
Liberating Libraries Through Automated Fuzz
Driver Generation: Striking a Balance Without

Consumer Code

Flavio Toffalini*+, Nicolas Badoux*, Zurab Tsinadze*, Mathias Payer*

1

+ Ruhr University Bochum, Germany
* EPFL, Switzerland

Testing Third-Party Libraries: What Semantics?

22

Fuzzer Target

CLI Application

LibraryAPI

open()
read()

Fuzzer

Libraries expose a complex
Application Programming

Interface (API) without clear
dependencies.

Regular fuzzing targets
standalone applications

through main()

Third-Party Library

VS ?
write()
close()

Testing Third-Party Libraries

3

Library
(libvpx)

API

VPXD_INTERFACE()
vpx_codec_dec_init()
vpx_codec_decode()
vpx_codec_destroy()

…

Fuzzer

LLVMFuzzerTestOneInput(char* data, size_t size) {
 a = vpx_codec_dec_init(“...”);
 vpx_codec_decode(a, data, size);
 vpx_codec_destroy(a);
}

Fuzz Drivers are a function that interacts
with the library API

Fuzz Drivers are usually manually written

char* data

size_t size

Problems in Driver Generation

Q1: How much time should I spend to generate new

drivers?

Q2: How much time should I spend to test the

drivers?

4

Time for driver generation

Ti
m

e
fo

r
d

ri
ve

r
te

st
in

g libErator (our work)

Manually written drivers
UTOPIA, OSS-Fuzz-Gen

Hopper,
GraphFuzz,
APICraft

FuzzGen

tgen+ttest= T

Automatic generating drivers is a two-sided task:

- Generating code

- Test the generated code

This leads to two questions

libErator’s (Simplified) Design

Fuzzing campaigns have limited time, how do I allocate it efficiently?

tgen ttest T

5

.h

.c

Library
Code

AFG

A
B

C

D

Static
Analysis

Driver
Generation

Driver
Selection

Driver Testing

Total campaignTime invested in
generating drivers

Time invested in
testing drivers

API Flow Graph (AFG)

Represent dependencies

between API functions

libErator’s Design: Static Analysis

Populate the API Flow Graph (AFG)1

- Dependencies between API calls

Infers API function arguments dependencies (e.g., buffer and its length)

The type system determines the variables’ initialization procedure

6

.h

.c

Library
Code

AFG

A
B

C

D

Static
Analysis

Driver
Generation

Driver
Selection

Driver Testing

[1] More technical info in the paper

libErator’s Design: Driver Generation and Selection

Driver generation through iterative AFG traversal1

- Instantiate necessary variable and their cleanup code

- Bias towards function manipulating more argument fields

- Deemed successful if the driver produce seeds

Selection of diverse drivers for deep testing1

- Pick one driver per cluster of drivers using similar API functions

7
[1] More technical info in the paper

.h

.c

Library
Code

AFG

A
B

C

D

Static
Analysis

Driver
Generation

Driver
Selection

Driver Testing

Evaluation

We compare against consumer-aware and consumer-agnostic works

- Hopper, CCS’23

- UTopia, S&P’23

- FuzzGen, Usenix SEC’20

- OSS-Fuzz-Gen, Google ‘23

- Manually written drivers

A benchmark of 15 C libraries, taken across the above tools

8

Coverage1

libErator vs Consumer-agnostic:

Hopper, 8 / 13 better

libErator vs Consumer-aware:

UTopia, 3 / 6 better

FuzzGen, 1 / 2 better

OSS-Fuzz-Gen, 5 / 6 better

libErator vs Manually Written:

misc. 6 / 12 better

9

Lesson Learned:
(i) better than SotA consumer-agnostic works
(ii) similar or better against consumer-aware works
and manually written drivers
(iii) overall, fit-for-all solution seems missing
Most importantly….

[1] Not all the libraries were compatible with all the competitors

Bugs Found

24 unique bugs identified, including a CVE in libpcap

25% true positive crashes (vs 0.7% for Hopper)

False positives caused by:
- Incoherent arguments (e.g., 2D array)

- Incorrect memory tracking (e.g., UAF)

Bugs were reported and fixed

We also contribute drivers and derived test cases

Tool Bugs

Manual drivers 0

FuzzGen 0

UTopia 0

OSS-Fuzz-Gen 0

Hopper 6

libErator 24

10

Lesson Learned:
(i) libErator reaches untested library regions and find bugs where
(ii) Consumer-aware and manually written drivers are exhausted.

Lesson Learned

We measured how different values of t
gen

and

t
test

 affect performances in terms of coverage

We learned that two aspects affect this tradeoff:

- Input complexity: libraries that expect

complex inputs requires more testing time

for single driver

- API complexity: we may need to spend

more time in finding the correct library

interaction

11

Time for driver generation

Ti
m

e
fo

r d
riv

er
 te

st
in

g

c-ares
cJSON
libdwarf
LibHTP

Libpcap
minijail
pthreadpool

libaom
libsndfile
libucl

libplist
libvpx
zlib

LibTIFF

libErator Summary

12Real impacts Different trade-off

New design to generate driversThird-party library testing

