One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing
via Target-tailored Program State Restriction

Prashast Srivastava Stefan Nagy Matthew Hicks
Purdue University University of Utah Virginia Tech
United States United States United States
Antonio Bianchi Mathias Payer
Purdue University EPFL
United States Switzerland

ABSTRACT

Fuzzing is the de-facto default technique to discover software flaws,
randomly testing programs to discover crashing test cases. Yet, a
particular scenario may only care about specific code regions (for,
e.g., bug reproduction, patch or regression testing)—spurring the
adoption of directed fuzzing. Given a set of pre-determined target
locations, directed fuzzers drive exploration toward them through
distance minimization strategies that (1) isolate the closest-reaching
test cases and (2) mutate them stochastically. However, these strate-
gies are applied onto every explored test case—irrespective of whether
they ever reach the targets—stalling progress on the paths where
targets are unreachable. Accelerating directed fuzzing requires pri-
oritizing target-reachable paths.

To overcome the bottleneck of wasteful exploration in directed
fuzzing, we introduce tripwiring: a lightweight technique to pre-
empt and terminate the fuzzing of paths that will never reach
target locations. By constraining exploration to only the set of
target-reachable program paths, tripwiring curtails directed fuzzers’
search noise—while unshackling them from the high-overhead in-
strumentation and bookkeeping of distance minimization—enabling
directed fuzzers to obtain up to 99x higher test case throughput.
We implement tripwiring-directed fuzzing as a prototype, Sieve-
Fuzz, and evaluate it alongside the state-of-the-art directed fuzzers
AFLGo, BEACON and the leading undirected fuzzer AFL++. Overall,
across nine benchmarks, SieveFuzz’s tripwiring enables it to trigger
bugs on an average 47% more consistently and 117% faster than
AFLGo, BEACON and AFL++.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS

directed fuzzing, tripwiring, hybrid analysis, state space restriction

ACM Reference Format:
Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Math-
ias Payer. 2022. One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing via

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACSAC °22, December 5-9, 2022, Austin, TX, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9759-9/22/12.

https://doi.org/10.1145/3564625.3564643

Target-tailored Program State Restriction. In Annual Computer Security
Applications Conference (ACSAC ’22), December 5-9, 2022, Austin, TX, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3564625.3564643

1 INTRODUCTION

Quality assurance is an important component of the software de-
velopment life cycle, requiring significant resources for identifying,
triaging, and fixing defects both pre- and post-deployment. In work-
ing toward offsetting this burden, the last two decades has seen
software fuzz testing (fuzzing) become the most successful and
ubiquitous approach for automated software defect discovery.

Most fuzzers target broad defect discovery (e.g., OSS-Fuzz [29],
libFuzzer [28], and AFL++ [7])—embracing code coverage guidance
to explore the software under test (SUT) by maximizing code cov-
erage of generated test cases. But, despite the success of coverage-
guided fuzzing [1, 8, 16, 18, 25], its from-scratch, all-or-nothing
exploration style is unsuited to the many critical software QA tasks
that target specific code locations (e.g., bug reproduction, regression
testing, or patch testing). In such contexts, software testers instead
turn to targeted fuzzing approaches known as directed fuzzing.

Directed fuzzers replace fuzzing’'s conventional broad search
with one targeting pre-determined locations (e.g., a suspected de-
fect location), using distance minimization [4, 5, 23] to drive fuzzing
closer and closer to them. To achieve directedness, distance mini-
mization computes the distance of every generated test case relative
to each target location, saving only those that shorten this distance
as fuzzing continues. However, as distance measurement is per-
formed at runtime for all test cases—including the overwhelming
majority that are incapable of ever reaching the target locations—
directed fuzzers incur significantly more overhead per execution
due to the higher instrumentation cost associated with distance
measurement. Furthermore, the current scheme of using distance
minimization is specifically ill-suited for disjoint target locations—
locations that can be reached without requiring a large part of the
software functionality to be exercised. For such target locations,
distance minimization’s costly, always-on analysis becomes over-
whelmed by target-unreachable paths, thus slowing down directed
fuzzers’ progress—beyond even their undirected counterparts.

To break free from distance minimization and quickly filter-out
target-unreachable paths, we introduce tripwiring: a lightweight
approach to accelerate directed fuzzing through a target-tailored
restriction of program state. At the core of our efforts is our obser-
vation that a fuzzer’s search is stochastic and highly influenced by
the program’s observable code coverage; and should a code region

https://doi.org/10.1145/3564625.3564643
https://doi.org/10.1145/3564625.3564643

ACSAC °22, December 5-9, 2022, Austin, TX, USA

be made inaccessible, a fuzzer’s exploration will shift toward pur-
suing whatever program paths remain accessible. We demonstrate
that, through a hybrid static and dynamic analysis technique, it is
feasible to identify and refine the set of target-relevant code regions
while tripwiring (i.e., preempting and terminating) target-irrelevant
ones—enabling effective directed fuzzing of disjoint target locations
that is unburdened by distance minimization.

To evaluate tripwiring’s effectiveness, we implement a proof-of-
concept directed fuzzer called SieveFuzz, and evaluate it alongside
the state-of-the-art directed fuzzers AFLGo [4] and BEACON [13],
as well as the state-of-the-art undirected fuzzer AFL++ [7]. We
examine a real-world context in which directed fuzzing is deployed
for targeted defect discovery—reproducing third-party-reported
security vulnerabilities—and demonstrate that across a corpus of
ten disjointly-located security vulnerabilities in nine varied bench-
marks, tripwiring accelerates directed fuzzing by an average of
140%, 93%, and 118% faster than AFL++, AFLGo, and BEACON,
respectively, while obtaining 37%, 42%, and 61% more consistent
targeted defect discovery, respectively.

In summary, this paper makes the following contributions:

e We introduce tripwiring: a lightweight technique for target-
tailored directed fuzzing that restricts fuzzing to only the
program search space guaranteed relevant to reaching user-
determined target locations.

e We expose the fundamental limitations that impede state-of-
the-art directed fuzzers from achieving effective and efficient
directedness for disjoint target locations. For such target
locations, we show that tripwiring is a more optimal directed
fuzzing methodology than distance minimization.

e We design SieveFuzz: an implementation of tripwiring for
accelerated directed fuzzing. We evaluate it on a corpus of
nine benchmarks with ten known disjointly-located security
vulnerabilities; and show that, on average, SieveFuzz exposes
these bugs in 117% less time and 47% more consistently than
the leading undirected and directed fuzzing techniques.

e Source code of our framework along with the evaluation
artifacts are made available at https://github.com/HexHive/
SieveFuzz

2 BACKGROUND

Below we provide relevant details on software fuzzing, and the
differentiation between guided and directed fuzzing policies.

Guided Fuzzing. Fuzzing is a popular and successful software
testing approach [7, 28, 29, 34, 41]. Guided fuzzing integrates a
feedback loop controlling exploration of the SUT based on a user-
defined policy. Recent fuzzing efforts adopt policies related to re-
source consumption [16, 26], memory allocations [23], and program
state [1, 17]. However, the most ubiquitous form of guided fuzzing
has long remained coverage-guided fuzzing [7, 41], which aims to
maximize coverage of the SUT by prioritizing the mutation of test
cases exercising previously unseen control-flow. Coverage-guided
fuzzers dominate the current fuzzing landscape (e.g., AFL [7], hongg-
fuzz [34], libFuzzer [28]), and form the backbone of software quality
assurance processes throughout the modern software industry.

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer

Directed Fuzzing. For targeted exploration objectives such as
patch testing, security researchers introduced the concept of di-
rected fuzzing [4, 9, 37], which layers conventional guided fuzzing
with additional mechanisms to “direct” fuzzing toward specific
target locations. Most state-of-the-art directed fuzzers embrace dis-
tance minimization as their mechanism of directedness [4, 5, 23, 24].
In this technique, the SUT’s inter- and intra-procedural control-flow
graphs are first instrumented to log distances of each basic block
relative to the intended target site. Second, at runtime, the fuzzer
computes each test case’s harmonic mean distance over its covered
code. Lastly, mutation candidates are chosen from the pool of seeds
with shortest distances to the target, ideally guiding fuzzing to
converge on the shortest path.

3 PITFALLS OF DISTANCE MINIMIZATION

Distance-minimization-based directed fuzzers converge on target
locations by focusing only on those test cases whose execution
paths are closest to reaching them. Yet, this approach requires a
directed fuzzer to (1) compute the path-to-target distances for every
test case, including the overwhelming majority that will inevitably
be discarded because they cannot reach target locations; and (2)
perform a greedy search across all observed paths to pinpoint the
small set of desired paths to continue exploring. The high costs of
both of these steps creates a compounding bottleneck for directed
fuzzing—incurring a much higher overhead per execution than
undirected fuzzing—making it exceedingly difficult to recover when
exploration plateaus on paths that will never reach target locations.

To quantify the performance cost of distance minimization, we
replicate a common directed fuzzing usage scenario: identifying a
target location (e.g., a suspected security vulnerability) [4, 5, 24] and
using directed fuzzing to synthesize a proof-of-concept violating
input. We perform a case study on a synthetic benchmark popular
in the fuzzing literature [17, 31, 32, 42] that is known to contain a
critical memory safety vulnerability (NULL pointer dereference),
and detail our experimental results below.

Experiment Setup. For our defect discovery experiment, we se-
lect the DARPA Cyber Grand Challenge benchmark KPRCA-00038:
a language interpreter containing a NULL pointer dereference in
the function cgc_program_parse. As shown in Listing 1, to trigger
this memory safety violation, a fuzzer must (1) satisfy the language
semantics to first insert an empty statement; and (2) insert a non-
empty statement that triggers the dereference. In this program,
cgc_parse_statements represents a disjoint target because most
of the program’s functionality (eg. cgc_program_run and every-
thing following it) does not precede it in execution.

To evaluate distance minimization, we select the state-of-the-art
directed fuzzer AFLGo [4] and configure it to target the afore-
mentioned vulnerable function; and further evaluate it alongside
AFL [19], the state-of-the-art undirected (i.e., coverage-guided)
fuzzer which AFLGo is implemented atop of. Following Klees et
al. [15], we perform 10x24-hour fuzzing campaigns per each fuzzer.

Consequence 1: Poor Performance. After performing all fuzzing
campaigns, we post-process observed crashes to ascertain which
fuzzer trials successfully triggered cgc_parse_statements’s NULL
pointer dereference. We compute and compare two metrics between

https://github.com/HexHive/SieveFuzz
https://github.com/HexHive/SieveFuzz

One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing
via Target-tailored Program State Restriction

ACSAC ’22, December 5-9, 2022, Austin, TX, USA

Listing 1 Simplified code snippet to show distance minimization’s
wastefulness.

int main(void) {
io_t io;
program_t p;
cgc_io_init_fd(&io, STDIN);
cgc_program_init(&p, &io);
// Bug-triggering path through cgc_program_parse
if (cgc_program_parse(&p)) {
// Irrelevant functionality below not
// relevant towards triggering the bug
if (!cge_program_run(&p, &io)) { ... }
}
// Irrelevant functionality below not relevant
// towards triggering the bug
else { ... }
}

static int cgc_program_parse(program_t *prog) {

stmt_t * tail = NULL;
while(1) {
stmt_t *tmp;
// cgc_parse_statements may return NULL value in “tmp"
if (!cgc_parse_statements(prog, &tmp)){
goto fail;
)
if (stmt == NULL) { tail = stmt = tmp; }
// Possible null dereference below due to missing null check on “tmp~
else { tail = tail->next = tmp }

both fuzzers: (1) the relative time at which each fuzzer exposed the
security vulnerability in the campaign; and (2) the unique number
of trials which succeeded in exposing the vulnerability.

Overall, we observe that directed fuzzer AFLGo is outperformed
by the undirected AFL, with AFL exposing the bug 92% faster. Fur-
thermore, we observe that AFL successfully reaches and exposes
the bug in 2 of 10 trials, while directed fuzzer AFLGo succeeds
only once. Thus, distance minimization—despite its machinery
designed to quickly converge on target locations—ultimately per-
forms both slower and less reliably than undirected fuzzing
in reproducing this disjointly-located security vulnerability.

Consequence 2: Unconstrained Exploration. To further eval-
uate the performance disparity between distance-minimization-
directed and undirected fuzzing, we profile both fuzzers’ campaigns
to measure the magnitude of effort spent on code irrelevant to
reaching target locations. We observe that AFLGo has separate
Exploration (i.e., undirected) and Exploitation (i.e., directed) modes,
with Exploitation being where distance minimization is performed;
and thus, we limit our profiling of AFLGo to its Exploitation mode.
We cross-reference the set of code regions exercised by each fuzzer
with the execution path of the vulnerability’s proof-of-concept
(PoC) input, marking any non-PoC code regions as extraneous.

On average, our results show that both directed AFLGo and
undirected AFL execute over 29% more program functions than
contained in the vulnerability PoC trace. Thus, for disjoint target
locations such as the vulnerable function cgc_program_parse, dis-
tance minimization is no more effective than undirected fuzzing at
constraining the search down the set of target-relevant program
paths. Coupled with its higher per-execution overhead, distance
minimization pays a significant price for its greedy search
across the program state space—leaving undirected fuzzing
often more successful at targeted defect discovery.

Impetus: Distance minimization facilitates directedness via dy-
namic distance calculation and repeated fuzzing per test case. Yet,
only a small minority of test cases converge on target locations.
This higher common-case overhead leaves distance minimization
costlier than undirected fuzzing—particularly when exploration
stalls in regions that never reach target locations. Achieving
faster and more consistent directedness necessitates an ap-
proach focusing on target-relevant code regions.

4 OVERCOMING THE BOTTLENECKS OF
DIRECTEDNESS

Current directed fuzzers rely on distance minimization, performing
directed search by prioritizing test cases reaching closer to target
locations. However, as § 3 reveals, the sensitivity of distance mini-
mization to search noise significantly impedes the effectiveness of
directed fuzzing. Thus, as distance minimization’s problems are in-
herited by most directed fuzzers, the full performance potential
of directed fuzzing remains unrealized.

Target Function

Dynamic

Feedback (gatic Analysis
Module

Fuzzer

Dynamic
Feedback

Tripwired
Code Regions

Figure 1: A visualization of tripwiring-directed fuzzing.

To overcome the bottlenecks of directed fuzzing, we leverage
the observation that a fuzzer’s search in the program state space is
stochastic and highly influenced by the program’s reachable control-
flow. An undirected fuzzer will aim to maximize exploration across
all program paths; but, should only a subset of control-flow be
reachable, it will aim to maximize its search across the subset. We
thus envision an approach that achieves directed fuzzing by tailor-
ing (i.e., restricting) the search space to only the subset of reachable
paths that are guaranteed relevant to reaching the target location.

We call this approach tripwiring (Figure 1): at a high level, we
repurpose conventional control-flow and path detection to identify
(and refine ad hoc) the set of paths to the target location; and modify
the coverage-guided fuzzing workflow to only explore these regions,
preempting and terminating when a fuzzing execution “trips” this
region’s boundary—thereby achieving directedness through con-
straining stochastic search toward the target.

5 PREEMPTIVE TERMINATION

Existing directed fuzzers rely on distance minimization to steer
exploration toward target locations. However, this mechanism is
kept always-on for all test cases—irrespective of their relevance to
reaching the target locations—making these fuzzers highly sensitive
to search noise: code regions (e.g., functions and basic blocks) guar-
anteed to never precede target locations in execution flow. The in-
ability to recognize and suppress search noise leaves minimization-
directed fuzzers crippled by the instrumentation and bookkeeping
costs that they waste on these paths—and thus, too slow to be
effective at bug discovery.

ACSAC °22, December 5-9, 2022, Austin, TX, USA

We posit that directed fuzzing wastefulness is avoidable by pre-
emptively terminating exploration of regions proven to never pre-
cede target locations. This presents two key performance advan-
tages: (i) SUT execution—over 90% of fuzzers’ runtime [20]—will
not be wasted on repeatedly measuring the code coverage and
target distances of target-irrelevant paths, and (ii) as we filter-out
these paths before they are ever explored, fuzzers will not waste
any resources on processing these test cases in succession.

5.1 Tripwiring

In this section, we present our methodology for identifying regions
guaranteed to be search noise (i.e., will never precede target loca-
tions). Furthermore, we detail how we resolve analysis obstacles
caused by indirect control-flows.

Methodology. To eliminate directed fuzzing search noise, Sieve-
Fuzz requires knowing which code regions are (1) on target-reachable
paths and (2) not on them. To this aim, we statically analyze the
SUT’s inter-procedural control flow graph (ICFG) and call graph
(CG), and flag all regions on identifiable paths from the program
entry to the target sites. Algorithm 1 details our approach.

Algorithm 1 Tripwiring algorithm for pruning target-unreachable
code regions.

Require: Target code location T, ICFG I, and call graph C.
Ensure: Set of tripwired code regions .
1: N < I.getEntryNode(T)
2: W& [N]
3: Allow <=0
4: while W # 0 do
5: N < W.pop()
6 E & I.getInEdges(N')
7 for E' € E do
8 if notSeen(E’) then
9 N" < E’.getSource()

10: if C.isReachable(N"”,T) then

11: Allow.add(N" .getRegionID())
12: W.add(N")

13: end if

14: addSeen(E’)

15: end if

16: end for

17: end while
18: U « C.getAllRegions()
19: return S < U — Allow

We deploy our lightweight analysis atop the SUT’s ICFG and
incorporate calling-context sensitivity using the CG for higher pre-
cision. First, we initialize a work-list (Line 2) of the target location’s
entry node (Line 1) as well as an empty allow-list (Line 3). Then,
for each work-list member, we perform the following: (i) Pick all
incoming edges for the node from the ICFG, (ii) For each edge,
identify its source and corresponding node from the ICFG, and (iii)
Using the CG, check if the target is reachable from the source; and
if so, add the source to the allow-list and the corresponding node to
the work-list. All regions outside the above constructed allow-list
are marked unnecessary and tripwired for termination (Line 19).

As our ICFG is insensitive to calling contexts, our analysis may
initially over-approximate the set of target-relevant code regions.
To mitigate this, we incorporate the results of a function reachability
analysis performed on the CG (exemplified in Appendix A).

Indirect Transfers. Because we rely on static analysis to gener-
ate our ICFG and CG, another challenge in supporting tripwiring is

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer

handling indirect transfers: control-flow to dynamically-determined
destinations. Solving indirect transfers statically for real-world
codebases using techniques such as points-to and/or value-set anal-
yses results in significant over-approximation of candidates tar-
gets for these transfers. This in turn brings a high risk of under-
tripwiring—i.e., over-approximating the code that should be ex-
plored and, hence, an inability to uphold fuzzing directedness.

To avoid the risk of under-tripwiring, we dynamically update our
CG with every newly-covered indirect branch. With each new piece
of information, we re-perform our analysis to refine our view of the
reachable area and adjust our tripwiring accordingly. Though this
re-analysis interposes some overhead on fuzzing, the exponentially-
decreasing rate of new coverage [20] ensures that re-analysis is a
rare event in practice—and thus adds no discernible slowdown.

As we resolve indirect calls dynamically, target locations may be
absent from our initial reachability analysis. However, we observe
that it is sufficient to merely seed our analysis with traces from a
few fuzzer-generated program test cases. Should a more diverse set
of seed traces be needed, we expect to incur only a slightly higher
upfront cost (e.g., an initial cycle of undirected fuzzing).

6 IMPLEMENTATION: SIEVEFUZZ

In this section we introduce SieveFuzz: our implementation of trip-
wiring for accelerated directed grey-box fuzzing. In its current
prototype, it operates over the source code of the fuzz target. Below
we discuss SieveFuzz’s core architecture.

6.1 Architectural Overview

We implement SieveFuzz atop the industry-standard grey-box fuzzer
AFL++ [7]. To facilitate on-demand reachability analysis (§ 5.1), we
integrate a client-server communication between our fuzzer and
analysis components—forwarding any indirect edges captured to
our static analysis, which then updates the dynamic control-flow
graph before updating reachability and tripwiring analyses. For our
static analysis we utilize the LLVM-based SVF framework [33]. We
inject the instrumentation to perform preemptive termination at
function-level granularity using an LLVM pass.

6.2 High-level Fuzzing Workflow

SieveFuzz follows the state machine model presented in Figure 2,
comprising of the following three steps:

Target reachable

Target
unreachable

Target reachable

Target
unreachable

Figure 2: SieveFuzz’s high-level state machine. Here, reach-
able denotes that our analysis identifies some path(s) from
the program entry point to the target location.

One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing
via Target-tailored Program State Restriction

Initial Analysis (INIT):. Initially, our fuzzer queries to deter-
mine whether the target is reachable from our initial ICFG and
CG analyses. Should the target be unreachable, we conclude some
statically-unidentifiable indirect call edge(s) are missing and at-
tempt to recover them by briefly running the Exploration state (EXP).
However, as discussed in § 5.1, we often avoid exploration by repur-
posing commonly-provided developer test suites or test cases from
prior fuzzing campaigns as seed traces to recover these edges. When
the target is reachable, we then move on to our Fuzzing (FUZZ) stage.

Exploration (EXP):. If the target is unreachable (i.e., no path(s)
exist to it from the SUT’s entry), we turn to undirected, non-tripwired
fuzzing to diversify the set of candidate seed traces. At each step,
we monitor for new indirect edges and update our reachability
analysis accordingly; should a new path(s) be seen intersecting the
target location, we exit and move on to our Fuzzing (FUZZ) stage.

Tripwired Fuzzing (FUZZ):. As soon as the targets are reach-
able (i.e., there are some path(s) to the target), tripwired-directed
fuzzing begins: preempting and terminating execution of regions
not within our target-reachable coverage set. As in the Exploration
phase, we report any newly-covered indirect edges to our static
analysis server. Following reachability analysis updates, we amend
our tripwiring instrumentation (e.g., adding or removing tripwires).
As this process continues and our tripwiring evolves, we steer
fuzzing closer to reaching the target location.

6.3 Maintaining Fast On-demand Analysis

To refine our tripwiring, we engage reachability analysis on-demand
when new indirect edges are found during fuzzing. While we can
perform this analysis between fully stopping and restarting fuzzing,
the cost of reinitiating fuzzing from a terminated state incurs a
prohibitively-high startup overhead that cripples fuzzing through-
put. We instead adopt a client-server communication protocol:
upon analyzing a new indirect edge, we resume the client fuzzer
from a paused (but not terminated) state after the static analysis
server reports its completion. Our current implementation adopts
a single-core sequential design, Regardless, the negligible rate of
coverage-increasing test cases (less than 1 in 10,000 on average [20])
means that this analysis is only invoked sparingly—amortizing this
infrequent-case cost over the course of fuzzing.

6.4 Maintaining Fast SUT Execution

SieveFuzz maintains high-throughout directed fuzzing through its
lightweight instrumentation passes to accommodate tripwiring’s
(1) preemptive termination and (2) indirect edge monitoring.

Preemptive Termination. As the SUT is being instrumented
for fuzzing, we assign a unique numeric ID to each code region in
the SUT (in our current prototype: functions). Then, we hook the
start of each region to call into a runtime library with its ID; we link
this library to the SUT, and utilize it to enforce (and dynamically
update) our tripwiring preemptive termination policy.

In our prototype implementation, we maintain an activation
bitmap with each bit corresponding to the unique ID assigned to
each code region (i.e., function) in the SUT. If a bit is unset, then the
function corresponding to that bit is tripwired and prevented from

ACSAC ’22, December 5-9, 2022, Austin, TX, USA

being executed. If a bit is set, the corresponding function is permit-
ted uninterrupted execution. SieveFuzz dynamically maintains this
bitmap in sync with the set of target-relevant regions identified
by the static analysis module (§ 6.3). Thus, all regions marked for
tripwiring will have their corresponding activation map bit unset.

Indirect Call Tracking. We instrument all indirect branch sites
to extract these edges’ destinations during runtime. We utilize this
technique in our current function-level prototype to track indirect
(caller, callee) pairs: we assign each function a unique 32-bit
ID; and for every indirect call edge, we compute a 64-bit edge ID
by splicing-together the ID’s of its caller and callee. As tracking
such calls (1) requires only constant-time operations and (2) attains
a linear complexity (O(e) where e = the total number of unique
indirect edges), our analysis cost adds insignificant overhead.

6.5 Maintaining Exploration Diversity

Tripwiring achieves directedness by driving conventional fuzzing’s
coverage-maximizing search strategy toward target locations: con-
straining the region of accessible control-flow to only the code
relevant to reaching the target. However, in case no new coverage
is found, most fuzzers will begin shuffling seeds for mutation at
random. Yet, such strategies are incompatible with certain bugs’
complex triggering semantics that require successive execution of
the target itself (e.g., stack exhaustions). Thus, an effective directed
fuzzer must not only reach a target bug—but also trigger it.

To overcome this issue in SieveFuzz, we develop an on-demand
execution diversity heuristic to prioritize the mutation of test cases
with greater coverage of target-relevant code regions. It focuses
SieveFuzz’s available fuzzing on program paths that intersect more
bug-relevant program subroutines. By steering a plateaued fuzzing
expedition in this way, we increase the likelihood of triggering new
runtime states to reach and trigger complex bugs.

We insert instrumentation in the fuzz target to keep track of trace
length for each test case. Here, trace length refers to the number of
target-relevant code regions triggered by a test case. In SieveFuzz,
the trace length corresponds to the number of functions executed
by a test case and to calculate the trace length, SieveFuzz inserts a
single integer increment operation at function-level granularity.

The observed trace lengths can drastically vary depending on
the fuzz target complexity and the fuzzer capabilities to explore
the underlying program state space. Consequently, using the trace
length as a metric as-is to decide on test case prioritization can lead
to SieveFuzz wasting its computation cycles fuzzing test cases with a
large trace length. To address this issue, SieveFuzz keeps track of the
average trace length observed over the course of a fuzzing campaign.
The computation cycles allocated to a test case are decided on the
basis of the degree to which an test case is proportionally larger or
smaller than the average trace length observed until that point.

7 EVALUATION

Our evaluation of the effectiveness of tripwiring-directed fuzzing
is guided by three fundamental research questions: (i) RQ1: Is
tripwiring effective and fast at restricting fuzzing-reachable search
space?, (ii) RQ2: Do the benefits of tripwiring improve directed
fuzzing effectiveness and speed?, and (iii) RQ3: Are there properties
that make a target location well suited to tripwiring?

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer

Benchmark Bug Type Functionality Type | Benchmark Bug Type Functionality Type
CROMU-00039 Stack BoF = Network protocol S gif2tga NPD GIF format converter R
KPRCA-00038 NPD Language Interpreter S jasper Heap BoF Image processing tool R
KPRCA-00051 Global BoF Bookkeeping S listswf Heap BoF Flash format processor R
mJS FPE Language interpreter R | Tidy Heap UAF Markup language parser R
tiffep-1 OOB Read TIFF format manipulator R | tiffcp-2 Resource Exhaustion TIFF format manipulator R

Table 1: Information about our ground-truth bug benchmark corpus. Key: R: real-world, S: synthetic, UAF: use-after-free,
FPE: floating point exception, BoF: buffer overflow, OOB: out-of-bounds and NPD: NULL pointer dereference.

We compare our tripwiring prototype, SieveFuzz, against the
state-of-the-art distance-minimization-directed fuzzer AFLGo [4].
To examine how SieveFuzz performs versus undirected fuzzing, we
further evaluate the state-of-the-art undirected fuzzer AFL++ [7].
Lastly, we evaluate the newly-released (at the time of writing) di-
rected fuzzer BEACON [13], which employs an alternative direct-
edness approach that aims to synthesize and satisfy target-specific
path preconditions (i.e., “precondition-directed”). Below details our
evaluation benchmarks and procedures.

Benchmarks. To replicate the conditions under which directed
fuzzing is deployed in real-world targeted defected discovery, we
distill a set of three ground-truth memory bugs sourced from the
DARPA Cyber Grand Challenge (CGC) [3] corpus due to its popu-
larity in the fuzzing literature [25, 32, 40]. We further expand this
set with five benchmarks from real-world, open-source software
bug reports and two ground-truth bugs in real-world programs
from the Magma fuzzing benchmark suite [11]. As Table 1 shows,
our benchmark selection covers a diverse range of defect semantics
(e.g., overflows and dangling pointers) and functionality. Further-
more, as we will show later in § 7.1, this selection of benchmarks
contain ground truth bugs in target locations that are disjoint from
the rest of the program to a varying degree.

Experiment Procedure and Infrastructure. To answer RQ1,
we compute SieveFuzz’s search space reduction as the percentage
of target-irrelevant code regions tripwired (i.e., functions irrelevant
to reaching bug locations). For answering RQ2, we record each
fuzzer’s time-to-exposure for all ten bugs. To answer RQ3, we
investigate if there is a correlation between the disjointness of a
target location and the performance of SieveFuzz and AFLGo.

We follow the evaluation standard in the literature [10, 14, 15,
39, 42] and select a 24-hour trial duration for each experiment at
10 trials to attain sufficient statistical certainty. To determine the
magnitudes of statistical differences, we perform the Vargha and
Delaney Aj; test [35] in comparing bug exposure times. For each
campaign, we run each fuzzer on a single core in single-threaded
mode. We configure both AFLGo and SieveFuzz by targeting them
on the source code locations corresponding to each benchmark’s
bug (i.e., the crashing instruction as reported by triage tools like
AddressSanitizer [30]). All fuzzing trials are seeded with a one-
character starting test case except for bugs from the Magma bench-
mark for which we use the author-provided seeds. We conduct all
evaluations on an Intel Cascade Lake instance on the Google Cloud
Platform with 40GB RAM running Debian 9.

7.1 RQ1: Tripwiring’s Search Space Restriction

To understand tripwiring’s effectiveness and efficiency in support-
ing directed fuzzing, we perform experiments to (1) measure the
percentage of code regions tripwired-out (restricted from fuzzing);
and (2) compute the costs of pre-fuzzing (tripwiring initialization)
and on-demand analysis (handling new indirect edges). We discuss
our procedures and results below.

Results: Magnitude of Space Restriction. To perform effective
directed fuzzing, tripwiring must remove target-irrelevant function-
ality. To capture the extent to which tripwiring achieves this goal,
we modify SieveFuzz to report the total number of code regions (at
function-level) culled when the target function becomes reachable,
and report our results in Table 2.

Across all benchmarks, tripwiring eliminates 29% of code regions
on average as target-irrelevant functionality—preventing directed
fuzzing from wasting computation on the many paths that do not
reach these bugs. For two bugs in jasper and listswf, tripwiring
omits a smaller percentage of code regions (8-12%); in manually
examining these, we observe that both bugs intersect the majority of
code paths, forcing tripwiring to perform a conservative reduction.

Results: Initialization Cost. Current directed fuzzers [4, 5]
incur significant initialization overheads [23] due to the excessive
instrumentation-time effort needed to compute and embed target dis-
tances for all code regions. As it is crucial for developers to spin-up
directed fuzzing as timely and effortlessly as possible, we measure
the initialization cost of tripwiring-directed fuzzing by profiling
SieveFuzz’s analyses times and report our results in Table 2.

On average, we see that it takes SieveFuzz on an average just
59 ms to complete the tripwiring process across our nine bench-
marks. More importantly, throughout our evaluation, we observe
a linear relationship between the tripwiring analysis time and the
benchmark size showcasing evidence of the scalability of our ap-
proach. In addition, we observe that AFLGo and BEACON incur
mean initialization costs 188x and 36.3x higher than SieveFuzz’s
cumulative runtime analyses (Re-run Cost in Table 2) time respec-
tively. Recently, AFLGo added an alternative feature aimed towards
reducing this overhead. With this feature, AFLGO’s initialization
overhead drops down to 2.2x more than SieveFuzz’s cumulative
runtime analyses time. Therefore, beyond attaining a low fuzzing-
startup cost, we conclude that tripwiring’s negligible analysis time
is well-suited to deployment during fuzzing—making tripwiring
supportive of high-throughput directed fuzzing.

One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing
via Target-tailored Program State Restriction

ACSAC ’22, December 5-9, 2022, Austin, TX, USA

Benchmark Reduction Analysis Cost (ms) New Indir Edges Re-runs Re-run Cost (s)
CROMU-00039 54% 0 0 0.00
KPRCA-00038 54% 0 0 0.00
KPRCA-00051 34% 23 4 3 0.07
gif2tga 38% 2 0 0 0.00
jasper 8% 60 71 29 1.74
listswf 12% 10 73 31 0.31
mjs 39% 26 2 2 0.05
Tidy 20% 91 87 44 4.00
tiffep-1 18% 194 87 29 5.62
tiffcp-2 18% 175 87 29 5.07
Mean: 29% 59 ms 41 16.7 1.69s

Table 2: Percentage of code regions (at function level) removed by tripwiring during fuzzing, and the analysis time spent in

tripwiring’s pre-fuzzing initialization.

Results: On-demand Analysis Cost. As discussed in § 5.1, we
update the dynamic ICFG and CG with every newly-discovered
indirect edge to ensure that tripwiring’s reachabilty analysis does
not miss edges that precede target locations. However, should trip-
wiring analysis be re-run frequently (i.e., when the rate of new indi-
rect edges is high), then directed fuzzing performance will quickly
deteriorate due to the accumulated overhead. To measure the im-
pact of tripwiring’s ad hoc analysis on directed fuzzing, we profile
SieveFuzz’s 10x24-hour fuzzing campaigns to record (1) the total
indirect edges discovered and (2) the mean instances that tripwiring
is re-run. Our results are shown in Table 2.

Across all directed fuzzing trials, we observe a maximum of 87
new indirect edges—confirming that re-performing tripwiring re-
analysis is, at worst, an infrequent-case event relative to the total test
cases generated. However, we see that reanalysis is often invoked a
fewer number of times than the total indirect edges discovered (e.g.,
jasper, listswf, tiffcp-1, tiffcp-2, and Tidy). In examining
this, we find that individual test cases generally cover multiple
indirect edges; and as tripwiring operates on the full coverage trace,
its overall footprint on directed fuzzing overhead is minimal. Thus,
in 24 hours of directed fuzzing, the cost of re-running tripwiring is
at most less than 6 seconds of fuzzer runtime.

RQ1: Tripwiring is effective and efficient at culling target-
irrelevant state space from directed fuzzing’s efforts.

7.2 RQ2: Targeted Defect Discovery

To answer RQ2 and determine whether tripwiring translates to im-
proved directed fuzzing effectiveness, we evaluate SieveFuzz, along-
side minimization-directed AFLGo, precondition-directed BEACON,
and undirected AFL++ in discovering ten reported bugs (Table 1)—
a common real-world application of targeted testing—comparing
their bug-triggering (1) consistency and (2) speed (Table 3).

Results: Tripwiring vs. Minimization-directed Fuzzing. In
10 trials per each of our ten ground truth bugs, tripwiring-directed
SieveFuzz attains a 42% higher average bug exposure effectiveness
over minimization-directed AFLGo (7.1 versus 5.00, respectively).
Compared to AFLG0’s 6.73-hour mean exposure time, tripwiring

accelerates directed fuzzing to find these bugs in just 3.49 hours—
close to less than half the time of AFLGo—with a statistically-
large mean improvement in bug exposure times (A;2 = 0.79 >
0.71). Note that SieveFuzz is the only tool which finds tiffcp-2.
This performance can be attributed to the use of tripwiring which
allows SieveFuzz to synthesize the complex preconditions to trigger
the bug. While AFLGo is slightly more consistent on CROMU-00039,
we see that SieveFuzz is able to find it 6.56x faster (3.81h vs 0.58h).
On jasper, and mJS, we also see AFLGo perform slightly better;
however, the difference is not statistically large (A12 < 0.71), mean-
ing that SieveFuzz is on-par with AFLGo. Overall, tripwiring ac-
celerates directed fuzzing for faster and more consistent defect
discovery.

Results: Tripwiring vs. Precondition-directed Fuzzing. BEA-
CON does not use LLVM’s sanitizer instrumentation. For a fair
comparison between SieveFuzz and BEACON, we evaluate a vari-
ant of SieveFuzz that matches BEACON’s instrumentation style
without sanitizer instrumentation. We exclude benchmark mJS in
this experiment as BEACON’s instrumentation pass crashes during
its compilation; as well as benchmarks KPRCA-00051 and tidy as
their respective bugs are undetectable without sanitizer instrumen-
tation.

As shown in Table 4, SieveFuzz achieves 2.19x faster bug dis-
covery over BEACON (2.82 hours versus BEACON’s 6.17 hours).
This performance improvement is statistically large (A12 = 0.71),
indicating a substantial speedup of SieveFuzz over BEACON. Fur-
thermore, SieveFuzz attains 1.60x more consistent bug discovery
than BEACON (8.7 successful campaigns versus BEACON’s 5.4).

For three benchmarks (KPRCA-00038, tiffcp-1, and tiffcp-2),
BEACON fails to uncover their corresponding bugs in any trials. To
investigate why BEACON fails in these cases—and why SieveFuzz
succeeds—we manually examined BEACON-instrumented binaries
alongside their SieveFuzz-instrumented counterparts. Compared
to SieveFuzz, BEACON’s path analysis over-prunes—eliminating
reachable, bug-relevant program states in all three benchmarks—
making it impossible for BEACON to synthesize the complex pro-
gram states needed to reach and trigger these bugs.

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Pr

ashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer

Benchmark Bug Exposure Effectiveness (#trials) =~ Mean Exposure Time (hrs) Relative Exposure Time Effect Size (A12)
(‘higher is better) (lower is better) (higher is better)

AFL++ AFLGo SieveFuzz AFL++ AFLGo SieveFuzz SieveFuzz |/ AFL++ SieveFuzz / AFLGo
CROMU-00039 9 8 5 1.25 3.81 0.58 0.68 0.72
KPRCA-00038 10 1 10 2.43 1.71 2.45 0.53 1.00
KPRCA-00051 7 9 10 9.90 7.86 0.19 1.00 1.00
gif2tga 2 0 4 9.86 n/a 6.83 0.5 n/a
jasper 4 8 8 16.85 6.10 8.77 0.89 0.37
listswf 10 9 10 3.49 5.27 0.97 0.74 0.88
mJS 2 8 5 8.16 10.02 7.20 0.5 0.69
Tidy 4 5 19.10 14.28 6.20 1.00 0.67
tiffep-1 4 2 10 4.20 4.80 1.36 0.75 1.00
tiffcp-2 0 0 2 n/a n/a 0.32 n/a n/a
Mean: 5.2 5 7.1 8.36 6.73 3.49 0.73 0.79

Table 3: Bug exposure effectiveness; and mean exposure times and effect sizes for SieveFuzz versus minimization-directed AFLGo
and undirected AFL++ across 10x24-hour fuzzing trials per our ten ground-truth bugs. Bold effect sizes reflect statistically-large
(i.e., Vargha and Delaney A;; > 0.71) improvements in bug exposure times; while [n/a] denotes that the statistical test cannot
be performed due to an insufficient number of exposing trials by SieveFuzz’s competitor.

Benchmark Bug Exposure Effectiveness (#trials) Mean Exposure Time (hrs) Relative Exposure Time Effect Size (A12)
(higher is better) (lower is better) (higher is better)

BEACON SieveFuzz BEACON SieveFuzz SieveFuzz/BEACON

CROMU-00039 10 10 0.67 0.43 0.68
KPRCA-00038 0 10 n/a 3.9 n/a
gif2tga 10 10 2.15 0.17 0.59
jasper 10 6 8.51 7.8 0.58
listswf 8 10 13.36 0.51 1.00
tiffcp-1 0 9 n/a 0.30 n/a
tiffcp-2 0 6 n/a 6.65 n/a
Mean: 54 8.7 6.17 2.82 0.71

Table 4: Bug exposure effectiveness; and mean exposure times and effect sizes for SieveFuzz versus precondition-directed
BEACON across 10x24-hour fuzzing trials per our eight ground-truth bugs. In this experiment, we run SieveFuzz with the
same fuzz target configuration as BEACON. Bold effect sizes reflect statistically-large (i.e., Vargha and Delaney A3 > 0.71)
improvements in bug exposure times; while [n/a] denotes that the statistical test cannot be performed due to an insufficient

number of exposing trials by BEACON.

For KPRCA-0038, BEACON’s reachability analysis incorrectly
marks a bug-relevant conditional branch as unreachable. This bug
exists in the else branch in one of the program’s conditional state-
ments; however, triggering the bug requires that the adjacent if
branch is hit first. Because BEACON’s basic-block-level analysis
deems the if branch irrelevant to the bug, it only permits the else
branch to be taken—leaving BEACON unable to ever reach the bug-
triggering state hidden in the if branch. SieveFuzz’s function-level
analysis does not restrict either branch, enabling SieveFuzz to reach
the correct sequence of branches needed to trigger the bug.

For tiffcp-1 and tiffcp-2, BEACON incorrectly prunes an
indirectly-called function along the path to each bug. We observe
that this function is passed as comparator function to a C standard
library function, which then calls them. Because BEACON’s path

analysis is only performed statically—unlike SieveFuzz’s which up-
dates itself with new information as it is uncovered during fuzzing—
BEACON will miss complex indirect control flows like this. We
confirm that SieveFuzz successfully observes and incorporates the
corresponding indirect edge in its dynamic control-flow graph.
On three of our remaining four benchmarks, we observe that
SieveFuzz outperforms BEACON’s bug discovery. After profiling
BEACON'’s performance, we observe that the significant runtime
overhead of its precondition-directed fuzzing is BEACON’s main
bottleneck—resulting in an overall low throughput. Our results
show that SieveFuzz averages a 23.5x higher fuzzing test case
throughput than BEACON (Table 5). The only exception to this per-
formance trend in bug discovery is jasper where BEACON finds it
more consistently than SieveFuzz (10 vs 6 campaigns). From Table 2,

One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing
via Target-tailored Program State Restriction

141 —&— SieveFuzz
aflgo

124

104

Time taken for bug discovery (hours)
o o
L |

10 15 20 25 30 35 40
Percentage code regions (functions) removed

Figure 3: Amount of function state space removed during
tripwiring, and SieveFuzz’s and AFLGo’s discovery times per
each real-world bug benchmark.

we infer that the bug lies in the least disjoint location among our
target set with only 8% of the code regions being removed during
tripwiring. Thererfore, BEACON’s finer-grained analysis is a better
fit for uncovering this bug.

Though BEACON attains higher throughput on tiffcp-1 and
tiffcp-2, its over-pruning of their respective state spaces pro-
hibits BEACON from exposing either bug (Table 4). For this target,
SieveFuzz’s lower throughput is due to it covering more of the
bug-relevant paths that incur a higher runtime overhead from inter-
secting subroutines that set up bug-critical program state (e.g., key
data structures). In general, SieveFuzz’s higher overall speed—and
effectiveness—indicates that tripwiring is a less invasive directed-
ness strategy than BEACON’s path precondition-directed approach,
and thus is better suited for fuzzing disjoint target locations.

Results: Tripwiring vs. Undirected Fuzzing. As Table 3 shows,
SieveFuzz’s advantages also hold over undirected fuzzing: with
140% faster bug exposure time than AFL++ (3.49 hours versus
AFL++’s 8.36 hours) and a statistically-large mean effect size
(A12 = 0.73 > 0.71). In CROMU-00039, AFL++ outperforms Sieve-
Fuzz; yet our statistical analysis shows that these differences are
in fact insignificant, as comparison results in statistically-small
effect sizes (A12 = (0.68 < 0.71). Interestingly, on three bench-
marks (KPRCA-00038, listswf, tiffcp-1), we see that undirected
fuzzer AFL++ attains both a consistency and overall mean expo-
sure time better than minimization-directed AFLGo—revealing that
distance minimization often translates to worse-than-undirected-
fuzzing effectiveness in targeted testing. Thus, tripwiring enables
SieveFuzz to surpass both minimization-directed AFLGo and undi-
rected AFL++, while expanding directed fuzzing’s reach to use cases
where current directed fuzzers fall short.

RQ2: By filtering out all target-irrelevant exploration, tripwiring
achieves effective, high-speed directed fuzzing.

7.3 RQ3: Target Location Feasibility for
Tripwiring

To help practitioners pinpoint locations well-suited to tripwiring-

directed fuzzing, we believe that the percentage of search space

ACSAC ’22, December 5-9, 2022, Austin, TX, USA

removed by tripwiring represents the most promising metric. Fig-
ure 3 shows the amount of tripwiring-removed search space per
target location (showing its disjointness) and the mean time taken
to uncover the ground truth bug at this location by both AFLGo
and SieveFuzz. We do not include BEACON in this analysis since
we do not have enough timing data corresponding to bug discov-
ery for this framework (only 4 out of the 10 ground truth bugs
were successfully triggered by BEACON). We exclude the synthetic
benchmarks (CROMU-00039, KPRCA-00038, and KPRCA-00051) to
ensure no unintended noise is added to this experiment. Then, we
use Spearman’s rank-order correlation coefficient [27] to identify if
there exists a correlation in the performance difference of distance-
minimization (AFLGo) against tripwiring (SieveFuzz) during bug
discovery and the degree to which a target location is disjoint.

The Spearman’s rank-order shows a strong positive correlation
(0.30) in the performance difference observed between distance-
minimization and tripwiring and the amount of state space re-
moved by tripwiring. Le., the more disjoint a target site is—shown
by an increasing percentage of code regions removed—the larger is
the performance difference seen between a distance-minimization-
based fuzzer and a tripwiring-directed fuzzer. Correspondingly, the
more disjoint is a target location, the faster tripwiring becomes
at uncovering the bug. We thus conclude that (1) quantifying the
percentage of code that cannot reach target locations is a reliable
metric for identifying disjoint target locations; and (2) for such loca-
tions, tripwiring (SieveFuzz) is a better choice for directed fuzzing
than distance minimization (AFLGo).

RQ3: Tripwiring is an optimal directedness strategy for fuzzing
target locations which exhibit disjointness.

8 DISCUSSION AND FUTURE WORK

Below we discuss several opportunities for enhancing and extend-
ing tripwiring in support of more powerful directed fuzzing.

Refinements in Path Analysis. In SieveFuzz’s approach to
perform tripwiring, the dynamic resolution of indirect transfers
is a source of incompleteness while identifying target-reachable
paths. Specifically, if the target location is already reachable in
the CG of the fuzz target, SieveFuzz will not identify alternative
target-reachable paths via unresolved indirect calls that may exist
in tripwired code regions. Consequently, there is a corner-case
where these missed alternative paths are bug-triggering. While we
did not observe this corner-case as a part of our evaluation, we do
acknowledge that it may occur in other testing scenarios.

The root cause of the above mentioned scenario is the reliance
of SieveFuzz on dynamically resolving indirect calls and its oppor-
tunistic movement towards performing tripwired fuzzing as soon
as the target location becomes reachable. Therefore, to mitigate
it, we envision several possible improvements, such as alternating
between Exploration and Tripwired Fuzzing (§ 6.2) or a new
phase specifically targeting resolving indirect calls. In addition,
incorporating additional data sources will improve the resolution
of tripwiring’s target-reachability analyses. NEUZZ [31] and Fuzz-
Guard [43] show that machine learning can model the likelihood
of exercising program paths; and as directed fuzzing is commonly
deployed on well-fuzzed targets, we expect that it is practical to

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer

Benchmark BEACON Throughput SieveFuzz Throughput Factor Improvement
CROMU-00039 1868 2367 1.3
KPRCA-00038 8 793 99.1
gif2tga 6 154 25.7
jasper 233 231 1.0
listswf 4 147 36.8
tiffcp-1 709 282 0.4
tiffep-2 743 282 0.4

Mean Factor Improvement:

23.5x larger

Table 5: Comparisons of the mean test case throughputs (executions/sec) between SieveFuzz (tripwiring-directed), and BEACON
(precondition-directed). Values > 1.0 represent a relative speedup (shown in bold), while values < 1.0 represent a relative

slowdown.

leverage prior information (e.g., test cases and bug reports) to train
reachability models in support of probabilistic state reduction.

Path Prioritization. While tripwiring aims to steer exploration
down the set of target-reaching paths, deciding which of these
paths to prioritize is a universal challenge for all directed fuzzers.
Waiistholz et.al [38] gave mutation priority to inputs that were stati-
cally deemed to exercise paths not containing the target location.
The intuition being that mutants generated from such inputs will
exercise target-reachable paths. In future work, we will explore
incorporating mutation priority enhancements into tripwiring to
prioritize promising target-specific paths in an effort to reach and
trigger bugs in the target location faster and more effectively.

9 RELATED WORK

This section discusses related literature on directed fuzzing, as well
as orthogonal efforts to improve fuzzing performance.

Directed Fuzzing. Recent works extend fuzzing’s success at
general-purpose software testing to more targeted testing scenarios
(e.g., patch testing, bug reproduction). Most fuzzers of this type
approach this as a distance minimization problem. AFLGo [4] per-
forms simulated annealing optimization across call and control-flow
graphs to find the shortest-length paths to the user-specified target
locations. Hawkeye [5] expands AFLGo’s technique with algorith-
mic and analysis refinements, and additional coverage heuristics to
avoid biasing unfruitful paths. ParmeSan [24] obtains its interesting
target locations from sanitizer metadata (e.g., AddressSanitizer [30]).
UAFuzz [23] and UAFL [36] mine target locations based on memory
allocation patterns to maximize the chances of triggering heap cor-
ruptions. BEACON [13] performs directed fuzzing by identifying
necessary preconditions for a given target location and then instru-
menting the fuzz target to terminate paths that do not satisfy these
preconditions. This approach is significantly more heavyweight
which in turn drastically lowers the fuzzing testcase throughput (as
shown in Table 5). In comparison, tripwiring is much more light-
weight and as such a better fit for uncovering bugs in disjoint target
locations. Though our evaluation shows SieveFuzz attains a better
overall trade-off of speed-versus-directedness over conventional
distance minimization, we posit that the concept of tripwiring is

complementary to most existing directed fuzzing approaches—and
that they can be combined for a synergistic improvement.

Improving Fuzzing Performance. As maintaining high test
case throughput is critical to fuzzing bug-finding effectiveness,
several recent works aim to optimize fuzzing’s most performance-
critical components. Instrumentation-level enhancements include
efforts to accelerate the conventionally-slow tracing of opaque
targets (e.g., AFL-Dyninst [12], AFL-QEMU [2], RetroWrite [6],
ZAFL [21]); and coverage-guided tracing [20, 22], which restricts
the expense of tracing to only the few test cases guaranteed to
increase coverage. As these enhancements offer general-purpose
speedups, we expect that they are complementary to SieveFuzz.

10 CONCLUSION

Existing distance-minimzation based directed fuzzers are univer-
sally bottlenecked by their employed search strategies. Tripwiring
speeds-up directed fuzzing by culling irrelevant code—preempting
and exiting unwanted paths to guide fuzzing only toward targeted
locations. SieveFuzz demonstrates how tripwiring effectively sup-
ports directedness for security-critical targeted testing tasks like
bug reproduction while interposing near-zero runtime overhead;
and significantly outperforms conventional distance-minimization-
based directed fuzzing in consistency, and efficiency.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for precise and detailed feed-
back. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 850868), DARPA un-
der HR001119S0089-AMP-FP-034 and N6600120C4031, AFRL under
FA8655-20-1-7048, and SNSF under PCEGP2_186974. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of our sponsors.

REFERENCES

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2018. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Network and Distributed System Security Symposium (NDSS).

[2] Andrea Biondo. 2018. Improving AFL’s QEMU mode performance. https:
//abiondo.me/2018/09/21/improving- afl-qemu-mode/

https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/

One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing
via Target-tailored Program State Restriction

3

[4

fla

(5

=

[11]

(12
[13]

[14

[15

[16]

[17

(18]

[19

[20]

[21

[22

[23

[24]

[25

[26]

[27]

™
&

[29]

[30

Trail Of Bits. 2017. CGC Challenge Dataset. https://github.com/trailofbits/cb_
multios

Marcel Bhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed Greybox Fuzzing. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).
Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In IEEE Symposium on Security and Privacy (Oakland).

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In USENIX Workshop on
Offensive Technologies (WOOT).

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. 2018. CollAFL: Path
Sensitive Fuzzing. In IEEE Symposium on Security and Privacy (Oakland).

Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In International Conference on Software Engineering (ICSE).

Emre Giiler, Philipp Gérz, Elia Geretto, Andrea Jemmett, Sebastian Osterlund,
Herbert Bos, Cristiano Giuffrida, and Thorsten Holz. 2020. Cupid: Automatic
Fuzzer Selection for Collaborative Fuzzing. In Annual Computer Security Applica-
tions Conference (ACSAC).

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. (2020).

Marc Heuse. 2018. AFL-Dyninst. https://github.com/vanhauser-thc/afl-dyninst
Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles
Zhang. 2022. BEACON: Directed Grey-Box Fuzzing with Provable Path Pruning.
In IEEE Symposium on Security and Privacy (Oakland).

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding Semantic Bugs in File Systems with an Extensible Fuzzing
Framework. In ACM Symposium on Operating Systems Principles (SOSP).
George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA).

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-state Based Binary Fuzzing. In ACM Jjoint
Meeting on Foundations of Software Engineering (ESEC/FSE).

Chenyang Lv, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimize Mutation Scheduling for Fuzzers. In
USENIX Security Symposium (USENIX).

Michael Zalewski. 2016. American Fuzzy Lop (AFL) Fuzzer. https://github.com/
google/AFL

Stefan Nagy and Matthew Hicks. 2019. Full-speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-guided Tracing. In IEEE Symposium on Security and
Privacy (Oakland).

Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser, Jack W. Davidson, and Matthew
Hicks. 2021. Breaking Through Binaries: Compiler-quality Instrumentation for
Better Binary-only Fuzzing. In USENIX Security Symposium (USENIX).

Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson, and Matthew
Hicks. 2021. Same Coverage, Less Bloat: Accelerating Binary-only Fuzzing with
Coverage-preserving Coverage-guided Tracing. In ACM SIGSAC Conference on
Computer and Communications Security.

Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-level Directed Fuzzing for Use-After-Free Vul-
nerabilities. In International Symposium on Research in Attacks, Intrusions and
Defenses (RAID).

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX Security Symposium
(USENIX).

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In IEEE Symposium on Security and Privacy (Oakland).
Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

Scipy. 2021. Spearman rank-order correlation coefficient. https://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.spearmanr.html

Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer.
In IEEE Cybersecurity Development Conference (SecDev).

Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. In USENIX Security Symposium (USENIX).

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
Annual Technical Conference (ATC).

(31]

[32

(37]

[38

ACSAC ’22, December 5-9, 2022, Austin, TX, USA

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. 2019. NEUZZ: Efficient Fuzzing with Neural Program Smoothing. In IEEE
Symposium on Security and Privacy (Oakland).

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Network and Distributed System Security Symposium (NDSS).

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265-266.

Robert Swiecki. 2018. honggfuzz. http://honggfuzz.com/

Andréas Vargha and Harold D Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101-132.

Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In International Conference on Software Engineering
(ICSE).

T. Wang, T. Wei, G. Gu, and W. Zou. 2010. TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In IEEE
Symposium on Security and Privacy (Oakland).

Valentin Wiistholz and Maria Christakis. 2020. Targeted Greybox Fuzzing with
Static Lookahead Analysis. In International Conference on Software Engineering
(ICSE).

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing File Systems via Two-dimensional Input Space Exploration. In
IEEE Symposium on Security and Privacy (Oakland).

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In USENIX
Security Symposium (USENIX).

Michal Zalewski. 2017. American fuzzy lop. http://lcamtuf.coredump.cx/afl/
Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems
My Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In Network and
Distributed System Security Symposium (NDSS).

Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. Fuzzguard: Filtering out Unreachable Inputs in Directed Grey-box
Fuzzing through Deep Learning. In USENIX Security Symposium (USENIX).

https://github.com/trailofbits/cb_multios
https://github.com/trailofbits/cb_multios
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/google/AFL
https://github.com/google/AFL
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
http://honggfuzz.com/
http://lcamtuf.coredump.cx/afl/

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Listing 2 A code example to highlight the imprecision of context-
insensitive ICFG analysis. In this example, determining that edge
ged—bar is unreachable requires the additional consideration of
the call graph.

void foo() {
bar();
target();
}

void qged() {
bar();
}

void target() {
printf(argv[11); // vulnerable

}

A EFFECT OF CONTEXT-INSENSITIVITY

Here, we showcase a concrete example how performing reacha-
bility analysis solely over the context-insensitive ICFG may over-
approximate the target-reachable code regions. Consider the code
snippet shown in Listing 2: a context-insensitive ICFG for this ex-
ample contains the call edge from ged to bar, while the CG shows
ged does not reach (i.e., is not an ancestor of) target. Therefore,
if the tripwiring algorithm (Algorithm 1) does not consider the
CG in performing the reachability check from ged to bar, it will
incorrectly include ged in the allow-list.

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer

	Abstract
	1 Introduction
	2 Background
	3 Pitfalls of Distance Minimization
	4 Overcoming the Bottlenecks of Directedness
	5 Preemptive Termination
	5.1 Tripwiring

	6 Implementation: SieveFuzz
	6.1 Architectural Overview
	6.2 High-level Fuzzing Workflow
	6.3 Maintaining Fast On-demand Analysis
	6.4 Maintaining Fast SUT Execution
	6.5 Maintaining Exploration Diversity

	7 Evaluation
	7.1 RQ1: Tripwiring's Search Space Restriction
	7.2 RQ2: Targeted Defect Discovery
	7.3 RQ3: Target Location Feasibility for Tripwiring

	8 Discussion and Future Work
	9 Related Work
	10 Conclusion
	References
	A Effect of context-insensitivity

