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Fuzz testing a software library requires developers to write fuzz drivers, specialized programs exercising the
library. Given a driver, fuzzers generate interesting inputs that trigger the library’s bugs. Writing fuzz drivers
manually is a cumbersome process and they frequently hit a coverage plateau, calling for more diverse drivers.
To alleviate the need for human expert knowledge, emerging automatic driver generation techniques invest
computational time for tasks besides input generation. Therefore, to maximize the number of bugs found,
it is crucial to carefully balance the available computational resources between generating valid drivers and
testing them thoroughly. Current works model driver generation and testing as a single problem, i.e., they
mutate both the driver’s code and input together. This simple approach is limited, as many libraries need a
combination of non-trivial library usage and complex inputs. For example, consider a JPEG manipulation
library, bugs appear when speci�c library functions and corrupted images are coincidentally tested together,
which, if both are mutated synchronously is di�cult to trigger.

We introduce libErator, a novel library testing approach that balances constrained computational resources
to achieve two goals: (a) quickly generate valid fuzz drivers and (b) deeply test these drivers to �nd bugs. To
achieve these goals, libErator employs three main techniques. First, we leverage insights from a novel static
analysis on the library code to improve the likelihood of generating meaningful drivers. Second, we design a
method to quickly discard non-functional drivers, reducing even further resources wasted on unfruitful drivers.
Finally, we show an e�ective driver selection method that avoids redundant tests. We deploy libErator on 15

open-source libraries and evaluate it against manually written and automatically generated drivers. We show
that libErator reaches comparable coverage to manually written drivers and, on average, exceeds coverage
from existing automated driver generation techniques. More importantly, libErator automatically �nds 24
con�rmed bugs, 21 of which are already �xed and upstreamed. Among the bugs found, one was assigned a
CVE while others contributed to the project test suites, thus showcasing the ability of libErator to create
valid library usages. Finally, libErator achieves 25% true positive ratio, doubling the state of the art.
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1 Introduction

Fuzzing has unparalleled bug-�nding capabilities [9, 15, 48, 54]. This automated testing technique
stochastically samples a program’s input space, often thousands of times per second, to trigger
�aws. General-purpose fuzzing engines expect a well-de�ned interface (e.g., a main function) to
run the code under test. This simple but e�ective design paved the way for a variety of generic
and specialized fuzzers [3, 4, 6, 9, 15, 27, 31, 43, 44, 48]. Unfortunately, not all targets have fuzzing-
compatible interfaces. In particular, user-space libraries (e.g., libpng [34]) are designed to be
integrated into stand-alone programs. Speci�cally, libraries expose a set of functions, the Application
Programming Interface (API), to interact with the library code.
To tailor a fuzzer work�ow to libraries, practitioners write small snippets of code (i.e., drivers

or fuzz drivers) to tie the fuzzing engines to the library code. While some initiatives reduce the
cost of fuzzing library drivers—e.g., OSS-Fuzz [37], Google’s e�ort to continuously test open-source
libraries—driver creation remains, however, predominantly a manual e�ort [37]. Due to the required
knowledge of the library’s API and the scarcity of maintainers time, manually-written drivers are
limited in the extent of their fuzzing campaigns as well as their capacity to evolve with the library
changes. As we observe in OSS-Fuzz, fuzzed projects have generally reached a coverage plateau
where the existing drivers no longer discover new functionalities. To overcome this limitation,
academia and industry investigated approaches to create drivers automatically—tradingmaintainers’
time for CPU resources—with the goal of covering new untested code paths and thereby exposing
bugs in the targets [1, 5, 18, 22, 23, 47, 50, 51, 53].

Time for driver generation
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Fig. 1. The driver generation Īgen and the dri-
ver testing Ītest sum up to the total computa-
tional time Đ , e.g., Đ = Īgen + Ītest. libErator
(in yellow) can be configured with any bal-
ance of Īgen and Ītest to fit the library.

The �rst explored approach to generate fuzz dri-
vers is consumer-dependent, which analyzes the inter-
action of existing applications (consumers) with a li-
brary [1, 22, 23, 47, 50, 51, 53]. Consumer-dependent dri-
vers are bounded to the patterns found in the consumers
analyzed. To overcome this limitation, consumer-agnostic

techniques [5, 18] rely solely on the library code and
apply static or dynamic techniques to infer valid library
usages, thus �nding bugs that may not appear in the
known consumers. All current consumer-agnostic ap-
proaches, and some consumer-dependent works [22, 51],
attempt to infer valid library usage and valid inputs si-

multaneously, thus solving two orthogonal problems at
once, leading to a suboptimal solution due to the expo-
nential growth of the input space. In practice, however,
the computational budget is a �nite resource Đ used to
solve two distinct tasks: generate drivers (with the goal
of maximizing potentially reachable coverage) and ex-
plore drivers through inputs (with the goal of maximizing concrete coverage and bug �nding). In
other terms, the time for driver generation (Īgen) and testing (Ītest) is bounded byĐ , i.e., Īgen + Ītest =Đ .
Manually written drivers allocate only testing time, while automatic driver generation mechanisms
split testing and generation according to di�erent policies. In Figure 1, we classify previous works
according to their time budget allocation strategy.
libErator introduces a library testing model that balances resources between generation and

fuzzing by leveraging three main techniques. First, API sequence inference: through static analysis,
we infer which API sequences are more likely to contribute to coverage, allowing for fast and
promising drivers. Second, through dynamic pruning of ine�ective sequences, libErator avoids
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wasting time on unfruitful drivers. We propose to promptly discard broken API function sequences
and avoid extending them further. Finally, since the aim is to test di�erent code regions inside
a library, we propose to balance driver diversity to optimally distribute fuzzing energy through a
lightweight driver selection strategy that diversi�es the API functions used.
We evaluate libErator by targeting 15 libraries representing varying API and input space

complexity. As a baseline, we employ existing state-of-the-art solutions. We compare our approach
against manually written drivers from the OSS-Fuzz project [37], consumer-agnostic works, Hop-
per [5], and consumer-dependent works, namely UTopia [23], FuzzGen [22], and OSS-Fuzz-Gen [21].
Comparison with OSS-Fuzz demonstrates that libErator’s drivers perform deep and complex
library interactions, similar to the ones written by experts, i.e., for six out of 12 libraries we achieve
higher coverage. While, compared with Hopper, we reach more coverage in eight out of the 13
libraries supported. Against consumer-dependent approaches, we achieve comparable coverage
for UTopia despite their spurious use of internal API functions, and exceeds FuzzGen and OSS-
Fuzz-Gen. Most importantly, we found 24 con�rmed bugs in libraries already extensively tested
by OSS-Fuzz, Hopper, or OSS-Fuzz-Gen. We upstream �xes for 21 of them and are in discussion
with maintainers to contribute the respective drivers. Moreover, libErator experiences 25% of
true positives, which doubles similar works [23]. These experiments demonstrate the capability of
libErator to improve library testing capabilities.
In short, our key contributions are:
• A consumer-agnostic library model that balances driver generation and testing. Our model
automatically generates valid library interactions and discovers code faults.
• We build our library model on three techniques: API sequence inference to proactively hint at
promising sequences of API function calls, dynamic pruning of ine�ective sequences to learn
dysfunctional sequences, and driver selection technique to better distribute testing energy.
• libErator, an end-to-end framework that implements our consumer-agnostic library model
and generates fuzz drivers for libraries by solely relying on their source code. We release the
implementation of our prototype as open source, see §11.
• A detailed evaluation of our results against the state-of-the-art driver generation technique
and manually written drivers, discussing the trade-o�s of each approach.

2 Automatic Library Testing

Fuzz testing or fuzzing is a dynamic testing approach that leverages high execution throughput
to sample the input space and discover bugs. Guided fuzzers [9, 48] leverage execution feedback
to bias the input generation towards bug-prone code paths. These techniques have shown their
e�ectiveness in industry [13, 14, 49] and are widely deployed, e.g., thousands of projects are
continuously fuzzed by OSS-Fuzz [37]. However, not all software is equally amenable to fuzzing.
Software libraries provide functionalities that, otherwise, should be re-implemented in each

project with the risk of repeating past mistakes and bugs. Interactions between the main program
and a library happens through functions part of the Application Programming Interface (API). To
enable a fuzzer to test a library, an entry point, taking the form of a program, has to be created.
These programs, called drivers, might require non-trivial inputs (e.g., �les) and should build the
necessary state to interact, ideally, with the full library’s API. libFuzzer [35], the pioneer in library
fuzzing, models drivers as stub functions, called LLVMFuzzerTestOneInput, which takes as input
a bu�er of bytes. This �exible interface has been adopted as a standard in other popular fuzzing
tools [9, 48]. Notably, libFuzzer executes drivers in a loop with di�erent inputs to minimize the
startup overhead. Therefore, drivers must exit cleanly, e.g., by invoking free or closing �les, to
avoid lingering states leading to non-reproducible bugs. The number of drivers remains limited as
they are manually written, e.g., only eight out of the 15 libraries evaluated have multiple drivers.
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1 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

2 vpx_codec_ctx_t codec;

3 vpx_codec_dec_cfg_t cfg;

4 size_t frame_size;

5 uint8_t *frame; /* size(frame) == frame_size */

6 ...

7 cfg = ... /* from data */

8 frame_size = ... /* from data */

9 frame = malloc(frame_size);

10 memcpy(frame, /* from data */, frame_size);

11 /* codec cannot be populated from data! */

12 ...

13 vpx_codec_dec_init(&codec, VPXD_INTERFACE(DECODER), &cfg, 0);

14 const vpx_codec_err_t err = vpx_codec_decode( &codec,frame, frame_size, nullptr, 0);

15 ...

16 vpx_codec_destroy(&codec);

17 return 0;

18 }

Listing 1. Simplified example of a C driver from libvpx highlighting the four driver regions: 1 variable
definition, 2 input transfer, 3 API chain execution, and 4 state cleanup.

Listing 1 presents an abbreviated driver written by the libvpx maintainers [17]. Without loss
of generality, we decompose the driver in four regions: 1 variables de�nition, 2 input transfer,
3 API chain execution, and 4 cleanup. Region 1 declares the necessary variables for the driver.
Region 2 bridges the fuzzing input into the respective variables. However, not all the variables
can be populated with raw data, e.g., codec has internal pointers �elds and requires invocation of
vpx_codec_dec_init. Region 3 consists of the API chain, i.e., a valid sequence of API calls. API
chains are composed of a valid sequence of function calls and correct variables as their respective ar-
guments. Finally, region 4 cleans the driver state to avoid memory leaks, e.g., vpx_codec_destroy
releases codec at Line 16.

3 Challenges for Automatic Driver Generation

Driver generators aim at inferring valid and interesting API Chains (§2). However, not all API func-
tion call combinations are valid. Producing valid chains introduces challenges exempli�ed through
a combinatory exercise. Given a library that exposes Ċ API functions, an under-approximation
of the number of possible API Chain is given by Ċ

|ýČą_ÿℎėğĤ | . This means that the search space
grows exponentially with the chain size. This approximation is conservative as it does not consider
function arguments. On top of that, each API Chain has its own input space that can be modeled
as a bitstream of length I. On classic targets, the fuzzers only sample the input space (i.e., 2ą ).
Conversely, in automatic library testing, the system is also responsible for generating drivers, thus
extending the search space to at least Ċ ĢěĤ (ýČą_ÿℎėğĤ) × 2ą . Therefore, creating valid API Chains
is an additional dimension requiring ad-hoc reasoning. We study how current approaches model
library testing, and propose a new solution to better address this extra dimension.
Current works generate drivers by synthesizing API Chains and searching for valid inputs

simultaneously [5, 18, 22, 51]. They assume coverage to be a fair feedback, i.e., API Chains reaching
more coverage should be expanded, leading to critical limitations. First, API Chains may face a
coverage wall, meaning they do not reach new coverage, however, the fuzzer needs more time to
pierce through the perceived coverage wall. When this occurs, current works misjudge the API
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Chain as unpromising and stop testing it. Second, libraries may require a long sequence of API
function calls to initialize complex structures to unlock access to deep library code. However, pre�x
API Chains may not reach meaningful coverage and thus be ignored, despite being crucial for
longer API Chains. Third, current works produce new API Chains continuously, without testing
them deeply. Hence, an explosion of undertested API Chains hinders the overall testing progress.
By surveying the state-of-the-art, we de�ne three challenges that drive libErator design.

(C1) Predicting complex API combinations. To reduce the computational cost associated with
the generation, it is crucial to predict which API Chains are interesting.
(C2) Avoiding coverage wall biases. Come up with a strategy to learn, and avoid building on,
unfruitful API Chains that should not su�er from biases created by coverage walls.
(C3) Deep testing of API Chains. To e�ciently fuzz, libErator needs to avoid redundant testing
of similar API Chains and invest computation cycles on diverse library usages.

4 Driver Specification

In this section, we detail the characteristics of the generated drivers. libErator’s prototype creates
functional and valid drivers written in C, compatible with existing fuzzers like libFuzzer [35] or
AFL++ [9]. Therefore, libErator needs to use coherently the variables passed to the API functions.
This constrains some technical choices, such as the type system and the handling of the variables
lifetime. Most of our solutions extends ideas from previous works [5, 22]. libErator’s design is
language-agnostic and adaptable to other scenarios.

Table 1. libErator’s partition of the type system.
The “Source” column indicates the source of infor-
mation necessary for the analysis, while the other
columns describe which properties they possess:
whether they can be referenced (R), allocated (A),
or initialized from fuzzing input (I).

Type R A I Source

Primitive Types 6 6 6 Header Files
Primitive Arrays 6 6 6 Header Files
Strings 6 6 6 Header Files
File Paths 6 6 6 Library Code
Stub Functions 6 Header Files
Incomplete Structures 6 Header Files
Complete Structures 6 6 6 Library Code

Type System. libErator’s type system leverages
previous works insights [5, 22], which are summa-
rized in Table 1. Speci�cally, libErator trivially han-
dles primitive types (e.g., int, char). For pointers,
we try to infer the length of the underlying array
through a data-�ow analysis. For dynamically sized
arrays, the driver allocates a bu�er (i.e., through
malloc), we extend this approach to multidimen-
sional arrays. We verify if some function argument
of speci�c types (e.g., uint, size_t) control the
size of dynamic allocations, and bound their value
to avoid out-of-memory errors [42]. In the case of
char*-like types, we terminate the bu�er with NULL.
Additionally, through data-�ow analysis, we infer if
chars arrays are used as �le path in known system
functions (e.g., fread), and, in such case, allocate a temporary �le to store the fuzz input. Moreover,
libErator handles complete and incomplete structures. Incomplete types lack information regarding
their size [33], and therefore cannot be allocated. Consumers can only have pointers to incomplete

types and use the library’s APIs to handle their lifetime. E.g., at Line 13 in Listing 1, the second
argument of the function vpx_codec_dec_init is incomplete and can only be created through
the VPXD_INTERFACE function. Complete types, instead, may need non-trivial API Chains to be
properly initialized, as in the case for vpx_codec_ctx_t, which needs a correct sequence of API
calls (Line 13). Lastly, we handle function pointers by synthesizing empty stub callback functions
from the API source code, and using their address in the API function calls.

Lifetime Properties. Drivers need to handle their internal variable lifetime. Speci�cally, we
support the three variable lifetimes of C: local, dynamic, and static. Local variables are allocated in
the driver’s stack frame and released once the driver terminates its execution. Dynamic variables
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Fig. 2. libErator’s architecture. The library source code is analyzed to model the API function arguments
and the type system into the API Flow Graph (AFG). Then, the driver generation module synthesizes new
drivers and select a diverse set. Finally, the drivers are tested in a fuzzing campaign.

must be allocated and freed coherently. To this end, our analysis mark library functions that create
variables, i.e., returning allocated structures (e.g., via malloc), and functions that delete variables,
i.e., function arguments passed to free. If an API function returns a pointer to a global reference
(e.g., BSS), we consider the memory location as static. API functions that create, delete, or return
static reference hint at inter-API dependency. E.g., an API function that allocates objects should
appear early in the driver. Likewise, API functions that free objects should appear during cleanup.

Var-Len. libErator supports API arguments dependency between a variable and its length
(Var-len). Two API arguments, called Ē and Ĉ, are in a Var-len relation if Ē points to bu�er and Ĉ
indicates Ē ’s size, e.g., in Listing 1, the function vpx_codec_decode requires data to be a bu�er of
bytes (Ē ) of size frame_size (Ĉ). We ensure that Var-len arguments are used coherently. Previous
works already investigated Var-len properties [5, 23], and we expand on their insights.
Loop-Index: When a for or while loop traverses a bu�er Ē , the loop index Ĉ represents its upper
bound (e.g., while(i<L) V[i]). To this end, we develop an inter-procedural analysis, while UTopia
employs an intra-procedural approach.
Bu�er Directly Controlled: Libraries may use the argument Ĉ to calculate the last valid address of the
bu�er Ē (e.g., last_V=&V[L]) and iterate until then. libErator is the �rst to support these cases.
Third-party Functions: External functions may manipulate bu�ers, e.g., memcpy. If Ē and Ĉ are used
as source and size in memcpy (e.g., memcpy(V,data,L)), then we assume a Var-len relation. Our
analysis �rst locates the bu�er arguments used in transfer data functions and then checks if any
other API function argument is used as a size parameter. Our prototype handles the main libc

functions known to transfer/alter bu�ers, e.g., strcpy, memcpy, and memset, and allows for the
integration of third-party functions.

5 libErator Design

libErator’s end goal is to produce fuzz drivers that (i) can be used in production, and (ii) exhibit
diverse library interactions. libErator’s design centers around the challenges introduced in §3.
Each challenge is addressed by a dedicated technique implemented as a module, see Figure 2. All the
modules refer to a central data structure, called API Flow Graph (AFG), that encodes API function
information. Speci�cally, the AFG provides hints for creating long API chains thus addressing
challenge C1. The AFG is produced by the static analysis module (§5.1) taking only the library
source code as input. By leveraging the AFG, a driver generator module (§5.2) produces new drivers
through an algorithm that learns to avoid invalid API Chains, i.e., API function sequences that do
not adhere to the library semantic. This improves the rate of correct drivers without su�ering from
coverage wall biases, thus tackling the challenge C2. Then, libErator uses a lightweight clustering
algorithm to select drivers that stress di�erent library regions (§5.3), thus enabling longer fuzz
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driver testing and satisfying challenge C3. Finally, all selected drivers are fuzzed for an identical
period with an initial corpus bootstrapped from the seeds produced during the generation phase.

libErator’s con�guration only requires the exported library’s headers and a build script for the
library. The generated fuzz drivers follow the speci�cation in §4.

5.1 Static Analysis

The purpose of the static analysis is to populate the API Flow Graph (AFG), the directed graph
encoding the API function dependencies and helps predict interesting API Chains. We use a static
data-�ow analysis to infer non-trivial properties from the library code. When re-using existing
techniques, we point to the implementation (§6) and otherwise describe our analysis in details.

API Flow Graph (AFG). The graph is built from the function signatures, exposed in the library
header �les. The AFG represents an over-approximation of the possible API Chains [5, 22, 51], and
guides the driver generation (§5.2). Speci�cally, the graph’s nodes represent an API function, and
their outgoing edges are possible subsequent API function calls. For each API function ý, we de�ne
its inputs and outputs, called ą (ý) and ċ (ý), respectively. Inputs ą (ý) are the arguments passed to
the function, while outputċ (ý) are the return values and the arguments passed by reference. Then,
we de�ne þ depends_on ý if the types ofċ (ý) and the types of ą (þ) have a non-empty intersection,
i.e., þ depends_on ý ⇐⇒ ċ (ý) ∩ ą (þ) ≠ ∅. Based on the depends_on relation, we connect node þ
to node ý in the AFG. By traversing the AFG, libErator chooses the next function to append to
the API Chain. Then, through static and dynamic analysis, the driver generator module prunes
invalid API Chains. In the following, we detail the additional information contained in the AFG.

Algorithm 1: Driver Creation

Input: The AFG: D, Time for generating drivers: Īgen
Output :A list of drivers to be deeply tested

1 drivers_history← {};

2 while time_spent() < Īgen do

3 driver← generate_api_chain(D, drivers_history);

4 status← probe(driver);

5 drivers_history←ėĚĚ (driver, status);

6 end while

7 return extract_positive_drivers(drivers_history)

AFG Bias. libErator uses information ob-
tained from the static analysis to guide (bias)
the API Chain creation (§5.2). We observe that
libraries commonly use simple functions as pre-
liminary steps for more complex library inter-
actions later on. For instance, LibHTP’s drivers
require at least three API functions to set up
a valid htp_connp_t structure necessary for
interaction with more complex library func-
tionalities. Unfortunately, the API functions
used to build up htp_connp_t reach only a shallow coverage. Therefore, state-of-the-art driver
generation approaches leveraging code coverage as feedback may not prioritize these functions.
Conversely, our static analysis infers signal from the source code as functions setting up more
complex library usage manipulate the �elds of the desired structure. In particular, we enumerate all
the �elds and sub�elds that are set or retrieved, carefully handling recursive structures. Primitive
types are assimilated to structures with a single �eld. The total number of manipulated �elds is
used to bias the driver generation module when traversing the AFG. By observing how a function
manipulates a structure, libErator can foresee more complex API Chains.

5.2 Driver Generation

The driver generationmodule relies on the AFG to generate functional drivers (§2). More speci�cally,
themodule uses a dynamic generation strategy, inwhich, increasingly longAPI Chains are generated
and tested. Algorithm 1 describes the overall strategy. Crucially, each new API Chain is probed in
a short fuzzing campaign (i.e., �ve minutes). The probing reveals if the driver interacts with the
library, i.e., it produces seeds. Drivers producing seeds are marked as positive, while the others are
marked as negative. All the API Chains are recorded in a driver history that is used in combination
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with the AFG for generation. This mechanism overcomes the limitation of previous works that
use coverage to promote drivers. Since drivers often face a coverage wall, short fuzzing campaigns
cannot faithfully assess drivers’ quality. Conversely, malformed drivers hardly show any interaction
(seed), givingmore reliable feedback. Furthermore, negative chains allow the system to preemptively
avoid AFG paths leading to useless drivers. This algorithm “learns” valid API Chains and discards
unfruitful ones, thus, addressing challenge C2. Crucially, choosing seeds over coverage also boosts
performance, as computing coverage requires resource intensive tools like SanCov [40].
Our algorithm generates an API Chain by traversing the AFG. Throughout the traversal, the

algorithm respects the library control- and data-�ow constraints encoded in the AFG. During this
phase, we use the static analysis results and the driver history to bias the AFG traversal towards
interesting chains, while avoiding repeating malformed drivers. Then, we produce the code for
both the input transfer and cleanup regions of the driver.

API Chain Creation. Algorithm 2 describes the process, which takes the AFG and the driver
history as inputs. In the �rst part, libErator identify source functions (Line 1–5). We de�ne an
API function as source if all its arguments can be readily allocated and initialized. Source functions
represent the AFG entry points. Consequently, we traverse the AFG and try to append new function
calls to the chain (Line 7–16). Additionally, we use the driver history to discard chains already
evaluated as malformed. The algorithm retrieves from the AFG the number of manipulated �elds
to bias its selection toward instantiable API functions. If no candidate API function is available, it
selects a new source function (Line 17–22). The algorithm terminates when it creates a new chain
that has never been probed, i.e., it is neither positive nor negative (Line 24). The idea is to start by
exploring the source functions and then expand while avoiding chains known to be malformed.

The AFG traversal is controlled by an instantiation routine (i.e., try_to_instantiate), which is
an oracle that answers the question: Can we invoke the given API function given the current variables

(var_alive)? The instantiation routine decides which API functions can be appended to a given API

Chain. Formally speaking, the routine has three duties: (1) try to reuse already instantiated variables,
(2) generate new variables if their type allows it, (3) update var_alive to track the variable lifecycle
(e.g., for the �nal cleanup). More importantly, the instantiation routine traces the variable lifetimes
and avoids reusing the deallocated ones. Additionally, it coherently associates variables used in
Var-len arguments and uses additional variables to handle variadic arguments [7].

5.3 Driver Selection

The driver generation module (§5.2) produces a list of positive drivers (Line 7). These harnesses are
su�ciently stable to be tested, however, can be numerous with up to 100 drivers generated per
hour depending on the library. Deep testing each of them is, therefore, infeasible. This is even more
problematic when the time budget is constrained, for example during a fuzzer evaluation.
Therefore, the strategy to select the most relevant drivers should satisfy the following require-

ments. First, it needs to be lightweight. Second, it should select drivers diversifying library usage.
While coverage distinguishes drivers that reach di�erent code regions, the short fuzzing period is in-
su�cient to overcome coverage walls, making coverage an unreliable metric. Moreover, calculating
�ne-grained coverage is resource intensive, stealing resources from the actual testing.
To address this problem, we devise an algorithm around the intuition that API functions are

a proxy for library regions. Speci�cally, we employ a lightweight clustering algorithm based on
a�nity propagation algorithm [12] and Levenshtein distance [46] to automatically group drivers
based on the API functions they use. We treat the API Chains as a list of symbols, where each
symbol is an API function, and calculate the Levenshtein distance between each pair of chains. Then,
the a�nity propagation automatically clusters chains with closer distance. For each cluster, we
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Algorithm 2: API chain creation

Input: The AFG: D, and drivers_history

Output :The API chain and the list of variables

1 source_api← get_source_api(D);

2 good_api_chains, bad_api_chains← split_positive_negative_chains(drivers_history);

3 api← random_bias(source_api, D);

4 api_chain = [api];

5 var_alive← try_to_instantiate(api, ∅);

6 while true do

7 candidate_next_api_fun = []; /* Search API functions to add to the chain */

8 foreach n_api ∈ D[api].adjacency_list do

9 if api_chain ∪ [n_api] ∈ bad_api_chains then

10 continue; /* Avoid repeating known failed drivers */

11 end if

12 new_var← try_to_instantiate(n_api, var_alive);

13 if is_valid(new_var) then

14 candidate_next_api_fun←ėĚĚ (n_api, new_var);

15 end if

16 end foreach

17 if len(candidate_next_api_fun) == 0 then

18 api← random_bias(source_api, D); /* If no valid candidates, pick a new source */

19 var_alive← try_to_instantiate(api, var_alive);

20 else

21 (api, var_alive)← random_bias(candidate_next_api_fun, D);

22 end if

23 api_chain← api_chain + [api]; /* Update the chain, if new, stop and probe it */

24 if api_chain ∉ good_api_chains then

25 break;

26 end if

27 end while

28 return (api_chain, var_alive)

select the drivers that produced the most seeds, as we deem them more promising for longer testing.
Despite a�nity propagation having O(Ĥ2) complexity, we process thousands of API Chains in less
than a minute, thus �tting our leanness requirement. As a result, our driver selection algorithm
�nds relevant targets e�ciently, maximizing the resources devoted to testing the library and, thus,
addressing the challenge C3.

6 Implementation

Prototype implementation. libErator analysis leverages SVF [38, 45], complemented with
4K LoC of C++ to extract the dependency graph. The rest of the tool is composed of around 5K LoC
of Python code. libErator generates drivers as C programs, subsequently compiled and statically
linked with the target library. The drivers’ input follow the format from libFuzzer. libErator,
however, can be used with other fuzzing engines, e.g., AFL++.

Static analysis. The static analysis used in §4 and §5.1 is based on the default Use-Def graph
provided by SVF [38, 45] using SVF’s Flow-Sensitive point-to analysis [19]. However, we observe
that the SVF analyses do not correctly resolve indirect calls for global function pointers. Usually,
global function pointers are used to set at runtime system-dependent functions (e.g., malloc/free)
through speci�c environment variables. This limitation leads to an incomplete call graph that hides
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Table 2. Targets selected for libErator evaluation.
“#API Func.” denotes the number of exposed API func-
tions in the library. The last column reports the du-
ration of libErator static analysis.

Name K LoC #API Func. Duration

c-ares 55.99 61 1min 1 s

cJSON 16.57 78 24 s

cpu_features 8.36 7 43 s

libaom 518.38 47 2 h 40min 39 s

libdwarf 126.83 333 2 h 51min 26 s

LibHTP 38.59 249 13min 43 s

libpcap 45.59 89 42 s

libplist 11.25 101 47 s

libsndfile 56.42 40 38min 43 s

LibTIFF 87.16 196 7 h 32min 5 s

libucl 17.04 125 2 h 38min 25 s

libvpx 362.05 38 2 h 19min 43 s

minijail 18.87 95 20 s

pthreadpool 12.69 30 1min 27 s

zlib 29.94 88 21 s
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Fig. 3. Normalized coverage in five-runs average
achieved by libErator drivers as a function of Īgen.
The di�erent behaviors of the libraries as Īgen grows,
highlight the need for a tool where Īgen and Ītest can
be fine-tuned. The raw numbers are in Table 4.

important code patterns. To cope with this issue, we locate (a) all the global structures containing
function pointers, and (b) all the code locations where the global function pointers were set. Finally,
we use this information to infer missing target sets and update the call graph accordingly. This
simple strategy is su�cient to handle the analyzed libraries.

Type Length Value (TLV) implementation. The drivers synthesized by libErator assume
that some variables have a �xed size (e.g., char s[10]) while others have a dynamic size (e.g.,
Var-len). On the other hand, the fuzzing engine produces “random” inputs. Therefore, the fuzzer
engine and driver must agree on an input structure to correctly mutate and bridge it into variables.
To solve this problem, we encode inputs as a TLV structure. More precisely, the driver contains
a custom mutator—LLVMFuzzerCustomMutator routine in our prototype [16]—that mutates the
input according to the TLV encoded structure and maps it to the driver’s variables.

7 Evaluation

We evaluate libErator by answering the following research questions:
RQ1: How does the trade-o� between Īgen and Ītest manifest itself in practice (§7.1)?
RQ2: To which extent does libErator explore libraries? (§7.2)?
RQ3: How does libErator compare to state-of-the-art library fuzzing tools (§7.3)?
RQ4: Can libErator �nd bugs in real-world libraries (§7.4)?
RQ5: How does each component of libErator contribute to its performance (§7.5)?

Compared Works. Our evaluation compares libErator against state-of-the-art consumer-

agnostic—Hopper [5]—and consumer-dependent tools—UTopia [23], FuzzGen [22], and the Google
framework OSS-Fuzz-Gen [20, 21]. We select these works based on the availability of either their
artifact or their released drivers. Additionally, we select all manually written drivers from the
OSS-Fuzz project [37] and the projects’ repositories to provide a comparison with existing drivers.
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Benchmarks Selected. We evaluate libErator on 15 libraries ranging from 8K to 518K LoC, as
listed in Table 2. We choose all C targets from Hopper and UTopia apart from �ve libraries which
SVF does not support (§8). Additionally, we include the four libraries from OSS-Fuzz-Gen with the
most drivers. All the libraries are tested on their most recent commits except when comparing with
UTopiawhere we use the versions from their evaluation since the artifact is otherwise incompatible.

Experimental Setup. libErator evaluation was performed in Docker containers based on
Ubuntu 20.04 on an Intel Xeon Gold 5218 @ 2.30GHz CPU with 64GB of RAM. Every library and
driver is compiled with identical options. Each result is the average of �ve experiment repetitions.

Fuzzing Setup. For all fuzzing campaigns, we instrument libraries and drivers with ASan [36]
and SanCov [40]. To measure the coverage, we replay the corpus and count only the branches and
lines traced by SanCov in the library while discarding the coverage in the driver itself. Finally, all
the testing campaigns are launched with an empty initial corpus.

7.1 RQ1 - Īgen vs Ītest Trade-o� Analysis

Automated library fuzzing faces an inherent trade-o� between the computation time invested in
generating new drivers and the time spent testing them. To demonstrate and quantify this trade-
o�, we evaluate the overall performance—in terms of code coverage—of fuzzing campaigns with
di�erent balances of Īgen and Ītest. In particular, we perform four 24-hour campaigns for Īgen values
of 6-, 12-, 18-, and 24-hours. As the time necessary for selection is minimal, Ītest is the complement to
24 hours of Īgen. If Ītest is zero, we measure the cumulative SanCov coverage produced by the drivers
during the driver generation. Otherwise, the coverage is measured during the fuzzing campaign
lasting Ītest hours.
The results of these campaigns are presented in Figure 3. Our main observation is of distinct

behaviors among the tested libraries. While minijail and cJSON reach more coverage while
increasing Īgen, libaom and LibTIFF show better results for the smallest Īgen, i.e., 6 hours. This
correlates with the complexity of inputs accepted by the libraries. For instance, the core of both
LibTIFF and libaom is to parse complex media formats, which the fuzzer is unlikely to synthesize
correctly initially. With longer testing time, the fuzzer learns the input format and provide better
inputs to the drivers. cJSON and minijail inputs have simpler structures, and testing bene�ts more
from a diverse set of drivers which allows for broader coverage. Looking at libpcap and zlib, the
coverage plateaus or decreases beyond a certain Īgen. Likely explanations are either a coverage
wall or the saturation of the driver corpus—i.e., the campaign does not bene�t from new drivers
anymore. For libaom and libvpx, we observe a sharp drop in coverage for a Īgen of 12 hours. We
hypothesize that this setting exempli�es the worst of both worlds: the fuzzer does not have enough
time to learn the input structure, and we lack enough driver diversity to trigger more code paths.
In conclusion, Figure 3 shows the absence of a one-size-�ts-all for automated library fuzzing.

The optimal balance between Īgen and Ītest depends partially on the API complexity and its input
structure. This motivates the need for a tool con�gurable to any balance between Īgen and Ītest.
libErator is designed around controlling this trade-o� and can, therefore, be used to �nd the best
resource allocation for fuzzing a speci�c library.

7.2 RQ2 - How does libErator Test Libraries?

We investigate how libErator performs library testing and highlight di�erent aspects of the valid
drivers synthesized during the generation process (§5.2). To this end, we measure the cumulative
coverage and the API functions invoked during a campaign where Īgen is set to 24 hours. Speci�cally,
the cumulative coverage is calculated by merging the progressive SanCov pro�les [39]. Both metrics
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Fig. 4. Cumulative edge coverage reached as drivers are generated over 24 hours. The X-axis is the number of
drivers generated during the 24 hours fuzzing session. The Y-axis is the cumulated edge coverage reached.

are expressed in terms of number of drivers generated. If a repetition has fewer drivers, we take its
total cumulative coverage for the outstanding driver average.

Figure 4 shows the cumulative coverage after 24 hours. Similarly to standard fuzzing, the coverage
tends, for most libraries, to reach a plateau. This signi�es that generating additional drivers would,
likely, bring only marginal new coverage. This plateau can either highlight the need to switch to
more prolonged fuzzing or a coverage wall. Therefore, switching to prolonged fuzzing may not
always be bene�cial, as will show §7.3. Libraries that expect simple inputs (e.g., integers or strings)
bene�t more from shorter campaigns with di�erent drivers, as sampling interesting inputs for these
types is simpler than for complex structures.

Figure 5 shows the percentage of API functions tested during the driver generation. As expected,
the libraries showing a clear plateau in terms of coverage (Figure 4), e.g., cJSON, also tend to have
exhausted the API functions. Conversely, minijail, LibTIFF, and LibHTP did not reach a clear
plateau and libErator might explore new API Chains combinations given more time. Notably,
libraries requiring complex inputs and complex API Chains, such as LibTIFF and libaom, bene�t
from both a longer driver generation and longer testing.

7.3 RQ3 - Comparison with State-of-the-art

To assess libErator, we compare against publicly released drivers and functional artifacts from
state-of-the-art library fuzzing tools. The �ve works selected have explored library fuzzing from
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Fig. 5. API function coverage over 24 hours driver generation. The X-axis is the number of drivers selected
during the generation. The Y-axis is the percentage of API functions covered as more drivers are created.

di�erent perspectives and with varying assumptions. Table 3 summarizes their characteristics
and highlights their di�erences. Most tools share characteristics, i.e., they operate at source code
level, are consumer-dependent, and use existing sanitizer (i.e., ASan [36]). Only UTopia and Hopper
stand out. UTopia transforms libraries’ unit tests into fuzz drivers. However, as unit tests often
interact directly with internal library functions, it biases the amount of reachable code, as observed
in LibHTP. Hopper works with stripped binaries, thus prohibiting the use of ASan, and, instead,
employs binary re-writing to implement sanitization. Their approach su�ers, however, from false
negatives (e.g., it misses out-of-bound memory accesses). This leads Hopper to measure coverage
past runtime errors in code unreachable with ASan thereby arti�cially in�ating coverage numbers.
To measure this impact, we replay Hopper’s queue with ASan and observe that 73.39% and 8.05% of
the inputs for libplist and libdwarf respectively, su�er from runtime errors. From our analysis,
we conclude that Hopper and libErator operate on di�erent assumptions (open versus closed
source) resulting in coverage measurements not directly comparable.
Table 4 shows the results of libErator across di�erent Īgen and Ītest as well as the results of

Hopper and OSS-Fuzz. Table 5 provides a comparison against UTopia, while and Table 6 compares
libErator to FuzzGen and OSS-Fuzz-Gen. The following paragraphs describe each comparison in
detail. The coverage reported is only the library coverage after a time budget of 24 hours. We select
the best libErator con�guration for each library and compare its coverage with the other tools.
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Table 3. libErator’s features compared with state-of-the-art works. UTopia and Hopper are the two main
outsiders. UTopia does not adhere to the fuzz driver definition and operates on library functions outside of
the public API. Hopper works at the binary level and does not use ASan but an incomplete custom sanitizer.

Tool
Consumer Standard Use API
Relation Sanitizer Only

UTopia Dependent
OSS-Fuzz Dependent
OSS-Fuzz-Gen Dependent
FuzzGen Dependent
Hopper Agnostic

libErator Agnostic

Hopper. Despite the di�erence in sanitization, libErator outperforms Hopper on eight out
of 13 libraries. We carefully examine the �ve libraries where Hopper prevails. In general, Hopper
bene�ts from its faster generation of drivers. This a�ects the exploration of LibHTP, which is the
largest library tested in terms of numbers of API functions in our evaluation set (see Figure 2).
By generating vastly more API Chains than libErator, Hopper can reach shallow coverage in
many more functions resulting in higher coverage overall. This also explains the reached coverage
in c-ares and libucl. For cJSON, we observe that Hopper avoids a recurrent false positive use-
after-free error that hinders libErator from reaching a higher coverage. For libplist, Hopper’s
sanitizer does not detect a runtime error, thus not stopping library testing. Indeed, we observe that
73.39% of the inputs generated by Hopper for libplist would be stopped in libErator by ASan.

OSS-Fuzz. Compared to OSS-Fuzz, libErator covers more code on six of the 12 compatible
libraries. For complex APIs like libaom and libvpx, drivers need complex code structures such
as loops and conditions for probing deeper code paths. This limitation is common to all other
automatic approaches, i.e., Hopper, OSS-Fuzz-Gen, FuzzGen, and UTopia. OSS-Fuzz’s drawback is
that the current drivers are exhaustively tested and without extensive manual e�orts can hardly
reveal new bugs, as we study in §7.4.
UTopia. Table 5 shows the comparison with UTopia. As UTopia converts existing unit tests

into harnesses, its drivers interact through library functions absent from the public API, thus giving
a substantial advantage in terms of coverage. This is particularly evident for minijail and LibHTP.
For libaom, UTopia’s drivers are more stable since they include loops and more complex code
structures. Nonetheless, libErator overcomes UTopia in half of the targets without requiring
any unit tests and respecting the intended library interaction. Moreover, our evaluation of UTopia
results only in false positive crashes which are cumbersome to triage.

OSS-Fuzz-Gen. Table 6 reports the comparison with OSS-Fuzz-Gen. Since we lack the resources
to run the Large Language Model (LLM), we test the publicly released drivers [21]. Overall, libEra-
tor outperfoms OSS-Fuzz-Gen on �ve out of six libraries while coming close in the remaining one.
OSS-Fuzz-Gen is penalized by the small number of API functions included in its drivers. Indeed,
the prompts used insist on keeping the driver concise to avoid compilation errors. Conversely,
libErator bene�ts from interaction with diverse API functions thanks to §5.3, thus exercising
more diverse parts of the library’s code.

FuzzGen. Table 6 presents the results of FuzzGen. Due to compilation errors in the generation
pipeline, we fall back to the published drivers overlapping with our target set, namely libaom and
libvpx, note that both drivers required manual patches to compile. Despite our investigation, we
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Table 4. Library coverage a�er 24 hours fuzzing campaign for libErator, OSS-Fuzz, and Hopper. libErator
results are shown for Īgen of 24-, 18-, 12-, and 6-hours, with bold for the best configuration. Additionally,
we report the coverage delta between the best libErator configuration and the other tools in the columns
marked with �. Bold green highlights where libErator prevails. We mark unsupported libraries with a dash.

Target
libErator [Īgen + Ītest ] Hopper OSS-Fuzz

24h+0h 18h+6h 12h+12h 6h+18h cov. � cov. �

c-ares 55.29% 50.88% 49.06% 52.65% 60.43% -5.15% 22.62% +32.66%

cJSON 75.34% 73.20% 71.52% 72.68% 87.44% -12.10% 45.95% +29.39%

cpu_features 19.22% 19.22% 19.22% 19.22% 18.06% +1.16% - -
libaom 10.98% 10.57% 5.51% 11.77% 9.79% +1.98% 44.20% -32.43%
libdwarf 18.08% 17.88% 17.89% 17.89% 11.56% +6.51% 20.04% -1.96%
LibHTP 26.74% 25.07% 16.34% 17.37% 44.14% -17.41% 31.96% -5.22%
libpcap 40.93% 40.81% 37.48% 38.03% 36.15% +4.78% 43.14% -2.20%
libplist 54.30% 54.43% 53.97% 51.13% 63.07% -8.63% 35.34% +19.10%

libsndfile 26.50% 31.75% 35.46% 36.59% 6.18% +30.41% 11.14% +25.45%

LibTIFF 24.45% 26.93% 27.70% 26.36% - - 28.33% -0.62%
libucl 56.34% 57.02% 57.43% 57.78% 64.98% -7.20% 36.88% +20.90%

libvpx 8.24% 8.90% 3.71% 7.59% 6.18% +2.71% 48.48% -39.58%
minijail 18.45% 15.48% 16.03% 16.07% - - - -
pthreadpool 50.44% 44.21% 36.42% 40.42% 31.01% +19.43% - -
zlib 58.32% 58.83% 46.26% 55.01% 38.92% +19.91% 50.14% +8.69%

could not identify a clear cause for the low coverage in libaom. For libvpx, our patch corrected
an initialization issue for the vpx_codec_ctx structure, which is essential for library interaction.
Resolving this issue allowed FuzzGen to achieve a coverage comparable to libErator.

Overall, libErator outperforms Hopper on most libraries and on almost all libraries compared
to OSS-Fuzz-Gen and FuzzGen. Compared to UTopia, libErator reports, on average, a comparable
coverage despite using only publicly available API functions. Finally, libErator complements
OSS-Fuzz by providing a broader and evolving exploration of the libraries. We therefore conclude
that automatically creating high-quality drivers without consumers or test cases is achievable
through analysis of the library’s source code alone.

7.4 RQ4 - libErator Bugs Finding Capabilities

We compare the bug-funding capability of libErator against the previously listed competitors. In
particular, Table 7 lists the bugs found by libErator. We analyze crashes found when testing the
target libraries by using the best Īgen/Ītest con�guration from §7.3. We denote (with †) additional
bugs discovered during libErator development. Later, we discuss the false positives generated by
libErator and their root causes. Finally, we expand on two case studies about libpcap and cJSON
to illustrate the e�ectiveness of libErator in �nding real-world bugs.
To correctly classify the bugs, we manually inspect their root cause and automatically cluster

them in coherent classes via stack similarities [10]. Overall, libErator identi�es 81 unique crashes
across all 15 libraries. After triage, we report 24 con�rmed bugs resulting in a 25% true positive
ratio which is double that of similar state-of-the-art works [23]. Hopper �nds only six bugs, while
the drivers from OSS-Fuzz, OSS-Fuzz-Gen, FuzzGen, and UTopia found zero during our evaluation.

True positives: Table 7 list the 24 bugs found by libErator. Each bug was promptly reported
to the maintainers with a �x suggestion. libErator �nds a variety of bugs, including logic errors,
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Table 5. libErator comparison against UTopia. The li-
braries used are from the commits indicated in UTopia.
libErator’s configurations are from Table 4.

Target
UTopia libErator *
cov. cov. Īgen + Ītest

cpu_features 4.45% 54.97% 24h + 0h
libaom 18.66% 15.61% 6h + 18h
LibHTP 40.37% 27.02% 24h + 0h
libvpx 8.41% 9.31% 18h + 6h
minijail 31.59% 18.73% 24h + 0h
pthreadpool 35.19% 44.63% 24h + 0h

Table 6. libErator comparison against FuzzGen, and
OSS-Fuzz-Gen. libErator’s configurations are from
Table 4.

Target
FuzzGen libErator

cov. cov. Īgen + Ītest

libaom 0.11% 11.77% 6h + 18h
libvpx 9.35% 8.90% 18h + 6h

OSS-Fuzz-Gen libErator

cJSON 58.29% 75.34% 24h + 0h
libdwarf 18.66% 18.08% 24h + 0h
libpcap 1.09% 40.93% 24h + 0h
libplist 26.18% 54.43% 18h + 6h
libsndfile 0.58% 36.59% 6h + 18h
libucl 33.30% 57.78% 6h + 18h

Table 7. True positive found by libErator. The table
reports the library and the bug type. The † indicates
that the bug was found during development (§7.4).
The status column indicates if the bug is fixed or only
acknowledged by the maintainers. For reference, we
report the project issue number. The NULL derefer-
ence in libpcap is tracked under CVE-2024-8006.

Library Bug Type Status Issue/PR #

cJSON Logic error Fixed 881

cJSON NULL deref. Fixed 882

cJSON Stack exhaust. Fixed 880

cJSON Stack exhaust. Fixed 880

cJSON Stack exhaust. † Ack. 827

cJSON Logic error † Fixed 821

libpcap NULL deref. Fixed 1345

LibTIFF SEGFault Fixed 643

LibTIFF Int. Over�ow Fixed 649

LibTIFF Int. Over�ow Fixed 645

LibTIFF Arith. Except. Fixed 646

LibTIFF Arith. Except. † Fixed 580

LibTIFF Arith. Except. † Fixed 628

libucl Miss. Check Fixed 315

libucl Miss. Check Fixed 315

libucl Miss. Check Fixed 315

libucl Miss. Check Fixed 315

libucl Miss. Check Fixed 315

libucl Miss. Check Fixed 315

libucl Miss. Check Fixed 315

libucl OOB Read Ack. 316

pthreadpool Arith. Except. Fixed 46

pthreadpool Heap Over�ow Ack. 47

zlib Logic error † Fixed 889

Table 8. Breakdown of false positives generated by
libErator. We le� out libraries without false positives,
namely cpu_features, libplist, and libvpx. inco-
herent arg. indicates incoherency between two ormore
arguments (e.g., missed Var-len relationship). mem.

leak denotes a memory leak. use-a�er-free points to
a free incorrectly tracked. malloc arg. indicates un-
bounded size in a call to malloc. non init bu�er occurs
when uninitialized bu�ers are used. Finally, API usage
conveys deviation from the intended usage.
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c-ares 3 1 1 0 0 0 5
cJSON 1 0 0 0 1 0 2
libaom 1 0 0 0 0 0 1
libdwarf 7 1 1 0 2 1 12
LibHTP 2 0 2 0 0 0 4
libpcap 0 0 0 1 1 0 2
libsndfile 6 1 2 0 0 0 9
LibTIFF 0 0 0 0 2 0 2
libucl 2 1 1 2 1 0 7
minijail 2 1 0 0 0 1 4
pthreadpool 1 0 0 1 0 0 2
zlib 2 2 0 1 0 2 7

Total 27 7 7 5 7 4 57
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NULL dereferences, and integer over�ows across six libraries. For example, at two locations,
LibTIFF used to index arrays with signed integers, allowing a negative value to deceive the bounds
check. This value would later be interpreted as an unsigned integer, leading to an index out of
bound. The logic error in cJSON results from incorrect usage of strcpy from the C standard library.
In libucl, libErator triggered seven crashes due to incomplete type checks, and an edge case
where a non NULL-terminated string caused an out-of-bound read. Overall, the bugs identi�ed
ranged from shallow (e.g., a single API call necessary) to complex (over three chained API calls
with inter-procedural dependencies). libErator can adapt to these di�erent scenarios, fuzzing
deeper once the shallow API functions are covered.

During our evaluation, Hopper identi�es 894 unique crashes but only six are true positives. The
cause of Hopper’s high false positive rate is the imprecision of its sanitizer. Additionally, Hopper’s
oracle overlooks the object lifecycle leading to even more false negatives. Two true positives were
in pthreadpool and four in libucl, all of which were also identi�ed by libErator.
Our fuzzing of the OSS-Fuzz drivers leads to zero crashes, likely due to the exhaustive testing

that these drivers already experienced as part of the continuous campaigns lead by Google. This
highlights the need for a broader and continuously evolving set of drivers. The bugs found by
libErator prove that OSS-Fuzz drivers are not exhaustive and that libErator complements these
harnesses leading to the discovery of new bugs.

UTopia, OSS-Fuzz-Gen, and FuzzGen fail to produce any true positive during our experiments.
As we were unable to generate drivers for both OSS-Fuzz-Gen and FuzzGen, the publicly available
harnesses have likely already been extensively tested. Notably, the OSS-Fuzz-Gen drivers for cJSON
speci�cally target an API function—cJSON_duplicate—in which libErator found a bug. However,
OSS-Fuzz-Gen’s drivers are unable to trigger it because they all exercise the same sequence of API
functions commonly used in consumers while libErator �nds alternative sequences. To further
showcase the e�ectiveness of libErator, we empirically con�rm its capability to �nd the two bugs
identi�ed by OSS-Fuzz-Gen in previous versions of cJSON and libplist.1 The drivers generated by
UTopia, despite their good coverage during our evaluation, produce only false positive highlighting
the limitation of basing the generation on existing test suites.
In addition to �xes for these bugs, some libErator drivers were also adapted as test cases

for the libraries. For example, we contributed two test cases for the cJSON library. Following the
maintainers’ demand, we also contributed libErator drivers to libpcap for integration into their
fuzzing campaigns. This demonstrates the capacity of libErator to produce valid and interesting
drivers, complementary to the existing manual e�orts of the maintainers.

libErator exhibits a high true positive ratio, e.g.,much higher than what we observed for Hopper
and double the one reported by UTopia, and �nds real-world bugs in a variety of thoroughly tested
libraries, demonstrating its applicability.

False positives:We present libErator’s false positives in Table 8. They can be grouped into two
broad categories: (a) incoherent arguments (e.g., when libErator misses a Var-len dependency),
and (b) incorrect handling of memory (e.g.,missed Sink leading to Use-After-Free or unbounded size
in malloc). These false positives are caused by the imprecision of our static analysis. For example,
libErator currently misses the dependency between 2D arrays and their dimensions (e.g., width
and height of an image) leading to unwanted out-of-bound accesses. Additional engineering e�ort
could avoid these false positives.

Only 7% of libErator false positives are caused by drivers using the library incorrectly. For exam-
ple, in zlib, the documentation states that inflateReset should not be called after deflateInit_.
However, libErator is not able to infer this incompatibility. Understanding such dependencies

1Two out-of-bound access bugs: issues #800 in cJSON and #244 in libplist.
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Table 9. Library coverage for a Īgen of 24 hours across both
full libErator and libErator without field bias. In the
last column, we report the di�erence between the two,
highlighting in bold green when libErator prevails.

Target
libErator full

�
w/o �eld bias libErator

c-ares 55.48% 55.29% -0.19 %
cJSON 74.62% 75.34% 0.71 %

cpu_features 19.22% 19.22% 0.00 %

libaom 8.37 % 10.98% 2.61 %

libdwarf 18.15% 18.08% -0.07 %
LibHTP 10.47% 26.74% 16.26%

libpcap 42.25% 40.93% -1.32 %
libplist 52.60% 54.30% 1.71%

libsndfile 21.76% 26.50% 4.74 %

LibTIFF 20.65% 24.45% 3.80 %

libucl 53.53% 56.34% 2.81 %

libvpx 7.83 % 8.24 % 0.41 %

minijail 19.53% 18.45% -1.07 %
pthreadpool 47.96% 50.44% 2.48 %

zlib 61.27% 58.32% -2.95 %

Table 10. The first two columns report the num-
ber of drivers generated in 24 hours and how
many are selected for fuzzing. The last column
shows the duration of this process. Driver selec-
tion drastically reduces the number of drivers to
test while requiring negligible resources.

Target Tot. drv Sel. drv Avg [s]

c-ares 746 50 0.71
cJSON 1343 102 5.09
cpu_features 2046 7 13.14
libaom 1323 85 3.15
libdwarf 1173 101 3.09
LibHTP 1476 110 6.49
libpcap 931 57 1.72
libplist 2404 25 0.10
libsndfile 970 81 1.76
LibTIFF 612 45 0.81
libucl 910 64 1.06
libvpx 1624 86 7.40
minijail 300 19 5.61
pthreadpool 255 22 0.70
zlib 948 73 3.46

would require more complex static analysis or information external to the source code (e.g., annota-
tions or documentation). We leave this as future work.

Case study: cJSON is an lightweight JSON parser. In addition to straight forward NULL derefer-
ence, libErator found logic bugs, for example the function cJSON_SetValuestring could pass
overlapping strings to strcpy, which is explicitly disallowed. The maintainers acknowledged and
�xed this bug. libErator also �nd multiple stack exhaustion in cJSON caused by incorrect handling
of circular references in JSON objects. Lastly, libErator identi�es inconsistencies in how cJSON

handles arrays and dictionaries. The maintainers acknowledged the bug and are re�ecting on
how to address it as a �x would break the API compatibility. libErator’s cJSON false positives
are caused by two missing Var-len relationships and missing the identi�cation of a Sink function
resulting in a freed variable being passed to an API function triggering a Use-After-Free.
Case study: libpcap is a widely used library for packet capture. It is continuously fuzzed

through three manually written fuzz drivers as part of the OSS-Fuzz [37] project. Nonetheless,
libErator generated novel drivers that resulted in three crash clusters. Both false positives were
caused by allocating bu�ers smaller than the �xed size mandated in the documentation. The last
crash was a NULL dereference in pcap_findalldevs_exwhen the directory passed is non-existent.
The maintainers acknowledged the bug and awarded CVE-2024-8006. We provided a �x that is now
upstream. The OSS-Fuzz drivers were not able to �nd this bug because they are limited to a narrow
subset of the whole exposed API and do not test pcap_findalldevs_ex. Following our �nding,
the libpcap maintainers requested integration of libErator drivers into their fuzzing campaign.

7.5 RQ5 - Ablation Study

We conduct two ablation studies to understand how the components of libErator contribute to
its results. First, we evaluate the impact of the AFG bias used to guide the API Chain creation (§5.1)
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and to solve challenge C1. The second study aims at understanding the impact of the clustering
developed to avoid fuzzing redundant drivers (§5.3), i.e., challenge C3, on the overall performance
of libErator. Regarding challenge C2, an experiment excluding this technique is infeasible since
it is core to libErator’s driver generation, and removing it would distort the whole architecture.
Table 9 shows the coverage reached after 24 hours of driver generation (24 hours Īgen) by two

libErator con�gurations. First, we run libEratorwithout biasing the AFG. In practice, we modify
the function random_bias (line 18 and 21 in Algorithm 2) to pick fully at random an API function
out of the possible candidate. The AFG bias shows crucial improvements in the coverage of LibHTP.
The complex chains necessary to set up minimal state in LibHTP are unlikely to be encountered by
libErator without biasing the choice of the subsequent API function during driver generation due
to the size of the API of LibHTP. Coverage-guided driver generation (e.g., Hopper) shows similar
limitations due to the limited coverage reached by their API Chains. For the other libraries, AFG
bias does not show a particular e�ect. From our analysis, this is because most API functions interact
with a similar number of �elds, therefore, reducing the bias e�ect.

To assess the impact of our driver selection strategy (§5.3), we measure the duration of the a�nity
propagation clustering across the drivers generated by libErator in 24 hours with a similar setup
as the previous study. Results are presented in Table 10. Despite having to cluster more than 2’000
drivers, the duration is negligible for all the libraries. In the worst case, cpu_features takes less
than 0.02% of the total experiment time. This shows that the driver selection is not a bottleneck in
the pipeline of libErator. By reducing the number of drivers by up to 99%, the driver selection is
crucial to avoid redundant drivers and distribute the fuzzing resources e�ciently.
Overall, each component of libErator contributes to the increased performance shown in

§7.2. The AFG bias is crucial to guide the driver generation for libraries with complex setups (e.g.,
LibHTP) while the driver selection is lightweight.

8 Discussion

Future work. So far, libErator cannot generate drivers containing loops. Supporting loop
involves an explosion of complexity as libErator must decide which functions should be called
repeatedly and how to handle loop termination. With engineering e�orts, however, our static
analysis could identify the API functions expected to be used in loops based on argument types.
Despite the design concepts being generic and language-agnostic (§5), our prototype targets C

code, but we plan an extension to other languages, such as C++ or Python. For example, libErator
for C++ could reuse most of the architecture. New constructs like class hierarchies, templates and
generics are not yet handled by libErator resulting in an incomplete AFG for C++ code.
Our current static analysis (§5.1) inherits SVF imprecision when following indirect jumps. On-

going e�orts to improve SVF point-to analysis would enhance the AFG (e.g., avoiding the false
positives due to missed Var-len). Lastly, SVF cannot analyze some libraries due to state explosion.
Comprehensively understanding the di�erent library characteristics in�uencing its position

along the Īgen versus Ītest ratio remains an open question.

Limitations. libErator adds empty stub functions when an API requires function pointers.
Understanding which function behavior is expected is a daunting task that would require other
sources of information (e.g., consumers or documentation). Additionally, to further increase the
probability of synthesizing valid API Chains, we could leverage Large Language Model (LLM). We
consider these techniques orthogonal to ours since we aim to show the limitations of one-size-�ts-all
solutions and the complexity of striking a balance between driver generation and deeper testing.
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9 Related Work

Automated library testing. Randoop [32] and EvoSuite [11] pioneered the automatic genera-
tion of tests for Java programs. The latter is based on test case mutations and invariants inference
to de�ne speci�cations that can later be veri�ed. Similar work exist for other languages [29, 30].
Documentation and source code comments have also been used to discover software speci�ca-
tions [2]. Lately, LLMs have improved test suites for functions with little coverage [25]. Contrary
to these works, libErator generates fuzzing drivers unleashing fuzzing engine on C libraries.

Driver synthesis. FuzzGen [22], Fudge [1], UTopia [23], OSS-Fuzz-Gen [21], PromptFuzz [47],
Winnie [24], AFGen [28], IntelliGen [52], TitanFuzz [8], RUBICK [50], Daisy [53], andNEXZZER [26]
leverage external knowledge about the API usage (consumer-dependent). Either by trimming and
cross-pollinating consumers, transforming unit tests, or by querying LLMs, these tools learns from
existing usage and are limited in the diversity of the generated drivers. Moreover, as exempli�ed
in APICraft, they focus on driver generation while not exploring trade-o�s between generation
and testing, and overlook driver selection strategies. Conversely, libErator separates the duty of
generating and testing fuzz drivers, showing that the two problems are orthogonal and a single
one-for-all solution is not achievable as that strongly depends on the library API.
Hopper [5] and GraphFuzz [18] model library testing as a grammar fuzzing problem and, as

libErator, are consumer-agnostic. However, both fail to address the challenges in §3. Conversely,
libErator helps strike a balance speci�c to each library, addressing a new angle of this problem.

10 Conclusion

We laid out the computation trade-o� between the time spent generating drivers and the resources
invested in fuzzing, and limitation it imposes to the current library fuzzing works. We highlighted
the necessity for a driver generation technique capable of dividing resources di�erently for each
library, striking a better balance for each library than a one-size-�ts-all approach.

We presented libErator, a novel methodology, con�gurable along this trade-o�, to automatically
generate fuzz drivers. libErator employs cutting-edge static analysis techniques to infer the
semantics of API functions and, then, generate valid fuzz drivers for a target library. We deploy
libErator against 15 libraries and compare our results against both the state-of-the-art driver
synthesis generators and manually written drivers.

libErator reaches more coverage than other automated tools while �nding bugs in extensively
tested libraries where manual written drivers �nd none. We found 24 bugs that were reported to
the maintainers. We upstream derived test cases and fuzz drivers to multiple projects.

11 Data Availability

Our code is on GitHub and Zenodo with DOI:10.5281/zenodo.15201791 [41] under the Apache-2.0
license. Due to length of the fuzzing campaign, the coverage data is too large for Zenodo. We,
however, release the raw aggregated results as CSV. The instructions on how to run the experiments
are in the main GitHub repository.
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