
Accurate Compiler and
Optimization Independent

Function Identification
Derrick McKee1,2, Nathan Burow1,2, Mathias Payer3

1. Purdue University 2. MIT Lincoln Laboratory 3. EPFL

Motivation

● Reverse engineering binaries is required for many purposes

○ Malware analysis and family identification

○ Library version and patch application

○ Copyright violation detection

● 105 new daily malware samples demands an automated solution

2

Why is reverse engineering binaries difficult?

● No debug symbols or type information

● Highly dependent on compilation environment

○ strlen assembly can change by up to 70%

● Similar binary code implies function similarity, but dissimilar code does not
imply differences in function semantics

3

Existing Solutions

4

● Static

○ BinDiff - Control-flow Graph
Isomorphism

○ Asm2Vec - NLP embedding

○ IDA - Proprietary function
signatures

● Dynamic

○ BLEX - Measured code
feature vector

○ IMF-SIM - Measured code
feature vector

All existing solutions measure code properties, which are fragile and highly variable.

What is IOVec Function Identification?

● Semantic binary function identifier

● Requires no source code

● Sets of program state changes is the unique function fingerprint

● Highly resistant to changes in compilation environment, purposeful
obfuscation, and architecture changes

5
IOVFI uses program state changes to identify functions in stripped binaries.

Input/Output Vectors (IOVecs)

● Stores an initial program state, and an expected program state after
function execution

● A function “accepts” an IOVec if it executes to completion starting with the
initial state, and the resulting program state matches the expected
program state

● The set of accepted IOVecs is the function signature

6
IOVecs store program state transformations largely preserved by all compilers.

7

IOVec Function Identification

int my_func(int a, int b, int* c) {
*c = a / b;
return 0;

}

Arg 0: ℤ
Arg 1: ℤ - {0}
Arg 2: Any valid address
Memory: Any value

Return: 0
Syscalls: None
Memory: Value at c
contains a / b

Input Program State Expected Program State

IO
Ve

c

IOVFI Training Phase

● IOVFI utilizes a guided mutational fuzzer to discover IOVec sets for each
function in a binary

● Each function is given every generated IOVec

● A binary tree is generated with functions on leaves, and IOVecs as
internal nodes

● Function identification involves traversing the binary tree

8
IOVFI classifies functions by creating a searchable binary tree of IOVecs.

Unknown

Known

IO
Ve
cs

9

IOVFI Binary Tree Example

IOVFI Experimental Setup

● We compile coreutils using Clang and GCC at -O{0,1,2,3}

● We generate a binary tree from wc, realpath, and uniq

● We identify functions in du, dir, ls, ptx, sort, true, logname, whoami, uname, and dirname

● We report F-Score, the harmonic mean of precision and recall

10

O0

Clang GCC

O0
Clang .856 24% .836 53%

GCC .823 48% .838 22%

O1
Clang .735 87% .734 99%

GCC .695 67% .690 68%

O2
Clang .696 122% .686 140%

GCC .674 100% .659 133%

O3
Clang .692 132% .689 140%

GCC .755 139% .748 201%

IOVFI
F-Score

11

Comparison with BinDiff 6

W
idening A

ccuracy G
ap

Evaluation
Compilation
Environment

Binary Tree
Compilation
Environment

Improvement
over BinDiff

O0

Clang GCC

O0
Clang .952 .856 .224 .836

GCC .296 .823 .951 .838

O3
Clang .0656 .692 .0370 .689

GCC .0519 .755 .0108 .748

12

Comparison with Asm2Vec

Evaluation
Compilation
Environment

Binary Tree
Compilation
Environment

IOVFI
F-Score

Asm2Vec
F-Score

Large Binary Accuracy

13

O1 O3

Clang GCC Clang GCC

libz .717 .850 .765 .772

libpng .633 .695 .629 .639

libxml2 .699 .802 .700 .733

Cross Architecture Accuracy

14

O0 O3

Clang GCC Clang GCC

wc .835 .805 .795 .860

realpath .820 .803 .737 .842

uniq .880 .866 .796 .877

Conclusion

● IOVFI semantically identifies functions in binaries

● Uses program state transformations as function fingerprints

● Resilient to broad changes in compilation environments and architecture,

a first-in-class feature

● Source available at https://github.com/HexHive/IOVFI

 Email: derrick@geth.systems
Twitter: @unbound_brewer

https://github.com/HexHive/IOVFI

