings of
the 1st Workshop on Kernel Isolation, Safety and Verification, 2023.

[41] Y. Huang, K. Huang, M. Ennis, V. Narayanan, A. Burtsev, T. Jaeger,
and G. Tan, “Sok: Understanding the attack surface in device driver
isolation frameworks,” 2024.

[42] H. Vishwanathan, M. Shachnai, S. Narayana, and S. Nagarakatte,
“Sound, precise, and fast abstract interpretation with tristate num-
bers,” in Proceedings of the 20th IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO ’22), 2022.

[43] S. Bhat and H. Shacham, “Formal verification of the linux kernel
ebpf verifier range analysis,” 2022. [Online]. Available: https:
//sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf

[44] H. Vishwanathan, M. Shachnai, S. Narayana, and S. Nagarakatte,
“Verifying the verifier: ebpf range analysis verification,” in Com-
puter Aided Verification (CAV): 35th International Conference, 2023.

[45] L. Nelson, “A proof-carrying approach to building correct and
flexible in-kernel verifiers,” 2021, linux Plumbers Conference.

[46] H. Sun and Z. Su, “Validating the eBPF verifier via state embed-
ding,” in 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), 2024.

[47] Y. Wang, D. Li, and L. Chen, “Seeing the invisible: Auditing ebpf
programs in hypervisor with hyperbee,” in Proceedings of the 1st
Workshop on EBPF and Kernel Extensions (eBPF ’23), 2023.

[48] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “BMC:
Accelerating memcached using safe in-kernel caching and pre-stack
processing,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), 2021.

[49] H.-C. Kuo, K.-H. Chen, Y. Lu, D. Williams, S. Mohan, and T. Xu,
“Verified programs can party: optimizing kernel extensions via post-
verification merging,” in Proceedings of the Seventeenth European
Conference on Computer Systems (EuroSys ’22), 2022.

[50] eBPF Documentation, 2024, https://docs.kernel.org/bpf/.

[51] K. Recipes, “Cves are dead, long live the cve,” 2019.
[Online]. Available: https://kernel-recipes.org/en/2019/talks/cves-
are-dead-long-live-the-cve/

[52] J. Corbet, “How kernel cve numbers are assigned,” 2024. [Online].
Available: https://lwn.net/Articles/978711/

[53] M. H. N. Mohamed, X. Wang, and B. Ravindran, “Understanding
the security of linux ebpf subsystem,” in Proceedings of the 14th
ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’23), 2023.

[54] S. Team, “Syzkaller subsystems overview,” 2024. [Online].
Available: https://syzkaller.appspot.com/upstream/subsystems

[55] S. Contributors, “Syzkaller: Coverage-guided kernel fuzzer,” 2024.
[Online]. Available: https://github.com/google/syzkaller

[56] MITRE, “Cve-2024-41003,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-41003

[57] ——, “Cve-2024-42072,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-42072

[58] ——, “Cve-2024-50164,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-50164

[59] ——, “Cve-2024-36937,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-36937

https://pentera.io/wp-content/uploads/2022/07/pentera-labs-the-good-bad-and-compromisable-aspects-of-linux-ebpf.pdf
https://pentera.io/wp-content/uploads/2022/07/pentera-labs-the-good-bad-and-compromisable-aspects-of-linux-ebpf.pdf
https://docs.kernel.org/bpf/verifier.html
https://syzkaller.appspot.com/upstream
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7dd34d7b7dcf9309fc6224caf4dd5b35bedddcb7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7dd34d7b7dcf9309fc6224caf4dd5b35bedddcb7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=06accc8779c1d558a5b5a21f2ac82b0c95827ddd
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=06accc8779c1d558a5b5a21f2ac82b0c95827ddd
https://syzkaller.appspot.com/upstream/s/bpf#open
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://docs.kernel.org/bpf/
https://kernel-recipes.org/en/2019/talks/cves-are-dead-long-live-the-cve/
https://kernel-recipes.org/en/2019/talks/cves-are-dead-long-live-the-cve/
https://lwn.net/Articles/978711/
https://syzkaller.appspot.com/upstream/subsystems
https://github.com/google/syzkaller
https://www.cve.org/CVERecord?id=CVE-2024-41003
https://www.cve.org/CVERecord?id=CVE-2024-42072
https://www.cve.org/CVERecord?id=CVE-2024-50164
https://www.cve.org/CVERecord?id=CVE-2024-36937


[60] ——, “Cve-2024-26885,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-26885

[61] ——, “Cve-2024-45020,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-45020

[62] ——, “Cve-2024-38566,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-38566

[63] ——, “Cve-2024-42151,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-42151

[64] ——, “Cve-2024-43837,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-43837

[65] ——, “Cve-2024-43910,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-43910

[66] ——, “Cve-2024-49861,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-49861

[67] ——, “Cve-2024-50063,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-50063

[68] ——, “Cve-2024-26611,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-26611

[69] ——, “Cve-2024-43838,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-43838

[70] ——, “Cve-2024-42063,” 2024, accessed: 2024-10-22. [Online].
Available: https://www.cve.org/CVERecord?id=CVE-2024-42063

[71] Linux-Kernel, “ebpf verifier: Ensuring safety and correctness in
ebpf programs,” 2024, accessed: 2024-10-22. [Online]. Available:
https://docs.kernel.org/bpf/verifier.html#pruning

[72] NVD, “Cve-2023-2163,” 2023. [Online]. Available: https:
//nvd.nist.gov/vuln/detail/CVE-2023-2163

[73] GoogleBugHunters, “A deep dive into cve-2023-2163: How we
found and fixed an ebpf linux kernel vulnerability,” 2023, accessed:
2024-10-22. [Online]. Available: https://bughunters.google.com/
blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-
we-found-and-fixed-an-ebpf\-linux-kernel-vulnerability

[74] GoogleSecurityResearch, “Proof of concept for cve-2023-2163,”
2023, accessed: 2024-10-22. [Online]. Available: https://github.com/
google/security-research/tree/master/pocs/linux/cve-2023-2163

[75] NVD, “Cve-2021-4204,” 2021. [Online]. Available: https:
//nvd.nist.gov/vuln/detail/CVE-2021-4204

[76] Linux-Kernel, “Linux kernel ebpf verifier test suite, test verifier.c,”
2024. [Online]. Available: https://github.com/torvalds/linux/blob/
master/tools/testing/selftests/bpf/test verifier.c#L426

[77] ——, “kfuncs: Exposing kernel functions to bpf programs,” 2024.
[Online]. Available: https://docs.kernel.org/bpf/kfuncs.html

[78] Y. Zhang, “The secure path forward for ebpf
runtime: Challenges and innovations.” [Online]. Avail-
able: https://medium.com/@yunwei356/the-secure-path-forward-
for-ebpf-runtime-challenges-and-innovations-968f9d71fc16

[79] Syzkaller, “KMSAN: uninit-value in dev map lookup elem.”
[Online]. Available: https://syzkaller.appspot.com/bug?extid=
1a3cf6f08d68868f9db3

[80] ——, “Reproduction program for syzkaller bug.” [Online]. Avail-
able: https://syzkaller.appspot.com/x/repro.c?x=12e081f1180000

[81] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas,
N. Rinetzky, L. Ryzhyk, and M. Sagiv, “Simple and precise static
analysis of untrusted linux kernel extensions,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’19), 2019.

[82] M. Kerrisk, 2023. [Online]. Available: https://man7.org/linux/man-
pages/man7/capabilities.7.html

[83] The Linux Kernel Documentation, LSM BPF Programs, 2023.
[Online]. Available: https://docs.kernel.org/bpf/prog lsm.html

[84] ——, BPF Type Format (BTF), 2023. [Online]. Available:
https://docs.kernel.org/bpf/btf.html

[85] LWN.net, “Bpf and security,” 2024. [Online]. Available: https:
//lwn.net/Articles/946389/

[86] SUSE, “Security hardening: Use of ebpf by unprivileged
users has been disabled by default,” 2023. [Online]. Available:
https://www.suse.com/support/kb/doc/?id=000020545

[87] J. Corbet, “Reconsidering unprivileged bpf,” 2019. [Online].
Available: https://lwn.net/Articles/796328/

[88] M. D. Verde, “Cap bpf - a new linux kernel capability for bpf,”
2023. [Online]. Available: https://mdaverde.com/posts/cap-bpf/

[89] Cilium, “Cilium: ebpf-based networking, observability, security,”
2024. [Online]. Available: https://cilium.io/

[90] RedHat, “Using ebpf in unprivileged pods.” [Online]. Available:
https://next.redhat.com/2023/07/18/

[91] MITRE, “Cve-2023-52920: Null pointer dereference vulnerability in
linux kernel’s ebpf,” 2024. [Online]. Available: https://nvd.nist.gov/
vuln/detail/CVE-2023-52920

[92] T. Lyu, “[patch] incorrect backtracking for load/store or atomic
ops,” Linux Kernel Mailing List, 2023. [Online]. Available: https:
//lore.kernel.org/bpf/20231020155842.130257-1-tao.lyu@epfl.ch/

[93] LibFuzzer. [Online]. Available: https://llvm.org/docs/LibFuzzer.html

[94] S. Scannell, “ebpf fuzzing: Architecture, challenges, and
vulnerabilities,” 2020, accessed: 2024-10-22. [Online]. Available:
https://scannell.io/posts/ebpf-fuzzing/

[95] Google, “A new way to fuzz for ebpf vulnerabilities,”
2023. [Online]. Available: https://security.googleblog.com/2023/
05/introducing-new-way-to-buzz-for-ebpf.html

[96] H.-W. Hung and A. Amiri Sani, “Brf: Fuzzing the ebpf runtime,”
Proc. ACM Softw. Eng., vol. 1, no. FSE, Jul. 2024.

[97] C. Peng, L. Wu, M. Jiang, and Y. Zhou, “Toss a fault to bpfchecker:
Revealing implementation flaws for ebpf runtimes with differential
fuzzing,” in Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2024.

[98] V. Narayanan, Y. Huang, G. Tan, T. Jaeger, and A. Burtsev,
“Lightweight kernel isolation with virtualization and VM functions,”
in Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), 2020.

[99] Y. Huang, V. Narayanan, D. Detweiler, K. Huang, G. Tan, T. Jaeger,
and A. Burtsev, “KSplit: Automating device driver isolation,” in 16th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2022.

[100] X. Chen, Z. Li, T. Jain, V. Narayanan, and A. Burtsev, “Limitations
and opportunities of modern hardware isolation mechanisms,” in
2024 USENIX Annual Technical Conference (ATC ’24), 2024.

[101] S. Liu, D. Zeng, Y. Huang, F. Capobianco, S. McCamant, T. Jaeger,
and G. Tan, “Program-mandering: Quantitative privilege separation,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19’), 2019.

[102] S. Liu, G. Tan, and T. Jaeger, “PtrSplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 24th Con-
ference on Computer and Communications Security (CCS), 2017.

[103] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the Fourteenth
Symposium on Operating Systems Principles (SOSP ’93’), 1993.

[104] H. Lefeuvre, V.-A. Bădoiu, Y. Chen, F. Huici, N. Dautenhahn,
and P. Olivier, “Assessing the impact of interface vulnerabilities in
compartmentalized software,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2023.

[105] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zell-
weger, and A. Burtsev, “Redleaf: Isolation and communication in a
safe operating system,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’20), 2020.

https://www.cve.org/CVERecord?id=CVE-2024-26885
https://www.cve.org/CVERecord?id=CVE-2024-45020
https://www.cve.org/CVERecord?id=CVE-2024-38566
https://www.cve.org/CVERecord?id=CVE-2024-42151
https://www.cve.org/CVERecord?id=CVE-2024-43837
https://www.cve.org/CVERecord?id=CVE-2024-43910
https://www.cve.org/CVERecord?id=CVE-2024-49861
https://www.cve.org/CVERecord?id=CVE-2024-50063
https://www.cve.org/CVERecord?id=CVE-2024-26611
https://www.cve.org/CVERecord?id=CVE-2024-43838
https://www.cve.org/CVERecord?id=CVE-2024-42063
https://docs.kernel.org/bpf/verifier.html#pruning
https://nvd.nist.gov/vuln/detail/CVE-2023-2163
https://nvd.nist.gov/vuln/detail/CVE-2023-2163
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf\-linux-kernel-vulnerability
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf\-linux-kernel-vulnerability
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf\-linux-kernel-vulnerability
https://github.com/google/security-research/tree/master/pocs/linux/cve-2023-2163
https://github.com/google/security-research/tree/master/pocs/linux/cve-2023-2163
https://nvd.nist.gov/vuln/detail/CVE-2021-4204
https://nvd.nist.gov/vuln/detail/CVE-2021-4204
https://github.com/torvalds/linux/blob/master/tools/testing/selftests/bpf/test_verifier.c#L426
https://github.com/torvalds/linux/blob/master/tools/testing/selftests/bpf/test_verifier.c#L426
https://docs.kernel.org/bpf/kfuncs.html
https://medium.com/@yunwei356/the-secure-path-forward-for-ebpf-runtime-challenges-and-innovations-968f9d71fc16
https://medium.com/@yunwei356/the-secure-path-forward-for-ebpf-runtime-challenges-and-innovations-968f9d71fc16
https://syzkaller.appspot.com/bug?extid=1a3cf6f08d68868f9db3
https://syzkaller.appspot.com/bug?extid=1a3cf6f08d68868f9db3
https://syzkaller.appspot.com/x/repro.c?x=12e081f1180000
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/btf.html
https://lwn.net/Articles/946389/
https://lwn.net/Articles/946389/
https://www.suse.com/support/kb/doc/?id=000020545
https://lwn.net/Articles/796328/
https://mdaverde.com/posts/cap-bpf/
https://cilium.io/
https://next.redhat.com/2023/07/18/
https://nvd.nist.gov/vuln/detail/CVE-2023-52920
https://nvd.nist.gov/vuln/detail/CVE-2023-52920
https://lore.kernel.org/bpf/20231020155842.130257-1-tao.lyu@epfl.ch/
https://lore.kernel.org/bpf/20231020155842.130257-1-tao.lyu@epfl.ch/
https://llvm.org/docs/LibFuzzer.html
https://scannell.io/posts/ebpf-fuzzing/
https://security.googleblog.com/2023/05/introducing-new-way-to-buzz-for-ebpf.html
https://security.googleblog.com/2023/05/introducing-new-way-to-buzz-for-ebpf.html


[106] A. Burtsev, V. Narayanan, Y. Huang, K. Huang, G. Tan, and
T. Jaeger, “Evolving operating system kernels towards secure kernel-
driver interfaces,” in Proceedings of the 19th Workshop on Hot
Topics in Operating Systems, 2023.

[107] G. Jin, J. Li, and G. Briskin, “Research report: Enhanced ebpf
verification and ebpf-based runtime safety protection,” in 2024 IEEE
Security and Privacy Workshops (SPW), 2024.

[108] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke,
T. Feldman-Fitzthum, D. Skarlatos, D. Gruss, and T. Xu,
“Programmable system call security with ebpf,” 2023. [Online].
Available: https://arxiv.org/abs/2302.10366

[109] J. Dejaeghere, B. Gbadamosi, T. Pulls, and F. Rochet, “Compar-
ing security in ebpf and webassembly,” in Proceedings of the 1st
Workshop on EBPF and Kernel Extensions (eBPF ’23), 2023.

[110] S. R. Somaraju, “In the era of linux being omnipresent, the demand
for dynamically extending kernel capabilities,” Master’s thesis, Vir-
ginia Tech, 2023. [Online]. Available: https://vtechworks.lib.vt.edu/
items/eaf0cecf-3a21-491f-a4e3-c35e5110b622

[111] L. Nelson, J. V. Geffen, E. Torlak, and X. Wang, “Specification and
verification in the field: Applying formal methods to BPF just-in-
time compilers in the linux kernel,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2020.

[112] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas,
N. Rinetzky, L. Ryzhyk, and M. Sagiv, “Simple and precise static
analysis of untrusted linux kernel extensions,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’19), 2019.

[113] K. K. Dwivedi, R. Iyer, and S. Kashyap, “Fast, flexible, and prac-
tical kernel extensions,” in Proceedings of the ACM SIGOPS 30th
Symposium on Operating Systems Principles (SOSP ’24), 2024.

[114] J. Corbet, “The challenge of compiling for verified architectures,”
2023. [Online]. Available: https://lwn.net/Articles/946254/

[115] A. Dinaburg, “Pitfalls of relying on ebpf for security
monitoring (and some solutions),” 2023. [Online]. Avail-
able: https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-
ebpf-for-security-monitoring-and-some-solutions/

[116] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN:
Attacking arm pointer authentication with speculative execution,”
in Proceedings of the 49th Annual International Symposium on
Computer Architecture (ISCA ’22), 2022.

[117] J. Kim, J. Park, S. Roh, J. Chung, Y. Lee, T. Kim, and B. Lee,
“TIKTAG: Breaking arm’s memory tagging extension with specula-
tive execution,” in IEEE Symposium on Security and Privacy, 2025.

[118] I. Contributors, “Resource limits in ebpf on linux,” 2024. [Online].
Available: https://docs.ebpf.io/linux/concepts/resource-limit/

[119] Linux, “Bpf verifier limits and constraints,” 2024. [Online].
Available: https://www.kernel.org/doc/html/v6.9/bpf/bpf design
QA.html#q-what-are-the-verifier-limits

[120] E. Authors, “The past, present, and future of ebpf and its
path to revolutionizing systems,” 2024, accessed: 2024-10-22.
[Online]. Available: https://eunomia.dev/blogs/ten-years/#memory-
management-upgrades-dynamic-stacks-and-more

[121] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-safe retrofitting of legacy software,” ACM Trans.
Program. Lang. Syst., 2005.

[122] K. Huang, M. Payer, Z. Qian, J. Sampson, G. Tan, and T. Jaeger,
“Comprehensive memory safety validation: An alternative approach
to memory safety,” IEEE Security & Privacy, vol. 22, no. 4, 2024.

[123] K. Huang, Y. Huang, M. Payer, Z. Qian, J. Sampson, G. Tan,
and T. Jaeger, “The taming of the stack: Isolating stack data from
memory errors,” in Proceedings of NDSS, 2022.

[124] K. Huang, M. Payer, Z. Qian, J. Sampson, G. Tan, and T. Jaeger,
“Top of the heap: Efficient memory error protection of safe heap
objects,” in Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), 2024.

[125] J. Devlieghere, “Escape analysis and capture tracking in llvm,”
2017. [Online]. Available: https://jonasdevlieghere.com/post/escape-
analysis-capture-tracking-in-llvm/

[126] B. Gregg, BPF Performance Tools: Linux Systems and Applications.
Addison-Wesley Professional, 2019.

[127] D. Alden, “A proposal for shared memory in bpf programs,” 2024.
[Online]. Available: https://lwn.net/Articles/961941/

[128] Bootlin, “Linux kernel samples for ebpf, version 6.7,”
2024, accessed: 2024-10-22. [Online]. Available: https:
//elixir.bootlin.com/linux/v6.7/source/samples/bpf

[129] IOVisor, “Bcc: Bpf compiler collection,” 2024, accessed: 2024-10-
22. [Online]. Available: https://github.com/iovisor/bcc

[130] BlackBerry, “Reverse engineering ebpfkit rootkit with black-
berry’s free ida processor tool,” 2021. [Online]. Avail-
able: https://blogs.blackberry.com/en/2021/12/reverse-engineering-
ebpfkit-rootkit-with-blackberrys-free-ida-processor-tool

[131] Linux Kernel Documentation, “Seccomp bpf (secure computing with
filters),” 2019, accessed: 2024-08-31. [Online]. Available: https://
www.kernel.org/doc/html/v4.19/userspace-api/seccomp filter.html

[132] RustProject, “Rustc development guide: Compiler analyses and
type system,” 2024. [Online]. Available: https://rustc-dev-guide.rust-
lang.org/part-4-intro.html

[133] ——, “Understanding ownership,” 2024. [Online]. Available:
https://doc.rust-lang.org/book/

[134] ——, “References and borrowing,” 2024, accessed: 2024-10-
22. [Online]. Available: https://doc.rust-lang.org/book/ch04-02-
references-and-borrowing.html

[135] ——, “Lifetime syntax,” 2024. [Online]. Available: https://doc.rust-
lang.org/book/ch10-03-lifetime-syntax.html

[136] G. Li, H. Zhang, J. Zhou, W. Shen, Y. Sui, and Z. Qian, “A hybrid
alias analysis and its application to global variable protection in the
linux kernel,” in 32nd USENIX Security Symposium, 2023.

[137] K. Lu and H. Hu, “Where does it go? refining indirect-call targets
with multi-layer type analysis,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[138] T. Xia, H. Hu, and D. Wu, “DEEPTYPE: Refining indirect call
targets with strong multi-layer type analysis,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

[139] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi, “Checked C: Making
C safe by extension,” in IEEE Cybersecurity Development, 2018.

[140] J. Zhou, J. Criswell, and M. Hicks, “Fat pointers for temporal
memory safety of c,” ACM Program. Lang., no. OOPSLA1, 2023.

[141] A. Khan, D. Xu, and D. J. Tian, “Low-cost privilege separation with
compile time compartmentalization for embedded systems,” in 2023
IEEE Symposium on Security and Privacy, 2023.

[142] ——, “Ec: Embedded systems compartmentalization via intra-kernel
isolation,” in 2023 IEEE Symposium on Security and Privacy, 2023.

[143] Y. Zhai, Z. Qian, C. Song, M. Sridharan, T. Jaeger, P. Yu, and S. V.
Krishnamurthy, “Don’t waste my efforts: Pruning redundant sanitizer
checks by Developer-Implemented type checks,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

[144] A. Limited, Arm Memory Tagging Extension Whitepaper, Arm
Limited, 2019, accessed: 2024-08-31. [Online]. Available: https:
//developer.arm.com/-/media/Arm%20Developer%20Community/
PDF/Arm Memory Tagging Extension Whitepaper.pdf

[145] R. N. M. Watson, S. W. Moore, P. Sewell, B. Davis, and P. Neumann,
Capability Hardware Enhanced RISC Instructions, 2019. [Online].
Available: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

[146] aya, “aya: A modern, safe, and extensible ebpf library for rust,”
https://github.com/aya-rs/aya, 2021.

https://arxiv.org/abs/2302.10366
https://vtechworks.lib.vt.edu/items/eaf0cecf-3a21-491f-a4e3-c35e5110b622
https://vtechworks.lib.vt.edu/items/eaf0cecf-3a21-491f-a4e3-c35e5110b622
https://lwn.net/Articles/946254/
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://docs.ebpf.io/linux/concepts/resource-limit/
https://www.kernel.org/doc/html/v6.9/bpf/bpf_design_QA.html#q-what-are-the-verifier-limits
https://www.kernel.org/doc/html/v6.9/bpf/bpf_design_QA.html#q-what-are-the-verifier-limits
https://eunomia.dev/blogs/ten-years/#memory-management-upgrades-dynamic-stacks-and-more
https://eunomia.dev/blogs/ten-years/#memory-management-upgrades-dynamic-stacks-and-more
https://jonasdevlieghere.com/post/escape-analysis-capture-tracking-in-llvm/
https://jonasdevlieghere.com/post/escape-analysis-capture-tracking-in-llvm/
https://lwn.net/Articles/961941/
https://elixir.bootlin.com/linux/v6.7/source/samples/bpf
https://elixir.bootlin.com/linux/v6.7/source/samples/bpf
https://github.com/iovisor/bcc
https://blogs.blackberry.com/en/2021/12/reverse-engineering-ebpfkit-rootkit-with-blackberrys-free-ida-processor-tool
https://blogs.blackberry.com/en/2021/12/reverse-engineering-ebpfkit-rootkit-with-blackberrys-free-ida-processor-tool
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://rustc-dev-guide.rust-lang.org/part-4-intro.html
https://rustc-dev-guide.rust-lang.org/part-4-intro.html
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://github.com/aya-rs/aya


Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper conducts a systematic analysis of memory
safety risks to the Linux kernel’s eBPF runtime. The analysis
shows that 1.62-3.74% of memory operations in public
eBPF programs are not defended by existing defenses that
include isolation mechanisms, runtime checks, or static
validation. The paper proposes future research directions
to close this gap while preserving eBPF’s current level of
functionality and performance.

A.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Independent Confirmation of Important Results with
Limited Prior Research

A.3. Reasons for Acceptance

1) The paper systematizes the current state of eBPF at-
tacks and defenses, serving as a valuable resource for
researchers seeking to improve the security of eBPF.

2) The paper highlights specific gaps in current defenses
based on a study of real eBPF programs, which should
assist the research community in focusing their efforts
on operationally relevant problems in this space.


	Introduction
	eBPF Workflow and Trust Model
	Memory Safety Issues in the eBPF Verifier
	Attack Flawed Verification
	Bypass Unsound Checks
	Exploit Gaps in Incomplete Checks
	Exploiting Limited Protection Scope

	Kernel Mitigation Circumvention
	Summary of State-of-the-art Solutions
	Fuzzing
	Dedicated eBPF fuzzing
	Limitations of Fuzzing

	Isolation
	Software-based Fault Isolation
	Hardware-assisted Isolation
	Limitation of Isolation

	Runtime Memory Safety Enforcement
	Summary of Proposed Runtime Defenses
	Limitations of Runtime Memory Safety Enforcement

	Enhancing Static Validation
	Validating a Single eBPF Program
	Validating the Composition of eBPF Programs
	Limitations of Static Verification Techniques


	Summary of Root Causes
	The Dilemma of Privilege Restrictions
	eBPF Verifier's Validation is Untenable
	eBPF Helpers Ignore Memory Safety
	Isolation Defenses Are Insufficient Alone
	Low Budget for Runtime Checks

	Towards Memory-Safe eBPF
	Full Memory Safety: How Far are We?
	Protection Scope of Existing Defenses
	Enhancing Static Memory Safety Validation
	Protecting eBPF from Unsafe Operations
	Adding Runtime Checks Strategically
	Advancing Finer-grained Isolation
	Migrating to Memory Safe Language


	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance


