@ -~ .
#hehive B

Liberating Libraries Through Automated Fuzz
Driver Generation: Striking a Balance Without
Consumer Code

Flavio Toffalini"*, Nicolas Badoux’, Zurab Tsinadze®, Mathias Payer”
*Ruhr University Bochum, Germany

" EPFL, Switzerland

Testing Third-Party Libraries: What Semantics?

CLI Application Third-Party Library
A

N

A
4 N\ 4
o () U8 ? (] e

open() write()
read() close()

Libraries expose a complex
Application Programming
Interface (API) without clear
dependencies.

Regular fuzzing targets
standalone applications
through main()

Testing Third-Party Libraries

Fuzz Drivers are a function that interacts
with the library API

=

Fuzz Drivers are usually manually written

API

-

a = vpx_codec_dec_init(“.

vpx_codec_decode(a, data, size);

vpx_codec_destroy(a);

}

" ”)

char* data

Y
size_t size

VPXD_INTERFACE()
vpx_codec_dec_init()
vpx_codec_decode()
vpx_codec_destroy()

Library
(libvpx)

/

Problems in Driver Generation

Automatic generating drivers is a two-sided task:

Manually written drivers

- Generating code UTOPIA, 0SS-Fuzz-Gen

- Test the generated code N

_? \\ \\libErator (our work)

§ Y

This leads to two questions 2

© FuzzGen

8 e

£ ! Hopper,
Q1: How much time should | spend to generate new = | ¢+t =T 3, GraphFuzz,

, O\, APICraft

drivers? :

Time for driver generation

Q2: How much time should | spend to test the

drivers?

libErator’s (Simplified) Design

Fuzzing campaigns have limited time, how do | allocate it efficiently?

Library AFG
Code

h Static
.C Analysis

BUTHED DATHED Driver Testin
Generation N Selection -7 g

Z 1

I
\ 7 I

t
API Flow Graph (AFG) / / /

Represent dependencies T . T . _
Time invested in Time invested in || Total campaign

between API functions

generating drivers testing drivers

libErator’s Design: Static Analysis
Populate the APl Flow Graph (AFG)?!
- Dependencies between API calls

Infers APl function arguments dependencies (e.g., buffer and its length)
The type system determines the variables’ initialization procedure

Library AFG
Code

h Static e Driver Driver . :
. : . Driver Testing
.C Analysis ' Generation Selection

6

[1] More technical info in the paper

libErator’s Design: Driver Generation and Selection

Driver generation through iterative AFG traversal?

- Instantiate necessary variable and their cleanup code
- Bias towards function manipulating more argument fields
- Deemed successful if the driver produce seeds

Selection of diverse drivers for deep testing®
- Pick one driver per cluster of drivers using similar APl functions

Library
Code

h Static Driver Driver
.C Analysis Generation Selection

]———*{DHverTésﬁng:}

[1] More technical info in the paper

Evaluation

We compare against consumer-aware and consumer-agnostic works

- Hopper, CCS’'23

- UTopia, S&P’23

- FuzzGen, Usenix SEC'20

- 0SS-Fuzz-Gen, Google 23
- Manually written drivers

A benchmark of 15 C libraries, taken across the above tools

Coverage?

libErator vs Consumer-agnostic:

Hopper, 8 / 13 better | / \

Lesson Learned:

libErator vs Consumer-aware: (i) better than SotA consumer-agnostic works

UTopia, 3 / 6 better (i) similar or bet’Fer agalr\st consumer-aware works
and manually written drivers

FuzzGen, 1/ 2 better (i) overall, fit-for-all solution seems missing

OSS-Fuzz-Gen, 5 / 6 better Most importantly....

= /

libErator vs Manually Written:
misc. 6 / 12 better

[1] Not all the libraries were compatible with all the competitors

Bugs Found

24 unique bugs identified, including a CVE in libpcap
25% true positive crashes (vs 0.7% for Hopper)

False positives caused by:
- Incoherent arguments (e.g., 2D array)
- Incorrect memory tracking (e.g., UAF)

Bugs were reported and fixed

We also contribute drivers and derived test cases

Tool Bugs

Manual drivers 0
FuzzGen 0
UTopia 0
OSS-Fuzz-Gen 0
Hopper 6
libErator 24

Lesson Learned:

(i) libErator reaches untested library regions and find bugs where
(ii) Consumer-aware and manually written drivers are exhausted.

10

Lesson Learned

We measured how different values of tgen and
t . affect performances in terms of coverage

We learned that two aspects affect this tradeoff:

- Input complexity: libraries that expect
complex inputs requires more testing time
for single driver

- APl complexity: we may need to spend
more time in finding the correct library
interaction

Time for driver testing

libaom
libsndfile
libucl

LibTIFF

libplist
libvpx
zlib

Time for driver generation

LibHTP

S80I minijail
libdwarf pthreadpool

11

libErator Summary

Fuzz Drivers are usually manually written

Fuzz Drivers are a function that interacts
with the library API

API

a =vpx_codec_dec_init(“..");
::> vpx_codec_decode(a, data, size);
vpx_codec_destroy(a);

}

VPXD_INTERFACE()
vpx_codec_dec_init()
vpx_codec_decode()
vpx_codec_destroy()

Library
(libvpx)

char* data ‘

~
size_t size

Third-party library testing

24 unique bugs identified, including a CVE in libpcap
25% true positive crashes (vs 0.7% for Hopper)

False positives caused by:
- Incoherent arguments (e.g., 2D array)
- Incorrect memory tracking (e.g., UAF)

Bugs were reported and fixed

We also contribute drivers and derived test cases

Real impacts

Tool Bugs
Manual drivers 0
FuzzGen 0
UTopia 0
0OSS-Fuzz-Gen 0
Hopper 6
libErator 24

Library AFG

Code
Static
Analysis

Drivet Driver Driver Testin,
Generation . Selection e g

API Flow Graph (AFG)

Represent dependencies
Time invested in

testing drivers

Time invested in
generating drivers

between API functions

Total campaign

New design to generate drivers

libaom

Lesson Learned libsndfile

libucl

We measured how different values of tgenand t(es(

affect performances in terms of coverage

We learned that two aspects affect this tradeoff:
lib

- Input complexity: libraries that expect
complex inputs requires more testing time

Time for driver testing

for single driver
- API complexity: we may need to spend

5 P . Time for driver generation
more time in finding the correct library

libplist
libvpx

interaction c-ares Libpcap
CcISON minijail

libdwarf pthreadpool

LibHTP

Different trade-off

12

