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Motivation

● Reverse engineering binaries is required for many purposes

○ Malware analysis and family identification

○ Library version and patch application

○ Copyright violation detection

● 105 new daily malware samples demands an automated solution
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Why is reverse engineering binaries difficult?

● No debug symbols or type information

● Highly dependent on compilation environment

○  strlen assembly can change by up to 70%

● Similar binary code implies function similarity, but dissimilar code does not 
imply differences in function semantics
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Existing Solutions
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● Static

○ BinDiff - Control-flow Graph 
Isomorphism

○ Asm2Vec - NLP embedding

○ IDA - Proprietary function 
signatures 

● Dynamic

○ BLEX - Measured code   
feature vector

○ IMF-SIM - Measured code 
feature vector

All existing solutions measure code properties, which are fragile and highly variable.



What is IOVec Function Identification?

● Semantic binary function identifier

● Requires no source code

● Sets of program state changes is the unique function fingerprint

● Highly resistant to changes in compilation environment, purposeful 
obfuscation, and architecture changes
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IOVFI uses program state changes to identify functions in stripped binaries.



Input/Output Vectors (IOVecs)

● Stores an initial program state, and an expected program state after 
function execution

● A function “accepts” an IOVec if it executes to completion starting with the 
initial state, and the resulting program state matches the expected 
program state

● The set of accepted IOVecs is the function signature
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IOVecs store program state transformations largely preserved by all compilers.
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IOVec Function Identification

int my_func(int a, int b, int* c) {
*c = a / b;
return 0;

} 

Arg 0: ℤ
Arg 1: ℤ - {0}
Arg 2: Any valid address
Memory: Any value

Return: 0
Syscalls: None
Memory: Value at c 
contains a / b

Input Program State Expected Program State
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IOVFI Training Phase

● IOVFI utilizes a guided mutational fuzzer to discover IOVec sets for each 
function in a binary

● Each function is given every generated IOVec

● A binary tree is generated with functions on leaves, and IOVecs as 
internal nodes

● Function identification involves traversing the binary tree
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IOVFI classifies functions by creating a searchable binary tree of IOVecs.
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IOVFI Binary Tree Example



IOVFI Experimental Setup

● We compile coreutils using Clang and GCC at -O{0,1,2,3}

● We generate a binary tree from wc, realpath, and uniq

● We identify functions in du, dir, ls, ptx, sort, true, logname, whoami, uname, and dirname

● We report F-Score, the harmonic mean of precision and recall
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O0

Clang GCC

O0
Clang .856 24% .836 53%

GCC .823 48% .838 22%

O1
Clang .735 87% .734 99%

GCC .695 67% .690 68%

O2
Clang .696 122% .686 140%

GCC .674 100% .659 133%

O3
Clang .692 132% .689 140%

GCC .755 139% .748 201%

IOVFI 
F-Score
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Comparison with BinDiff 6
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O0

Clang GCC

O0
Clang .952 .856 .224 .836

GCC .296 .823 .951 .838

O3
Clang .0656 .692 .0370 .689

GCC .0519 .755 .0108 .748
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Comparison with Asm2Vec
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Large Binary Accuracy
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O1 O3

Clang GCC Clang GCC

libz .717 .850 .765 .772

libpng .633 .695 .629 .639

libxml2 .699 .802 .700 .733



Cross Architecture Accuracy
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O0 O3

Clang GCC Clang GCC

wc .835 .805 .795 .860

realpath .820 .803 .737 .842

uniq .880 .866 .796 .877



Conclusion

● IOVFI semantically identifies functions in binaries

● Uses program state transformations as function fingerprints

● Resilient to broad changes in compilation environments and architecture, 

a first-in-class feature

● Source available at https://github.com/HexHive/IOVFI 

   Email: derrick@geth.systems
Twitter: @unbound_brewer

https://github.com/HexHive/IOVFI

