
Designing a Provenance Analysis for SGX Enclaves
Flavio Toffalini

EPFL
Switzerland

flavio.toffalini@epfl.ch

Mathias Payer
EPFL

Switzerland
mathias.payer@nebelwelt.net

Jianying Zhou
SUTD

Singapore
jianying_zhou@sutd.edu.sg

Lorenzo Cavallaro
UCL

United Kingdom
l.cavallaro@ucl.ac.uk

ABSTRACT
SGX enclaves are trusted user-space memory regions that ensure
isolation from the host, which is considered malicious. However,
enclaves may suffer from vulnerabilities that allow adversaries to
compromise their trustworthiness. Consequently, the SGX isolation
may hinder defenders from recognizing an intrusion. Ideally, to iden-
tify compromised enclaves, the owner should have privileged access
to the enclave memory and a policy to recognize the attack. Most
importantly, these operations should not break the SGX properties.

In this work, we propose SgxMonitor, a novel provenance anal-
ysis to monitor and identify compromised enclaves. SgxMonitor
is composed of two elements: (i) a technique to extract contextual
runtime information from an enclave, and (ii) a novel model to rec-
ognize enclaves’ intrusions. Our evaluation shows that SgxMonitor
successfully identifies enclave intrusions against state-of-the-art
attacks without undermining the SGX isolation. Our experiments
did not report false positives and negatives during normal enclave
executions, while incurring a marginal overhead that does not affect
real use cases deployment, thus supporting the use of SgxMonitor
in realistic scenarios.

KEYWORDS
TEE, SGX, provenance analysis
ACMReference Format:
Flavio Toffalini, Mathias Payer, Jianying Zhou, and Lorenzo Cavallaro. 2022.
DesigningaProvenanceAnalysis for SGXEnclaves. InAnnualComputer Secu-
rityApplicationsConference (ACSAC ’22), December 5–9, 2022, Austin, TX, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3564625.3567994

1 INTRODUCTION
Intel Software Guard eXtension (SGX) is an ISA abstraction that
allows developers to define enclaves [41, 64], small user-space re-
gions isolated from the underlying untrusted OS. Although enclaves
may host arbitrary programs, they are primarily aimed at protecting
software components that carry out specific security- and privacy-
sensitive tasks [19, 21, 50, 68, 73]. Both academic [82] and indus-
try [15, 32, 47, 59, 60] proposals embrace SGX to execute such sen-
sitive components.

SGX guarantees that an enclave is properly loaded in memory,
while SGX Remote Attestation (RA) allows a remote entity to verify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3567994

the correct enclave initialization, similar to a pre-boot TPM static
code measurement. However, SGX alone has no mechanisms to
guarantee the correct runtime execution of enclaves, which remain
vulnerable against confused deputy attacks that cause deviations
from enclaves’ expected legitimate behaviors and lead to data leak-
age [14, 21, 31, 48, 77].

Although one can equip enclaves with mechanisms tailored at
counteracting specific threats (e.g., CFI or shadow stacks), these
solutions simply stop an attack without providing the analyst in-
formation about the intrusion. In real scenarios, however, solely
blocking an intrusion does not prevent further attempts in similar
contexts. Moreover, recent works highlighted the difficulties of re-
moving all vulnerabilities from SGX enclaves [21]. In this regard,
having information about the attack vector becomes crucial for im-
proving the defenses. In normal scenarios (e.g.,OSes) one can employ
provenance analyses [36, 42, 62, 89] based on streams of events (e.g.,
system logs, syscall invocation). However, SGX disallows standard
monitoring mechanisms (e.g., Intel PT [44] or Intel LBR [28, 90]) a-
priori [74], thus hindering the adoption of these approaches. Recent
works [91]propose techniques todumparbitrary enclavememory re-
gions in a secure fashion, however, thesemechanisms do not provide
a continuous tracing and may leave room for attacks.

Provenance techniques for SGX need to deal with two challenges:
(i) streaming information out of an enclave without introducing
undesired side effects, and (ii) a model to identify an attack from the
informationgathered.Weaddress these challengeswithSgxMonitor:
a system to allow an external (and legitimate) entity to inspect an
enclave runtime state, retrieve evidence of intrusion, and not under-
mining the SGX isolation. To achieve this, we first design a secure
tracing mechanism for SGX enclaves, and second, propose a model
to represent useful intrusion information. Our monitor combines a
lightweight enclave instrumentation with a novel communication
protocol that allows the emission of contextual runtime information
in the presence of a compromised OS, thus adhering to the standard
SGX threat model. Our tracing is designed to offer a similar granu-
larity as Intel PT but for SGX enclaves, forming the foundation for
provenance analyses. Most importantly, our monitor is designed not
to amplify other attack vectors such as side-channels. For detecting
intrusions, we propose a novel Finite-State Machine (FSM) that ex-
tends the current models used in SGX [23]. We automatically build
the enclavemodel through a combination of symbolic execution and
insensitive static analysis to create anFSMof the code in an enclave. 1
Intuitively, an enclave deviating from its FSM gives insights about
the attack vector.

To support our claims, we evaluate the properties of SgxMonitor
in terms of security guarantees and usability. To assess the security
properties of SgxMonitor, we test it against SnakeGX [31], a novel

1For simplicity, we use the term insensitive static analysis to refer to a context- and
path-insensitive analysis throughout the paper.

https://doi.org/10.1145/3564625.3567994
https://doi.org/10.1145/3564625.3567994

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

data-only malware for SGX enclaves, and specifically-crafted secu-
rity benchmarks (§7.1.1). Moreover, we discuss if our solution braces
the attacker surface of SGX enclaves (§7.1.2). To assess whether
SgxMonitor is usable in practice, we deploy it across five use cases
and measure micro- and macro-benchmark (§7.2). Our results show
SgxMonitor incurs in an overhead between 1.6% and 10% for macro-
benchmark, which is in line with the state-of-the-art.

In summary, we make the following contributions:

• We propose SgxMonitor, a novel provenance analysis system
designed for SGX enclaves that provides: (i) a new design
for tracing the enclaves runtime behavior in the presence of
an adversarial host without relying on additional hardware
isolation (§4); (ii) a stateful representation of the SGXenclaves
runtime properties (§5).
• We assess the security properties of SgxMonitor against
SnakeGXandspecifically-craftedsecuritybenchmarks (§7.1.1).
Moreover,weconduct a security analysis of ourdesign (§7.1.2).
• We likewise evaluate the usability of SgxMonitor by measur-
ing micro/macro-benchmark, and the completeness of our
model (§7.2).

2 SGX BACKGROUND
Enclaves stand at the base of the SGXprogramming pattern. They are
contiguous memory regions that contain critical pieces of software
and data (e.g., cryptographic keys). The isolation of SGX enclaves
is handled at microcode level and is independent of the Operating
System (OS) which is considered malicious.

SGX specifies newopcodes to interactwith enclaves. For ourwork,
we consider three of them: (i) EENTER, to trigger the enclave execu-
tion; (ii) EEXIT, to leave the enclave execution; and (iii) ERESUME, to
resume the enclave executionafter anexception.Moreover, SGXuses
Asynchronously Enclave Exit (AEX) to handle runtime exceptions.

On top of the former opcodes, Intel provides a Software Develop-
ment Kit (Intel SGX SDK) that organizes the enclave code as secure
functions. A process can interact with an enclave bymeans of simple
primitives: ECALL, to invoke a secure function; ERET, to return the
execution from a secure function; OCALL, to invoke a function out-
side the enclave (i.e., outside function); and ORET, to resume a secure
function execution from an outside function. In addition, the Intel
SGX SDK defines dedicated secure functions to handle exceptions.
The security guarantees provided by SGX ensure strong protection
against direct memory manipulations. However, such protections
do not hold against memory corruption vulnerabilities that lead to
code-reuse attacks.

In addition to memory isolation, SGX introduces a Remote Attes-
tation protocol (SGX RA) [81] that allows an external entity to verify
the integrity of an enclave. The SGXRArelies on the isolation offered
by the CPU to protect the cryptographic keys. In particular, the SGX
RA guarantees two properties: (i) the host machine has correctly
loaded the enclave in memory, (ii) a remote entity can check the
identity of the enclave and the machine (i.e., CPU) that is loading
it. Therefore, the SGX RA does not capture runtime attacks that
may deviate the enclave execution. The SGX RA provides proof of a
correctly initialized enclave but does not consider running enclaves.
SgxMonitor builds on SGX RA for enclave initialization but later
continuously verifies enclave integrity during execution.

3 THREATMODEL
Adversary Assumptions. In line with the SGX assumptions [64],
we assume the adversary is a host, that can attack the enclave in two
ways. (i) Exploiting classic memory-corruption errors in enclave
code [21, 30, 77] that lead to hijacking the enclave execution path [14,
48], e.g., overwriting forward (function pointers) or backward jumps
(return instructions). (ii) Altering the network enclave communica-
tion by overhearing, intercepting, and forging packets such as the
DolevYao attacker [27]. Finally,we assumea scenario inwhich an ad-
versary takes control of the victim enclave. In this case, SgxMonitor
must report sufficient correct information to describe the intrusion.

Enclave Assumptions. We assume an enclave developed for
SgxMonitor follows the specification described in §4 and §5. In par-
ticular, SgxMonitor requires the source code of the enclave, that
will be instrumented at compilation time to trace runtime enclave
information (§6).

Out-of-Scope Attacks.We exclude data-only attacks, i.e.,mem-
ory corruptions that do not hijack the execution flow. Moreover, we
assume the CPU is correctly implemented, thus not prone to rollback
attacks [70],micro-architectural vulnerabilities [35, 45, 76, 78, 85, 88],
cache timing attacks [16, 33, 55], and denial-of-service from the host.
We also assume enclaveswith a correct exception handler implemen-
tation [24]. Suchproblemsare consideredorthogonal toSgxMonitor.

4 SGXMONITOR: SYSTEMDESIGN
Natively, SGX forbids any external observer to inspect enclave’s
content. With SgxMonitor, we allow an enclave to securely stream
runtime fine-grain information, namely actions, similarly to Intel PT.
Intuitively, actions representmeaningful enclave events (e.g., control-
flow transfers, functions invoked) that enable an outside monitor to
recognize an intrusion. Our system plays a crucial role since it has to
transfer (potential) sensitive information without amplifying the at-
tacker capabilities. This section focuses on the technical description,
while we conduct a security analysis in §7.1.2.

Figure 1 illustrates the SgxMonitor design, that involves seven
actors:

• a target enclaveT, the enclave tomonitor against attacksunder
the threat model described in §3.
• amonitor enclaveM, that receives theactionsAgenerated byT.
• anApplication, that interacts with T through standard SGX
specifications (e.g., ECALL, OCALL),
• theModel D, that represents the correct behavior of T.
• theModel Extractor, that generates a model containing the
correct behavior of T.
• theModel Verifier, that validates the runtime status of T ac-
cording to A and D.
• a remote entity R, that attempts to validate both software and
runtime integrity of T.

Recalling our threatmodel (§3), T or its hostmay be compromised.
Since SGX disallows enclave memory segmentation, SgxMonitor
may report attacker-controlled actions after an intrusion. To cope
with this issue, we design SgxMonitor to guarantee that, at least,
the first action representing the attack is correctly reported. Addi-
tionally, we move M into a separate host to reduce the likelihood of

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Target Enclave
T

Model Extractor:
D = E(T) Model D

Offline Enclave
Analysis

Online Enclave
Verification

Target Enclave
T

SGX Remote Att.

Actions A

Monitor Enclave
M

Application
key K

Remote Entity R

➊

➋

Legend

Host machine

Model Verifier:
V(D, A)

➎Enclave

Procedure Untrusted SW

Sealed Model Step➊

Secure Communication
Protocol➌

➏

➍

Figure 1: SgxMonitor design.

compromising M. R is a legitimate remote entity that desires to val-
idate the integrity of T, we ensure R’s trustworthiness by employing
the standard SGX RA [6] (see §2).

Overall, the design of SgxMonitor is split into two distinct phases:
Offline Enclave Analysis, and Online Enclave Verification. During the
Offline Enclave Analysis, theModel Extractor generates theModel D
representing the correct behavior of the target enclave T (1). Then,
we seal D to prevent a malicious host to tamper with it (2). During
theOnline Enclave Verification, we assume thatM and T are correctly
loaded in the respective hosts. OnceT is loaded, it establishes a secure
communication channel with M by using the standard SGX RA [6],
as described in §4.2 (3). This channel allows T to send a stream of
actionsA toM, while anApplication can interact with T by following
standard SGXmechanisms (e.g.,ECALL,OCALL). Finally,Muses the
Model Verifier to validate the runtime integrity of T by verifying the
actions A adhere to the model D (4). TheModel Extractor (1) and
Verifier (4), along with further model details, are described in §5.5
and §5.6, respectively.

Once M correctly receives A from T, R uses the SGX RA to com-
municate with T and M. Specifically, R uses the SGX RA to verify
the software integrity and the identity of T (5). Likewise, R uses
the SGX RA to attest the identity of M and inquiry the runtime state
of T, i.e., if T still follows the model D and, in case, where the model
diverges and how (6).

4.1 Action ReportingMechanism
T relies on an action reportingmechanism that is resilient against the
threat model described in §3: an intrusion inside T (e.g., exploiting a
T internal error), and a malicious host. More precisely, we guarantee
SgxMonitor reports at least the first action of an intrusion.

We design the action reporting as a dedicated function, called
trace(), that is included in crucial code locations of T at compi-
lation time. Without loss of generality, we say all the actions are
reported through trace() over a secure channel between M and
T (§4.2). This section mainly focuses on the reporting mechanism,
while a complete description of actions is presented in §5.2. Finally,
we assume trace() is free from errors and an adversary cannot
exploit it to take control of T. This is reasonable since trace() has
a minimal implementation tailored for action reporting.

The intuition of our mechanism is to report an action before a
critical control-flow location is traversed (e.g., a return instruction or

1 i n t fun (i n t a) {
2 / ∗ f u n c t i o n body ∗ /
3 / / t r a c e the i n d i r e c t jump to the c a l l e r
4 t r a c e (_ _ b u i l t i n _ r e t u r n _ a d d r e s s (0)) ;
5 r e t u r n 0 ;
6 }

Figure 2: The code instrumentation reports actions before
critical program edges are traversed. This disallows an
adversary to hijack T without reporting actions. The secure
protocol avoids an adversary to forge actions (§4.2).

an indirect call). We exemplify this mechanism in Figure 9, and leave
further examples in Appendix D. In Figure 9, the program traces an
action representinga returnedge to thecaller (Line4). In this scenario,
an adversary could attempt an intrusion by injecting a ROP chain,
report arbitrary actions, and finally hiding her presence in T. In this
case, T will report an action representing the anomalous return ad-
dress (i.e., the first ROP gadget) right before the payload is executed,
thereby producing evidence of the intrusion. We can generalize this
approach such that T reports every action before they are actually
executed, i.e., before an intrusion begins. We paired this mechanism
with the secure communication protocol (§4.2) that avoids forging
and tamperingwithalreadyreportedactions. Therefore, anadversary
cannot hijack T without reporting evidence about the attack.

Our instrumentation is robust against attempts of overwriting
trace() due to the SGX security properties. Here, we distinguish
two cases. First, in SGX 1.0 [1], the host cannot arbitrary alter the
page permission of an enclave, this blocks any overwrite attempts by
design. Second, for SGX 2.0, a host can change the enclave memory
layout (i.e., change page permission) only upon an enclave request.
However, for this to happen an adversary has to first complete an
intrusion in T, thus reporting evidence of the attack similarly to the
previous scenario. We thus claim the action emission, when paired
with the secure communication protocol (§4.2), provides the base
for our resilient provenance analysis (more info in §7.1.2).

4.2 Secure Communication Protocol
T andM exchange actions relying on a secure communication chan-
nel that ensures three properties: (i) the host cannot tamper with
the packets reported by T; (ii) an adversary cannot alter or forge
the packets already reported even if she takes control of T; and

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

Algorithm 1: Procedure used by the target enclave to
report logs in a secure fashion.
1 reportLog(A)
2 mac←𝐻1 (𝐴 |𝐾)
3 𝐶←(𝐴 |mac) ⊕𝐾
4 𝐾←𝐻2 (𝐾)
5 𝑤𝑟𝑖𝑡𝑒 (𝐶)

(iii) the protocol does not facilitate side-channel attacks. Note that
we accept an adversary that performs a denial-of-service between
T and M. In this case, M considers T as untrusted after a timeout.
Our intuition is that each action is encrypted with a different key,
and new keys are obtained from chaining previous ones [40] (i.e.,
𝐾𝑡 =ℎ𝑎𝑠ℎ(𝐾𝑡−1)). Therefore, each action is encrypted with a fresh
key.Moreover, leaking the current key (e.g., due to an intrusion) does
not reveal information about the previous keys used. We now show
how to achieve this goal.

Protocol establishment. The channel requires three steps to be
established (3 in Figure 1): (i) T andM issue a standard SGXRA[6] to
verify their identity; (ii)Msendsa securekeyKtoTusing theSGXRA;
and (iii) T uses the key K to send the actions to M. Importantly, after
the step (ii)MandTare synchronizedwith the same key K.Moreover,
the secure channel is shared among the threads of T, that refer to the
same key K.We also include a thread ID into the exchanged packets,
this allowsM and T to multiplex and demultiplex the communica-
tion. The adoption of a shared key K avoids an adversary to use the
technique discussed in Dark-ROP [48], more details in §7.1.2.

The validation of the transmitted actions relies on two algorithms,
reportLog() and verifyLog(), that are illustrated in algorithm 1
and 2, respectively. Both reportLog() and verifyLog() use a lock
to avoid concurrency problems. K has the same size of the packets
transmitted, thus avoiding crypto-analysis [37]. Finally, we assume
reportLog(), verifyLog(), and the other supporting functions do
not contain implementation errors. We consider this reasonable
since these functions are specialized for this task.

Action transmission. T reports a new action𝐴 through instru-
mented code (in §4.1).𝐴 is given as an input to reportLog() that
encrypts and transfers it to M over an insecure channel. First, re-
portLog() creates amac by using a hash function 𝐻1 against the
concatenation of𝐴 and K (algorithm 1 line 2). Then, it generates𝐶
by xor-ing𝐴 concatenatedmac with K (algorithm 1 line 3). At this
point, it generates a new keyK by hashing the current keyKwith the
function𝐻2 (algorithm 1 line 4). Finally, the function writes𝐶 into
an insecure channel (algorithm 1 line 5). Therefore, the execution
of reportLog() replaces the old key K.

Action receiving. On the other side, M relies on verifyLog()
to decrypt and validate the encrypted packets𝐶 . We also assume
that M receives the packets in order.2 First, M decrypts the pair
(𝐴|mac) by xor-ing the packet𝐶 and the key K (algorithm 2 line 2).
Then, M verifies the correctness of the packet received by indepen-
dently computingmac′ (algorithm 2 line 3). Ifmac andmac′ does not
agree,𝐶 was tampered with during the transmission andM sets T
as untrusted (algorithm 2 line 5). Otherwise,𝐴 is considered correct
and is processed as described in §5.6 (algorithm 2 line 7). Finally, M
generates the next key K similarly to T (algorithm 2 line 9).
2We assume a reliable channel like TCP as in [72].

Algorithm 2: Algorithm used by the monitor enclave to
verify the logs reported through reportLog() described in
Algorithm algorithm 1.
1 verifyLog(C)
2 (𝐴 |mac)←𝐶 ⊕𝐾
3 mac′←𝐻1 (𝐴 |𝐾)
4 if mac′≠mac then
5 untrusted()
6 else
7 process(𝐴)
8 end
9 𝐾←𝐻2 (𝐾)

in-use

Enclave
initialization/deinitialization
phase ...

non-in-use

ERESUME
EENTER

EEXIT
AEX

Figure 3: Standard Finite-State Machine representation of
SGX Enclaves [23].

5 SGXMONITOR: THE ENCLAVEMODEL
Wemodel the normal enclaves’ behavior by extending the standard
Finite-State Machine of SGX enclave life-cycle, which is shown in
Figure 3.3 This model assumes the host interacts with a correctly
loaded enclave by means of the opcodes in §2. The enclave state
can assume only two values: non-in-use and in-use. In particular, an
enclave transits to in-use state when an EENTER or ERESUME is issued.
Then, the state returns to non-in-usewhen an EEXIT or AEX happens.
The microcode already implements this model in the microcode: the
same thread cannot enter (i.e.,EENTER) in an enclavewhich is already
in in-use state; it cannot exit (i.e., EEXIT) when the enclave is in non-
in-use. However, this model does not provide fine-grain information
about enclave health, i.e., an attack against the enclave execution [14,
31, 48] cannot be traced thusprecludingprovenance analysis a-priori.

Analyzing intrusion techniques for SGX enclaves, we noticed two
patterns. Attacks either hijack the enclave execution flow [48, 77],
or corrupt internal enclave structures [14, 31]. Therefore, we design
the SgxMonitormodel to recognize those patterns. Specifically, our
model is composed of four elements:
• states, that represent the runtime values of global structures
(§5.1).
• actions, that are meaningful binary level events (e.g., EENTER,
function call) (§5.2).
• graphs of actions, that are computed offline and used to val-
idate runtime transactions (§5.3).
• transactions, that are sequences of actions leading an enclave
from one state to the next. They express correct execution
paths (§5.4).

3This model is a simplified version of [23].

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

In the rest of the section, we also describe theModel Extractor and
Verifier in §5.5 and §5.6, respectively

5.1 State Definition
Our model integrates important global structures used by the Intel
SGX SDK to handle outside function invocation and exception han-
dling (§2). These structures are targeted in known attacks [14, 48],
thus reveal information about the tactic adopted for the intrusion.

Since SGX supports multi-threading, SgxMonitor traces a state
for each thread [1]. The state is a triplet defined as (𝑢𝑠𝑎𝑔𝑒,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒,
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛). In particular, usage recalls the FSM meaning seen in
Figure 3 and assumes two values: in-use and non-in-use. Structure,
instead, is an hash representation of the current structure used (or ⊘
if no structure is used). Finally, operation represents if the structure
was generated (i.e.,G), consumed (i.e., C), or null if no operation has
been performed (i.e., ⊘).

In our proof of concept, we trace the generation and consumption
of (i) ocall_context, used in the outside functions invocation; and
(ii) sgx_exception_info_t, used in the exception handing. These
two structures are handled at thread granularity, thus they fit our
model. In Appendix A, we show their FSM representation.

5.2 Action Definition
Generally speaking, an action is a meaningful software event. We
use the actions to represent runtime enclave transactions (§5.4), that
allow the evolution of the enclave state; and to build graphs of actions
(§5.3), that we use to validate the runtime transactions. In particular,
we distinguish two types of actions: generic and stop.

Generic actions. They identify standard software behaviors
such as: (i) control-flow events; e.g., jmp, call, ret; (ii) conditional
branches (e.g., jc); and (iii) function pointer/virtual table assignment.
Generic actions do not alter the state of the enclave and identify cor-
rect executions [28, 39, 44, 72, 90].

Stop actions.We consider SGX opcodes and structure manipula-
tion that alter the state of the enclave. For SGX opcodes, we consider
EENTER, EEXIT, and ERESUME, moreover, we distinguish between
EEXIT used for an ERET or an OCALL, respectively. These actions alter
the first field of the state (i.e., usage): when an application enters an
enclave, usage becomes in-use, while it turns to non-in-use otherwise.
For structuresmanipulations, instead,we tracewhenever theenclave
generatesor consumesa structure.These actions alter thefields struc-
ture and operation of the state; i.e.,when an action generates a struc-
ture, we store its hash and set operation as G, while we set structure
to null (i.e., ⊘) and operation to C when the structure gets consumed.

Both generic and stop actions are formalized as a triplet:

𝑎= (𝑡𝑦𝑝𝑒,𝑠𝑟𝑐,𝑣𝑎𝑙𝑢𝑒)𝑐𝑜𝑛𝑑 ,

where type identifies the nature of the action (e.g., function call, EEN-
TER), src is the virtual address where action occurred, and value
depends on the action semantic. For instance; value contains the
callee address for a function call; a boolean value for conditional
branches; or null if not required. Finally, cond contains extra condi-
tions (e.g., 𝑣𝑎𝑙𝑢𝑒 ≥ 0). We provide the complete action list in Table 1
grouped by generic and stop.

Table 1:Actions used to define valid transactions grouped by
generic and stop, respectively.

Actions

Generic

(E, src|⊘, dst|⊘) Function call, ind. jump, or ret inst.
src and dst can assume null value
(i.e., ⊘)

(B, src, 0 |1) Conditional branch
(0: not taken, 1: taken)

(A, src, addr) Function pointer assignment
(V, src, vptr) Virtual pointer assignment

(for C++ virtual classes)

Stop

(G, src, ctx) ocall_context generation
(C, src, ctx) ocall_context consumption
(J, src, ctx) sgx_exception_info_t

generation
(K, src, ctx) sgx_exception_info_t

consumption
(N, src, idx) EENTER for the secure function idx
(R, src, ⊘) ERESUME
(T, src, ⊘) EEXIT from enter_enclave

(ERET)
(D, src, ⊘) EEXIT from do_ocall

(OCALL)

5.3 Graphs of Actions Definition
Graphs of actions are composed of vertexes and edges, whose ver-
texes are in a bijective relationshipwith actions: each vertex is paired
with exactly one action and each action is paired with exactly one
vertex. The edges, instead, are combinations of actions that appear
at runtime.

The graph representation simplifies loops detection, that other-
wise would require an unpredictable sequence of actions. Moreover,
the graphs of actions allow us to implement a shadow stack. We
describe the model extraction and verification in §5.5 and §5.6, re-
spectively.

5.4 Transaction Definition
A transaction identifies a valid execution path in an enclave and
is composed of a valid sequence of actions (§5.2) that makes the
enclave state evolve. Formally, we indicate a transaction 𝑃 as follow-
ing 𝑃 = [𝑔1, ...,𝑔𝑛,𝑠], which is a sequence of generic actions 𝑔𝑖 that
terminates with a stop action 𝑠 . Intuitively, an enclave should reach a
new state only through valid transactions, otherwise we observe an
anomalous enclave behavior. We perform the transaction validation
by matching the actions received from the monitored enclave with
its graphs of actions. We provide the full validation algorithm in §5.6.
The combination of transactions and graph of actions allows one to
recognize intrusion tactics [48, 77].

5.5 Model Extractor
The goal of theModel Extractor (1 in Figure 1) is to automatically
infer the behavior for a given enclave. As preliminary approach, we
investigated an interprocedural symbolic execution [43] over the en-
tire enclave. Even though this strategy would benefit from a context
to prune infeasible paths, we found it too resource-intensive, i.e., re-
quiring hours of computations, encountering timeouts, and leading
to incomplete explorations in practice. Another approach would use

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

Algorithm 3: Extracting model algorithm, it takes as input
the target enclave and returns the relative model.
1 extractModel(T)
2 𝑚←∅
3 for 𝑓 ∈𝑇 .instr_functions do
4 setSymbolicGlobalVars(𝑇)
5 loopAnalysis(𝑓)
6 setSymbolicFreeArgs(𝑓)
7 𝑟←symbolicExploration(𝑓)
8 if 𝑟 .isTimeout() then
9 𝑟← insensitiveAnalysis(𝑓)

10 end
11 𝑚←𝑚∪(𝑓 ,𝑟 .graph_of_action)
12 end
13 return𝑚

insensitive static analysis [22] to extract the control-flow graphs of
each function. However, this approach introduces impossible paths
that increase the attacker surface. Therefore, we build on the ben-
efits of symbolic execution and an insensitive static analysis while
limiting their drawbacks (we expand this discussion in Appendix B).

In our scenario, we assume that the code in an enclave imple-
ments straightforward functionality, such as a software daemon that
implements different features [3] and not arbitrarily complex like,
e.g., aWeb-browser. An enclave contains a relatively small number
of indirect calls and its software base is given. Therefore, we take
inspiration from previous compositional analyses [17] that treats
individual functions separately. More precisely, we extract a model
for each function of the enclave with a combination of symbolic
executions and insensitive static analysis.

TheModel Extractor takes as input a target enclave Twhich has
been instrumented at compilation time for tracing actions; and out-
puts a graph of action for each traced function in the enclave. T is
compiled without debug information, we solely rely on global sym-
bols to identify the functions entry point and the global variables.
The global symbols do not contribute to the enclave measurement,
thus we strip them out after extracting the model [41].

Overall, the extraction algorithm is described in algorithm 3.
Given an instrumented target enclave T, we analyze each instru-
mented function separately (algorithm 3 line 3). The rest of the
section details each point of the analysis.

Symbolic Global Variables (algorithm 3 line 4).Global vari-
ables might contain default concrete values that affect the symbolic
exploration.Wemitigate this issues by setting all the global variables
as unconstrained symbolic objects for each function analyzed.

LoopAnalysis (algorithm3 line 5).Unbounded loops can lead
to infinite symbolic explorations [58]. Since we are interested to
reduce false positive alarms, we employed a postdominator tree [63]
over the static control-flow-graph to identify the loopsheader in each
function.Thisapproach is conservativeandallowsus toexploremore
executionpaths,which isourmaingoal.Weset themaximumto three
loop iterations, similarly to previous works [84]. Our experiments
show that we reach good coverage while keeping low false positive.

Free Arguments Inferring (algorithm 3 line 6). Some func-
tion requires pointers as arguments (e.g., structures, objects, array),
however, current symbolic explorations do not fully handle symbolic
pointers, that might lead to a wrong or incomplete exploration [22].
Sincewe are interested to reduce false positive alarms,we opted for a

conservative approach based on static backward slicing [87] to iden-
tify pointers passed as function arguments. For each free argument,
we build an unconstrained symbolic object to help the exploration.
This solution allows us to achieve a good coverage in the majority of
the case, as also shown in our experiments.We also introduce custom
analysis to handle corner cases, which are though a limited number.
Finally, we deal with function pointers by employing a conservative
function type analysis [3].

Symbolic Exploration (algorithm 3 line 7).We primarily em-
ploy a symbolic exploration [43] to avoid impossible paths that,
otherwise, might increase the attacker surface. We execute the sym-
bolic exploration after tuning the function as previously described.
Through the exploration,we build a graph of action for each function.

Insensitive Static Analysis (algorithm 3 line 9). Since few
functions of our use case experienced a symbolic execution timeout
due to their complexity (i.e., too many nested loops). We employed
a fallback approach based on an insensitive static analysis [65] in
which we traverse the static control-flow-graph of the function to
build the function graph of action. These cases are rare and they are
used only if the symbolic approach fails. We measure the frequency
of this case in our evaluation.

Building a Model (algorithm 3 line 11). The final enclave
model is an association between functions and their model that
is finally sealed in themonitor enclave host to avoid tampering.

5.6 Model Verifier
TheModel Verifier (4 Figure 1) receives a stream of actions from the
target enclave T and checks whether they adhere to theModel D. Ev-
ery actionmovesT froma state to thenext one, the forward jumps are
validated directly against theModelD,while the back jumps (e.g.,ret
instructions) are validated against a shadow stack [72]. Thesemecha-
nisms ensure the sequence of actions follow a correct path.Moreover,
theModel Verifier tracks the running state of T and identifies when
the enclave reaches a wrong state. Failing to adhere to the model D
gives insights about the intrusion tactic used to control the enclave.

6 IMPLEMENTATION
We provide technical details about the Compilation Unit, theModel
Extractor, and the secure communication channel.

Compilation Unit. The Compilation Unit takes as input the tar-
get enclave source code and emits the instrumented enclave T. The
instrumentation injected at compilation time is considered trusted
since SGX disallows an OS to arbitrary change the enclave’s page
permission, thus avoiding code replacement [41]. The unit is imple-
mented as an LLVM pass for the version 9 (367 LoC) and a modified
version of Clang 10 that instruments virtual pointer assignments
(15 LoC added). In the link phase, we link T with an instrumented
SGX SDK to trace specific parts of the code, e.g., in do_ocall and
asm_oret to handle ocall_context generation/consumption; and
enter_enclave to trace the entrance/exit from the enclave. We
opted for this solution because Intel does not officially support the
compilation of the SGX SDK with Clang [2]. We based the instru-
mented SGX SDK on the version 2.6. In this process, we also include
an extra secure function that issues the secure communication chan-
nel, and extra checks that avoid the interaction between T and the
Application before the channel is established (see §4.2).

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Model Extractor. The Model Extractor is based on angr ver-
sion 8.18 and implements the algorithms described in §5.5. We use
PyVex [69] to navigate the static CFG of the functions, and angr
symbolic engine to extract the graphs of actions. TheModel Extractor
is composed of 8416 LoC in total.

SecureCommunicationChannel.Thecommunicationbetween
the target enclave T and themonitor enclaveM is implemented by
combining a TCP connection and a switchless mechanism [71]. T
writes encrypted actions (see §4.2) into a ring-buffer that resides
in the untrusted host. The buffer is then flushed into a TCP socket
that connects T and M. On the M side, another ring-buffer feeds
theModule Verifier. We employ this design to reduce context switch
delays [71]. For the functions reportLog() and verifyLog(), we
use the sha256 implementation provided by Intel SGX SDK.We can
improve the efficiency adopting other secure functions such as the
Intel SHA extension [34] or Blake2 [9].

7 EVALUATION
We adopt the guidelines described in [79] to avoid benchmark-
ing flaws. Our evaluation revolves around two main questions:
(RQ1) what insights SgxMonitor provides in a provenance anal-
ysis? (RQ2) can I use SgxMonitor in a real scenario? We answer
R1 in §7.1 by testing the SgxMonitor security guarantees against a
set of modern SGX attacks. We answerRQ2 in §7.2 by measuring
micro/macro-benchmark, and discussing the model extraction.

7.1 RQ1 - Security Evaluation
We evaluate the security guarantees of SgxMonitor frommultiple
perspectives. First,wedemonstrate the provenance capability of Sgx-
Monitor to intercept modern execution-flow attacks (§7.1.1). Then,
we illustrate a security analysis of the SgxMonitor design against a
battery of protocol/side-channel/non-control data attacks to prove
our solution does not amplify such threats (§7.1.2).

7.1.1 Execution-flow attacks. We choose two security benchmarks:
SnakeGX [31], which is an enclave SGX enclaves infector; and a
benchmark that evaluates the shadow stack defense.

SnakeGX. This is a data-only malware designed to implant a
permanent backdoor into legitimate SGX enclaves. SnakeGX is com-
posed of two phases: (i) an installation phase, that uses a classic
ROP-chain [18] to install the payload inside the target enclave; and
(ii) a backdoor activation, that exploits a design error of the Intel SGX
SDK to trigger the payload previously installed. SnakeGXmanaged
to bypass the current SGX protections. Therefore, once installed,
an external observer cannot realize the presence of SnakeGX in
the target enclave. For our evaluation, we deploy SgxMonitor into
the PoC delivered by the authors of SnakeGX, extract the model,
and finally, analyze the actions reported. The results show that Sgx-
Monitor recognizes either the installation phase and the backdoor
activation. In particular, the installation relies on a classic ROP-chain,
therefore, SgxMonitor identifies an unknown action pointing to a
gadget. In this way, SgxMonitor gives an insight about an intrusion
inside the enclave. The backdoor activation, instead, restores a cor-
rupted ocall_context (crafted during the installation). In this case,
SgxMonitor observes the restoring an anomalous state. Notably,
previous bug detection works did not identify the error design used

in the installation phase [21]. Recent introspection works [91], in-
stead, allow one to find traces of a payload. However, theseworks are
requested-based, therefore, the analyst has to inspect the enclave at
the right time to find the payload in memory. Conversely, SgxMon-
itor continuously traces the enclave, thus overcoming the limitation
of requested-based introspection techniques.

Shadow stack protection.We evaluate the shadow stack imple-
mented in SgxMonitor. In particular, wewant to identify a corrupted
return address that points to a valid function. To this end, we build
a custom enclave that allows such attacks and deploy SgxMonitor in
it. The results show that SgxMonitormanaged to identify execution
flows incoherentwith the call stack, thus pinpointing a possible local
buffer overflow and in which function it happened. Again, recent
introspection works [91] require to dump the enclave context when
the payload is still present in the enclave. However, code-reuse at-
tacks are considered one-shot, meaning they do not leave consistent
traces after their execution [31]. Therefore, the introspection must
happen before the payload is activated, which we argue is unlikely
in real cases. On the contrary, SgxMonitor does not suffer from this
limitation due to the stream of actions reported.

Final Notes.We remark that standard mitigation deployed in-
side an enclave (e.g., CFI or shadow stacks) lacks any insight about
the attack performed. Moreover, request-based introspection must
catch the payload at the right timing. On the contrary, SgxMonitor
provides a continuous stream of fine-grain information about the
intrusion, that facilitates the detection.

7.1.2 Security Analysis of the System Design. We discuss the secu-
rity properties of the SgxMonitor design (§4) with respect to our
threat model (§3). Before discussing the following cases, we remark
all the packets have the same size by design, and the cryptographic
key changes at any packet reported (§4.2). Therefore, an adversary
can only observe the packets’ timestamp.

Attacks before protocol establishing.An adversary may tar-
get T before it establishes the secure channel with M. To mitigate
this attack surface, we enforce that all the security functions of T are
disabled until T and M completely initialize the security protocol. In
particular, the Applicationmust invoke a dedicated secure function
of T before it may use any other secure function. We insert addi-
tional checks that ensure no other functionality of T is active until
T andM successfully established the channel. This design avoids an
adversary to attack T before M starts monitoring it.

Defense against a tampered enclave T. Our protocol resists
against an adversary that hijacks T. In this case, our code instrumen-
tation encrypts and reports the malicious action before the enclave
traverses the hijacked edge (§4.1), thus producing a new key K (§4.2).
Here, we face three scenarios: (S1) the compromised action reaches
M, thusM recognizes the attack; (S2) the host drops the action before
reachingM, thusM recognizes the attack after a timeout; and (S3) the
adversary attempts to forge a new valid action, however, she cannot
retrieve K after reportLog() invocation (i.e., a new K is produced).
In all these cases, M will observe an anomaly in the protocol or T
behavior, finally setting T as untrusted.

Sharing the same key K among the threads defeats the tactic
described in modern enclave attacks [48]. In their scenario, an ad-
versary exploits a thread to leak information (i.e., the key K) from
another thread. In our design, leaking K forces a thread to report an

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

action X representing the attack. Moreover, reportLog() ensures
the actions follow a specific order. Therefore, either X reaches M,
thus revealing the attack; or X is dropped, thus showing an anomaly.

Side-channels attacks.We study the implication of SgxMon-
itor in side-channel attacks. First, we focus on crypto analysis. In
this case, an adversary may use the number of packets reported to
attack the cryptographic algorithms in the enclave. However, mod-
ern cryptographic algorithms have been proven chosen-ciphertext
attack secure [11]. Therefore, leakage of ciphertext packets does not
improve the adversary’s capabilities [86]. An adversary may how-
ever count the packets exchanged by the communication protocol
to analyze the enclave execution and locate likely code positions.
We dissect this scenario in two cases. (i) The adversary manages
to use the code location to build execution-flow attacks, in this case
SgxMonitor simply detects the anomaly execution as discussed in
§7.1.1. (ii) The adversary uses the code location for non-control data
attacks [20, 38], we expand this case in the next paragraph.

Non-control data attacks. The communication protocol be-
tween monitor and target enclave may brace the adversary capa-
bilities in non-control data attacks [20, 38]. Intuitively, these attacks
do not hijack the execution-flow but exploit side effects, for instance,
considering a password checking algorithm that matches one char-
acter at a time. The number of packets suggests the number of char-
acters guessed, thus reducing the combination. We can mitigate this
attack with the introduction of dummy packets (from 0 to 𝑘) and
adding a random dummy delay (from 0 to 𝑡). This will increase the
micro-benchmark overhead of a factor (𝑘 + 𝑡)x in the worst case.
However, such defenses would be applied to specific code portions
(e.g., in the password checking), thus incurring a minimal overhead
footprint overall. (The idea is similar to adding countermeasures
against timing-based attacks [13].)

Final Notes.With this analysis, we discuss crucial corner cases
handled by our protocol and the possible information leakage caused
by the packet transfers. In short, we argue SgxMonitor does not in-
troduce new attacker surface thus not breaking the SGX isolation

7.2 RQ2 - Usage Evaluation
We describe the use cases, the experiment setup, and discuss the
impact of SgxMonitor in real projects.

Use Cases.We identified 10 open-source projects that use SGX.
Most of themdonot compile because they refer tooldSGXfeaturesor
they are incompatiblewithClang. Among them,we choose five ones:
(i) Contact [7], the contact discovery service used by Signal app [8];
(ii) an SGX porting of libdvdcss [80], a portable DRM algorithm used
by VLC media player [61]; (iii) StealthDB [82], a PostgreSQL [56]
plugin that uses SGX to encrypt tables; (iv) SGX-Biniax2 [12], an SGX
porting of the open-source game Biniax2 [75]; and (v) a unit-test to
validate corner cases of the enclave behaviors not coveredpreviously,
like exception handling.

We use Contact, StealthDB, SGX-Biniax2, and the unit-test to
stress micro-benchmarks (§7.2.1). We use libdvdcss, StealthDB, and
SGX-Biniax2 for macro-benchmarks (§7.2.2). All the five use cases
are used for model extraction analysis (§7.2.3).

Experiment Setup. All the experiments were performed on a
Linuxmachinewith kernel version 4.15.0 and equippedwith an Intel
i7 processor and 16GB of memory. We set the CPU power governor

bx1 bx2 bx3 bx4 bx5 bx6 bx7 ct1 ct2 ct3 ct4 ct5 ct6 sd1 sd2 ut1 ut2 ut3
Secure function

1x

10x

100x

slo
wd

ow
n

SGX-Biniax2
Contact
StealthDB
unit-test

Figure 4: Overhead of vanilla secure functions versus Sgx-
Monitor secure functions of Contact (ctx), SGX-Biniax2
(bxx), StealthDB (sdx) and unit-test enclave (utx) expressed
in logarithmic scale. Median overhead is around 3.9x and is
depicted as a dashed line.

as power save. Moreover, we perform a warm-up round for each
secure function before actually recording the performances.

7.2.1 Micro-benchmark. In this experiment, we measure the over-
head of the single secure functions with SgxMonitor and without
(i.e., vanilla). We perform this experiment onContact, SGX-Biniax2,
StealthDB and the unit-test enclave. The results are shown in Fig-
ure 4. In most of the cases, SgxMonitor introduces an overhead less
than or equal to 10x (bx1-7, ct1-2, ct4, ct6, ut1-3) with a median over-
head of 3.9x. Only two secure functions show an overhead over 100x
(ct3 and ct5). Amajor source of overhead is incurred by the hash func-
tions in the secure communication protocol (§4.2), as observed in sim-
ilar works [4, 5, 72]. Different hash functions can ease the overhead,
e.g., the Intel SHA extension [34] or Blake2 [9]. However, This result
does not really affect the performance of SgxMonitor that is in line
with similar works [72] for final user experience (§7.2.2). Addition-
ally, we report ameasurement of action-per-second inAppendix E to
show the overhead is generally constant among the secure functions.

7.2.2 Macro-benchmark. We investigate the impact of SgxMonitor
in three real applications. (A1) StealthDB [82], which is a plugin for
PostgreSQL [56] based on SGX. (A2) libdvdcss [80], which is a DRM
library used in VLCmedia player [61]. (A3) SGX-Biniax2 [12], which
is an SGX porting of the open-source game Biniax2 [75].

StealthDB.We replicate the same experiments described in the
original paper [82]: we deploy StealthDB over a PostgreSQL [56]
version 10.15 and run the benchmark OLTP [25] using same scale
factors. Figure 5a and Figure 5b show the requests per second and
the latency. For each scale factor, we run 10 experiments and indicate
average and standard deviation. Overall, SgxMonitor introduces an
average slowdown of 1.68x and an overhead of 1.25% in terms of
requests per second and latency, respectively.

libdvdcss.Wemeasure the CPU impact of SgxMonitor over lib-
dvdcss, which is an DRM library used in VLCmedia player [61]. We
use a VLC version 3.0.8, on which we deployed three versions of
libdvdcss [80]: vanilla, with SGX, and with SgxMonitor. We play a
DVD for around one hour and half while sampling the CPU usage
every second. Figure 6a shows the result of our experiment, after
a first adjusting phase, the overhead reaches a plateau below 10%.
Furthermore, we do not experience any delay or interruption while
playing the DVD in any of the three configurations.

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

1 2 4 8 16
Scale Factor

30

40

50

re
qu

et
s p

er
 se

co
nd

1.66x

1.68x

1.70x

1.72x

slo
wd

ow
n

Vanilla SgxMonitor Slowdown

(a) Overhead of StealthDB vanilla and with SgxMonitor measured
as requests per second. Overall, SgxMonitor introduces an average
slowdown of 1.68xwith a standard deviation of 0.02x.

1 2 4 8 16
Scale Factor

1010

1020

1030

la
te
nc
y
[m

s]

1.00%

1.25%

1.50%

ov
er
he

ad

Vanilla SgxMonitor Ovehead

(b) Overhead of StealthDB vanilla and with SgxMonitor measured as
latency (ms). Overall, SgxMonitor introduces an average overhead of
1.24%with a standard deviation of 0.06%.

Figure 5:StealthDB [82]performancesmeasuredagainstOLTP [25] benchmarkandexpressed as request per secondand latency.
We evaluated StealthDB vanilla andwith SgxMonitor, in particular, we run 10measurements for each scale factor (from 1 to 16)
and plot average and standard deviation for requests per second and latency, respectively.

0 1000 2000 3000 4000 5000
seconds

20

40

60

%
CP

U

0%

20%

40%

60%
ov

er
he

ad
Va

ni
lla

 v
s S

gx
M

on
ito

r

VLC Vanilla VLC + SGX VLC + SgxMonitor

(a) Overhead of VLC with libdvdcss vanilla, plus SGX, and plus Sgx-
Monitor, respectively.Wemeasure the percentage of CPUusagewhile
playingthesameDVDwiththethreesettings.Afteraninitialadjusting
phase, the overhead drops and reaches a plateau lower then 10%.

0 100 200 300 400 500 600
seconds

10

20

30

%
CP

U

0%

10%

20%

30%

ov
er

he
ad

Va
ni

lla
 v

s S
gx

M
on

ito
r

SGX-Biniax2 Vanilla SGX-Biniax2 + SgxMonitor

(b) Overhead of SGX-Biniax2 vanilla and with SgxMonitor, respec-
tively. We measure the percentage of CPU usage while playing the
game for the same amount of time (around 20m). After an initial ad-
justing phase, the overhead drops and reaches a plateau at around 5%.

Figure 6: Macro-benchmark of libdvdcss [80], deployed over VLC media player [61], and SGX-Biniax2 [12]. In both cases, we
measured the CPU usage and the overhead introduced by SgxMonitor versus the vanilla version of the software.

SGX-Biniax2.Wemeasure the CPU impact of SgxMonitor over
SGX-Biniax2 [12], a video game that uses SGX for data protection.
We play the game for around 20minutes and sample the CPU usage
every second. Figure 6b shows the result of our experiment. Similarly
to libdvdcss, we observe a first adjusting phase followed by a plateau
at around 5%. Furthermore, we do not experience any delay or inter-
ruptionwhile playing SGX-Biniax2 in any of the two configurations.

Final Notes.Our results show that the overhead introduced by
SgxMonitor is overall limited, e.g., the slowdown in StealthDB is
lower than the micro-benchmarks (i.e., 1.6x vs 3.9x) and the CPU
overhead expressed by libdvdcss and SGX-Biniax2 shows a limited
plateau. Therefore, we conclude that SgxMonitor does not affect the
final user experience and can be included into projects that either
require occasional enclave interactions (like DRM protection) or are
more computational intense (like a database).

7.2.3 Model Extractor. In the context of SgxMonitor, the action cov-
erage is a suitable metric for estimating the quality of an extracted
model. This comes from two observations. First, assuming a sound
symbolic execution, if no timeout is reached, we can state the analy-
sis coveredmeaningful actions.Wemeasure this with the percentage
of traversed actions (over 91.4% in our experiments). Conversely, if
the symbolic execution times out, we fallback to an insensitive static

analysis. This traverses all the CFG of a function, thus completing
the exploration of the actions. Of course, being the analysis insen-
sitive, we trade-off precision for a low overhead in the construction
of the model: we might observe rogue actions, which potentially in-
crease the attack’s surface. In our experiments, we set the symbolic
execution timeout to 10minutes.

Table 2 shows our coverage results. We apply the analysis de-
scribed in §5.5 to our uses cases:Contact, libdvdcss, StealthDB, SGX-
Biniax2, and theunit-test. Thefiveuse cases showavaryingdegreeof
complexity;Contact contains the highest number of single functions
(71) among our use cases that are however quite simple (12 actions
on average). Conversely, StealthDB has fewer (44) butmore complex
(18 actions on average) functions. libdvdcss and SGX-Biniax2 have a
complexity similar to StealthDB (18.29 and 8.55 actions on average,
respectively). Finally, the unit-test is self-contained and primarily
leveraged to validate SgxMonitor and exception handling of enclaves.
Overall, our analysis covers from 91.4% to 96.6% of the actions.

In all our experiments,wedonot encounter any falsepositive from
any of the micro- and macro-benchmark, we provide a thorough
discuss of the precision of our model in Appendix B.

Final Notes.Our results show that (i) the symbolic execution is
suitable to cover the small functions in SGX enclaves (i.e., only 14

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

Table 2: Coverage analysis over our five use cases:Contact [7], libdvdcss [80], StealthDB [82], SGX-Biniax2 [12], and a unit-test.
Theresults showthat theanalysis covers from 91.4% to 96.6%of theactions inaround 2hoursand 20minutes in total (8146.11s). Fur-
thermore,wedidnotobserve any falsepositiveduringour experiments,meaningwecovereda significantportionof code. In the
right part of the table, we indicate the actions explored adopting only static or symbolic execution (symex) and their difference.

Use case # func. action edge % action # func. analysis time [s] trade-off actions explored
𝜇 𝜎 𝜇 𝜎 explored static 𝜇 𝜎 total static symex Δ(%)

Contact [7] 71 12.77 12.59 15.09 17.64 96.4% 1 20.20 85.9 1397.12 1042 998 4.41
libdvdcss [80] 56 18.50 18.98 23.84 26.06 91.4% 9 70.19 179.65 3790.19 904 747 21.02
StealthDB [82] 44 18.29 13.53 21.97 18.05 96.6% 0 6.16 24.5 258.89 967 1009 −4.16
SGX-Biniax2 [12] 49 8.55 8.75 9.29 11.71 91.6% 4 52.46 168.8 2465.62 451 413 9.20
Unit-test 17 6.88 7.47 7.17 10.52 94.0% 0 15.60 53.4 234.29 122 107 14.02

total 237 - - - - - 14 - - 8146.11 3486 3274 6.48

functions out of 237 (5.9%) required an insensitive static analysis) and
effectively cuts out unused actions thus reducing the attack surface;
(ii) the static analysis can support the symbolic one in case of timeout;
(iii) our approach is practical since it can be completed in around an
hour (i.e., 60m for libdvdcss); and (iv) our analysis explores a signif-
icant portion of the code since it does not rise false positive alarms.

8 RELATEDWORKS
SgxMonitor shares analogies with other research areas: provenance
analysis works, SGXmemory-corruptions, and remote inspection.

Provenance Analysis.Many provenance tools are based on in-
strumentation to collect logs from diverse sources [49, 52, 53]. Sgx-
Monitor applies provenance to a novel area, we gather information
from an isolated enclave while the analysis runs in a zero-trust
environment. We overcome this issue with a novel technique to
collect enclave runtime fine-grain information in the presence of
a malicious OS. Other provenance techniques focus on long term
intrusion, such as APT [36, 89]. In our scenario, instead, we focus
on code-reuse attacks that affect SGX enclaves. SgxMonitor helps
an analyst to rebuild the intrusion by leveraging on a novel model
suited for enclaves. SgxMonitor shares some similarities with run-
time provenance works [62] that rely on a healthy OS to collect and
analyze logs. Conversely, SgxMonitor assumes a malicious OS that
may tamper with these operations. Overall, SgxMonitor is the first
provenance analysis suitable for the SGX environment. To achieve
this, we design a novel log collection and propose a novel model to
represent the normal behavior of an enclave.

SGXandMemoryCorruptionErrors.CFIsandshadowstacks [26,
28, 39, 44, 51] are orthogonal defenses to SgxMonitor and comple-
ment the protection of enclaves. In addition, one can remove corrup-
tions errors in SGX enclaves, as studied in several forms [21, 46, 54,
66, 83]. All these works can be considered orthogonal to SgxMonitor
since they contribute to reduce the attack surface. However, these so-
lutions do not provide information about the intrusion. SgxMonitor,
instead, helps one rebuild the cause of an attack.

SGXRemote Inspection. In GuaranTEE [57], the authors pro-
pose a runtime attestation for SGX. However, their model is stateless
and cannot identify advancedmalware such as SnakeGX.On the con-
trary, both model and design of SgxMonitor are designed to cover
a broader attacker model, moreover, we performed a more compre-
hensive security evaluation. SMILE [91] is a novel request-based

introspection mechanism that allows a remote agent to securely
dump enclave memory regions. This tool can be used for forensic
analysis in SGX enclaves. However, request-based approaches need
to be manually activated thus leaving time to an intrusion to clear
any evidence. Conversely, SgxMonitor continuously dumps runtime
information, thus blocking evasion movements (§7.1.2).

9 CONCLUSION
We proposed SgxMonitor, a novel provenance analysis for SGX
enclaves. As enclaves are designed to secure code that performs
specific security- and privacy-sensitive tasks, SgxMonitor relies on
a combination of symbolic execution and static analysis to model
the expected behavior of enclaves with high code coverage and low
false positives. Moreover, SgxMonitor designs a novel protocol to
securely extract runtime enclave information in the presence of an
adversarial OS while not undermining the SGX isolation.

We assessed SgxMonitor security properties against novel SGX
code-reuse attacks. Moreover, we tested SgxMonitor across four real
use cases (i.e., Contact, StealthDB, libdvdcss, SGX-Biniax2) and a
unit test to validate enclaves’ corner cases.

SgxMonitor’s overhead is similar to the state-of-the-art prove-
nance analysis works showing lowmacro-benchmark overhead and
high precision with 96% code coverage and zero false positives sup-
port SgxMonitor in realistic deployments to extract insight about
runtime anomalous executions of SGX enclaves.

ACKNOWLEDGMENTS
We thank our shepherd and the anonymous reviewers for their care-
ful feedback which greatly improved the clarity of this paper. This
project has received funding from the European Research Council
(ERC) under the H2020 grant 850868, SNSF PCEGP2_186974, and
Fondation Botnar. Any findings are those of the authors and do not
necessarily reflect the views of our sponsors.

REFERENCES
[1] 2013 (accessed September 2020). Intel® Software Guard Extensions (In-

tel®SGX) - Developer Guide. https://download.01.org/intel-sgx/linux-
2.1.3/docs/Intel_SGX_Developer_Guide.pdf.

[2] . 2020 (accessed September 24, 2020). Build SGX Enclave using Clang/LLVM.
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Build-SGX-
Enclave-using-Clang-LLVM/td-p/1161847.

https://download.01.org/intel-sgx/linux-2.1.3/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-2.1.3/docs/Intel_SGX_Developer_Guide.pdf
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Build-SGX-Enclave-using-Clang-LLVM/td-p/1161847
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Build-SGX-Enclave-using-Clang-LLVM/td-p/1161847

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 1–40.

[4] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: control-flow
attestation for embedded systems software. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 743–754.

[5] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, and Matthias Schunter. [n. d.]. DIAT: Data Integrity Attestation for
Resilient Collaboration of Autonomous Systems. ([n. d.]).

[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. Citeseer, 7.

[7] Signal App. 2017 (accessed September 14, 2020). Private Contact Discovery Service
(Beta). https://github.com/signalapp/ContactDiscoveryService.

[8] Signal App. 2017 (accessed September 14, 2020). Signal App. https://signal.org/en/.
[9] Jean-Philippe Aumasson, Samuel Neves, ZookoWilcox-O’Hearn, and Christian

Winnerlein. 2013. BLAKE2: simpler, smaller, fast as MD5. In International
Conference on Applied Cryptography and Network Security. Springer, 119–135.

[10] Sebastian Banescu, ChristianCollberg, andAlexander Pretschner. 2017. Predicting
the Resilience of Obfuscated Code Against Symbolic Execution Attacks via
Machine Learning. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 661–678. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/banescu

[11] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. 2011. Beyond provable security verifiable IND-CCA security of OAEP.
In Cryptographers’ Track at the RSA Conference. Springer, 180–196.

[12] Erick Bauman and Zhiqiang Lin. 2016. A case for protecting computer games with
SGX. In Proceedings of the 1st Workshop on System Software for Trusted Execution.
1–6.

[13] Mihir Bellare, David Cash, and Rachel Miller. 2011. Cryptography Secure against
Related-Key Attacks and Tampering. In Advances in Cryptology – ASIACRYPT
2011, Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 486–503.

[14] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The guard’s dilemma: Efficient code-reuse attacks against intel
sgx. In Proceedings of 27th USENIX Security Symposium.

[15] DanBogdanov. 2018 (accessed September 14, 2020). Dashlane and Intel join forces to
bring built-in password protection to PCs. https://sharemind.cyber.ee/introducing-
sharemind-hi/.

[16] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In 11th USENIXWorkshop on Offensive Technologies (WOOT
17). USENIX Association, Vancouver, BC. https://www.usenix.org/conference/
woot17/workshop-program/presentation/brasser

[17] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. 2009.
Compositional shape analysis by means of bi-abduction. In Proceedings of the
36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 289–300.

[18] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses.. In USENIX Security Symposium. 385–399.

[19] Chia che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada
Popa, and Donald E. Porter. 2020. Civet: An Efficient Java Parti-
tioning Framework for Hardware Enclaves. In 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, 505–522.
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai

[20] Shuo Chen, Jun Xu, and Emre C. Sezer. 2005. Non-Control-Data Attacks Are
Realistic Threats. In 14th USENIX Security Symposium (USENIX Security 05).
USENIX Association, Baltimore, MD. https://www.usenix.org/conference/14th-
usenix-security-symposium/non-control-data-attacks-are-realistic-threats

[21] Tobias Cloosters, Michael Rodler, and Lucas Davi. 2020. TeeRex: Discovery and
Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 841–858.
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters

[22] Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2017. Rethinking
pointer reasoning in symbolic execution. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 613–618.

[23] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1–118.

[24] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena, and Zhiping
Cai. 2021. SmashEx: Smashing SGX Enclaves Using Exceptions. arXiv preprint
arXiv:2110.06657 (2021).

[25] Djellel EddineDifallah,AndrewPavlo, CarloCurino, andPhilippeCudre-Mauroux.
2013. Oltp-bench: An extensible testbed for benchmarking relational databases.
Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.

[26] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, andWenke
Lee. 2017. Efficient protection of path-sensitive control security. In 26th {USENIX}

Security Symposium ({USENIX} Security 17). 131–148.
[27] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols. IEEE

Transactions on information theory 29, 2 (1983), 198–208.
[28] J. Doweck,W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport, E. Rotem, A.

Yasin, and A. Yoaz. 2017. Inside 6th-Generation Intel Core: NewMicroarchitecture
Code-Named Skylake. IEEE Micro 37, 2 (2017), 52–62.

[29] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip
Laplante. 2016. Cyclomatic complexity. IEEE software 33, 6 (2016), 27–29.

[30] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,
Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,
USA, 901–913. https://doi.org/10.1145/2810103.2813646

[31] Toffalini Flavio, Graziano Mariano, Conti Mauro, and Zhou Jianying. 2021.
SnakeGX: a sneaky attack against SGX Enclaves. In International Conference on
Applied Cryptography and Network Security.

[32] Fortanix. 2018 (accessed September 14, 2020). Secure enclaves & Intel®SGX.
https://edp.fortanix.com/docs/concepts/sgx/.

[33] JohannesGötzfried,MoritzEckert, SebastianSchinzel, andTiloMüller. 2017. Cache
Attacks on Intel SGX. In Proceedings of the 10th European Workshop on Systems
Security (Belgrade, Serbia) (EuroSec’17). Association for Computing Machinery,
New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3065913.3065915

[34] Sean Gulley, Vinodh Gopal, Kirk Yap, Wajdi Feghali, J Guilford, and Gil Wolrich.
2013. Intel sha extensions–new instructions supporting the secure hash algorithm
on intel architecture processor. Intel White Paper (2013).

[35] Marcus Hähnel, Weidong Cui, andMarcus Peinado. 2017. High-Resolution Side
Channels for Untrusted Operating Systems. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 299–312. https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel

[36] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
[n. d.]. Unicorn: Runtime Provenance-Based Detector for Advanced Persistent
Threats. In Proceedings 2020 Network and Distributed System Security Symposium
(San Diego, CA, 2020). Internet Society. https://doi.org/10.14722/ndss.2020.24046

[37] Roarke Horstmeyer, Benjamin Judkewitz, Ivo M Vellekoop, Sid Assawaworrarit,
and Changhuei Yang. 2013. Physical key-protected one-time pad. Scientific reports
3 (2013), 3543.

[38] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic generation of data-oriented exploits. In 24th {USENIX}
Security Symposium ({USENIX} Security 15). 177–192.

[39] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,William R
Harris, Taesoo Kim, andWenke Lee. 2018. Enforcing unique code target property
for control-flow integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1470–1486.

[40] Yih-Chun Hu, Markus Jakobsson, and Adrian Perrig. 2005. Efficient constructions
for one-way hash chains. In International Conference on Applied Cryptography
and Network Security. Springer, 423–441.

[41] Intel. 2014 (accessed September 14, 2020). Intel® Software Guard Extensions
Programming Reference. https://software.intel.com/sites/default/files/managed/
48/88/329298-002.pdf.

[42] Hassaan Irshad, Gabriela Ciocarlie, Ashish Gehani, Vinod Yegneswaran,
Kyu Hyung Lee, Jignesh Patel, Somesh Jha, Yonghwi Kwon, Dongyan Xu, and Xi-
angyuZhang. [n. d.]. TRACE:Enterprise-WideProvenanceTracking forReal-Time
APTDetection. 16 ([n. d.]), 4363–4376. https://doi.org/10.1109/TIFS.2021.3098977
Conference Name: IEEE Transactions on Information Forensics and Security.

[43] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[44] Andi Kleen and Beeman Strong. 2015. Intel processor trace on linux. Tracing
Summit 2015 (2015).

[45] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[46] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory safety
for shielded execution. In Proceedings of the Twelfth European Conference on
Computer Systems. 205–221.

[47] Oasis Labs. 2018 (accessed September 14, 2020). Cleanrooms & Secure Enclaves.
https://www.oasislabs.com/cleanrooms-secure-enclaves.

[48] JaehyukLee, JinsooJang,Yeongjin Jang,NohyunKwak,YeseulChoi,ChanghoChoi,
TaesooKim,Marcus Peinado, andBrentBKang. 2017. Hacking in darkness: Return-
oriented programming against secure enclaves. In USENIX Security. 523–539.

[49] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition.. In NDSS. 16.

[50] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic
Application Partitioning for Intel SGX. In 2017 USENIX Annual Technical

https://github.com/signalapp/ContactDiscoveryService
https://signal.org/en/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/banescu
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/banescu
https://sharemind.cyber.ee/introducing-sharemind-hi/
https://sharemind.cyber.ee/introducing-sharemind-hi/
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://doi.org/10.1145/2810103.2813646
https://edp.fortanix.com/docs/concepts/sgx/
https://doi.org/10.1145/3065913.3065915
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://doi.org/10.14722/ndss.2020.24046
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://doi.org/10.1109/TIFS.2021.3098977
https://www.oasislabs.com/cleanrooms-secure-enclaves

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 285–298.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind

[51] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 1867–1881.
https://doi.org/10.1145/3319535.3354244

[52] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. {MPI}: Multiple perspective attack investigation with semantic aware
execution partitioning. In 26th {USENIX} Security Symposium ({USENIX} Security
17). 1111–1128.

[53] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. Protracer: Towards Practical
Provenance Tracing by Alternating Between Logging and Tainting.. In NDSS.

[54] Shachee Mishra and Michalis Polychronakis. 2021. SGXPecial: Specializing
SGX Interfaces against Code Reuse Attacks. In Proceedings of the 14th European
Workshop on Systems Security. 48–54.

[55] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[56] Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-
Wesley New York.

[57] Mathias Morbitzer, Benedikt Kopf, and Philipp Zieris. 2022. GuaranTEE:
Introducing Control-FlowAttestation for Trusted Execution Environments. arXiv
preprint arXiv:2202.07380 (2022).

[58] JeremyMorse, Lucas Cordeiro, Denis Nicole, and Bernd Fischer. 2013. Handling
Unbounded Loops with ESBMC 1.20. In Tools and Algorithms for the Construction
and Analysis of Systems, Nir Piterman and Scott A. Smolka (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 619–622.

[59] Moxie0. 2017 (accessed September 14, 2020). Technology preview: Private contact
discovery for Signal. https://signal.org/blog/private-contact-discovery/.

[60] MalaikaNicholas. 2017 (accessed September 14, 2020). Dashlane and Intel join forces
to bring built-in password protection to PCs. https://blog.dashlane.com/dashlane-
intel-sgx-bring-built-password-protection-to-pcs/.

[61] VideoLAN organization. 2009 (accessed September 24, 2020). VLCmedia player.
https://www.videolan.org/.

[62] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant,
David Eyers, Jean Bacon, and Margo Seltzer. [n. d.]. Runtime Analysis of
Whole-System Provenance. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (Toronto Canada, 2018-10-15). ACM,
1601–1616. https://doi.org/10.1145/3243734.3243776

[63] Reese T. Prosser. 1959. Applications of Boolean Matrices to the Analysis of
Flow Diagrams. In Papers Presented at the December 1-3, 1959, Eastern Joint
IRE-AIEE-ACM Computer Conference (Boston, Massachusetts) (IRE-AIEE-ACM ’59
(Eastern)). Association for Computing Machinery, New York, NY, USA, 133–138.
https://doi.org/10.1145/1460299.1460314

[64] Carlos Rozas. 2013. Intel® Software Guard Extensions (Intel® SGX). (2013).
[65] Dipanwita Sarkar, Muthu Jagannathan, Jay Thiagarajan, and Ramanathan

Venkatapathy. 2007. Flow-insensitive static analysis for detecting integer anom-
alies in programs. In Proceedings of the 25th conference on IASTED International
Multi-Conference: Software Engineering. ACTA Press, 334–340.

[66] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 38–54.

[67] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in C++ applications. In 2015
IEEE Symposium on Security and Privacy. IEEE, 745–762.

[68] Shweta Shinde, ShengyiWang, Pinghai Yuan, Aquinas Hobor, Abhik Roychoud-
hury, and Prateek Saxena. 2020. BesFS: A POSIX Filesystem for Enclaves with
a Mechanized Safety Proof. In USENIX Security.

[69] Yan Shoshitaishvili, RuoyuWang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. (2015).

[70] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal Approach to
State Continuity. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 875–892. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/strackx

[71] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,
Ron Yariv, and NoamMilshten. 2018. Switchless Calls Made Practical in Intel SGX.
In Proceedings of the 3rdWorkshop on System Software for Trusted Execution. 22–27.

[72] Flavio Toffalini, Eleonora Losiouk, Andrea Biondo, Jianying Zhou, and Mauro
Conti. 2019. ScaRR: Scalable Runtime Remote Attestation for Complex Sys-
tems. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019). USENIX Association, Chaoyang District, Beijing, 121–134.
https://www.usenix.org/conference/raid2019/presentation/toffalini

[73] Flavio Toffalini, Martín Ochoa, Jun Sun, and Jianying Zhou. 2019. Careful-Packing:
A Practical and Scalable Anti-Tampering Software Protection enforced by Trusted

Computing. In Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy. 231–242.

[74] Flavio Toffalini, Andrea Oliveri, Mariano Graziano, Jianying Zhou, and Davide
Balzarotti. 2021. The evidence beyond the wall: Memory forensics in SGX
environments. Forensic Science International: Digital Investigation 39 (2021),
301313. https://doi.org/10.1016/j.fsidi.2021.301313

[75] Jordan Tuzsuzov. 2005 (accessed April 4, 2021). Biniax-2. http:
//www.tuzsuzov.com/biniax/index2.html.

[76] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking transient execution throughmicroarchitectural load value
injection. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 54–72.

[77] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia,
and Frank Piessens. 2019. A Tale of TwoWorlds: Assessing the Vulnerability of
Enclave Shielding Runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1741–1758.

[78] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In 26th {USENIX} Security Symposium ({USENIX}
Security 17). 1041–1056.

[79] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and Cristiano
Giuffrida. 2019. SoK: Benchmarking flaws in systems security. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 310–325.

[80] VideoLAN. 2017 (accessed September 14, 2020). libdvdcss. https:
//code.videolan.org/videolan/libdvdcss.

[81] Hiie Vill. 2017. SGX attestation process.
[82] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.

StealthDB: a scalable encrypted database with full SQL query support. Proceedings
on Privacy Enhancing Technologies 2019, 3 (2019), 370–388.

[83] HuiboWang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long Li,
Yulong Zhang, TaoWei, and Zhiqiang Lin. 2019. Towards Memory Safe Enclave
Programming with Rust-SGX. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 2333–2350.
https://doi.org/10.1145/3319535.3354241

[84] Tielei Wang, TaoWei, Zhiqiang Lin, andWei Zou. 2009. IntScope: Automatically
Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic
Execution.. In NDSS. Citeseer.

[85] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 2421–2434. https://doi.org/10.1145/3133956.3134038

[86] Hoeteck Wee. 2010. Efficient chosen-ciphertext security via extractable hash
proofs. InAnnual Cryptology Conference. Springer, 314–332.

[87] MarkWeiser. 1984. Program slicing. IEEE Transactions on software engineering
4 (1984), 352–357.

[88] Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems. In 2015 IEEE Symposium on
Security and Privacy. 640–656.

[89] Le Yu, Shiqing Ma, Zhuo Zhang, Guanhong Tao, Xiangyu Zhang, Dongyan Xu,
Vincent E Urias, HanWei Lin, Gabriela Ciocarlie, Vinod Yegneswaran, et al. 2021.
ALchemist: Fusing Application and Audit Logs for Precise Attack Provenance
without Instrumentation. (2021).

[90] H. Zhou, K. Kang, and J. Yuan. 2019. HardStack: Prevent Stack Buffer Overflow
Attack with LBR. In 2019 International Conference on Intelligent Computing,
Automation and Systems (ICICAS). 888–892.

[91] Lei Zhou, Xuhua Ding, and Fengwei Zhang. 2022. SMILE: Secure Memory
Introspection for Live Enclave. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, 1536–1536.

A MODEL EXAMPLES
In this section, we discuss the application of SgxMonitormodel (§5)
over two important Intel SGXSDKmechanisms: the outside function
interaction (§A.1) and the exception handling (§A.2).

Transaction syntax. For the sake of simplicity, we indicate the
transactions in tables 7a and 8a with the following syntax:

𝑇 =𝑃∪[𝑠] .

https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://doi.org/10.1145/3319535.3354244
https://signal.org/blog/private-contact-discovery/
https://blog.dashlane.com/dashlane-intel-sgx-bring-built-password-protection-to-pcs/
https://blog.dashlane.com/dashlane-intel-sgx-bring-built-password-protection-to-pcs/
https://www.videolan.org/
https://doi.org/10.1145/3243734.3243776
https://doi.org/10.1145/1460299.1460314
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://www.usenix.org/conference/raid2019/presentation/toffalini
https://doi.org/10.1016/j.fsidi.2021.301313
http://www.tuzsuzov.com/biniax/index2.html
http://www.tuzsuzov.com/biniax/index2.html
https://code.videolan.org/videolan/libdvdcss
https://code.videolan.org/videolan/libdvdcss
https://doi.org/10.1145/3319535.3354241
https://doi.org/10.1145/3133956.3134038

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

𝑇 is composed of any valid sequence of generic actions 𝑃 (according
to the specifications in §5) that terminates with the stop action 𝑠 . In
case𝑇 does not contain any generic action, we omit 𝑃 .

A.1 Outside FunctionModeling
Figure 7 shows howwe model the outside function interaction. After
the enclave initialization, the host invokes a secure function, which
activates an EENTER opcode with the idx greater or equal than zero
(i.e.,𝑇 ECALL). From this point, the secure function can evolve in two
ways: (E1) it does not interact with the host, thus it performs an
ERET; or (E2) it interacts with the host, thus it performs an ORET. In
case (E1), the enclave does not generate any context and, therefore,
it performs a valid execution path that ends with an EEXIT opcode
(i.e.,𝑇 ERET). In case (E2), instead, we need two steps to accomplish
an OCALL: (i) generating an ocall_context (i.e., 𝑇OCALL1), and
(ii) invoking the outside function (i.e., 𝑇OCALL2). Once the outside
function resumes the secure function execution, it invokes an ORET
in two steps: (i) the execution enters in the enclave (i.e., 𝑇ORET1),
and (ii) the ocall_context is restored (i.e.,𝑇ORET2). From this point
ahead, the secure function can exit the enclave through an ERET (E1)
or perform further OCALLs (E2).

A.2 ExceptionHandlingModeling
In Figure 8b, we depict the SgxMonitor representation of the SGX
SDK exception handling. Overall, the SGX SDK handles exceptions
in two phases, called trusted handle (TH) and internal handle (IH), re-
spectively. During (TH), SGX interrupts its execution as a result of an
AEX and transfers the control to the host. Upon an AEX, themicrocode
saves the CPU registers in a dedicated page, called SSA, for later
stages [23]. After an AEX, the SDK expects the invocation of a dedi-
cated secure function, called trts_handle_exception, which index
is −3 (i.e., TTHD1). This function fills an sgx_exception_info_t
structure with the values previously stored in the SSA (i.e., TTHD2).
At the end of (TH), the enclave is ready for the second phase (IH) and
transfers the control to the host (i.e., TTHD3). Then, the host invokes
ERESUME to activate the internal_handle_exception routine (i.e.,
TERESUME) and the enclave iterates among a set of custom handlers
(i.e.,TIHD1 andTIHD2). Each customhandler attempts at fixing the ex-
ception by analyzing the sgx_exception_info_t, possibly altering
it. Therefore, we update the enclave internal state at each iteration.
After invoking the internalhandlers, theSGXSDKresumes the secure
function through the continue_execution routine (i.e., TCONT). Fi-
nally, if the exception is properly handled, the secure functionwill
continue, otherwise, a new AEXwill raise a new exception.

B USE CASEANALYSIS
Wediscuss theusecasecomplexity, the trade-offbetweensymex/static
analysis, and its precision.

Use cases complexity.As stated in introduction, we assume the
enclave’s code is simple enough to bemodeledwith a combination of
symbolic execution and static analysis (§5.5). The concept of simple
enclave has already appeared in previous works [21, 73], however,
they did not provide comparable metrics. In Table 3, we show a
set of metrics that describe the software analyzed in our use cases.
Specifically, we indicate the line of code (LoC), the number of secure

functions, and the cyclomatic complexity [29]. We additionally mea-
sure the control-flow graph for each enclave’s function and report
the average (and standard deviation) number of nodes and edges
per function. We choose these metrics inspired by previous works
in similar contexts [10]. Finally, we count the number of direct and
indirect function calls as the most important for the security guaran-
tee. Intuitively, the less indirect calls an enclave has, the less likely
an adversary can carry out a mimicry attack (e.g., COOP [67]). One
may argue that, since we assume an enclave with few indirect calls,
then bound checks can effectively stop memory corruption attacks.
However, previous works [21] showed that a compromised OS can
inputmalicious pointers to internal enclave structures. This allows
an adversary to overwrite internal enclave data structures evenwith
boundary checks in place. Therefore, using only bounds checks do
not eradicate the problem in SGX enclaves, even for simple ones.

Symbolic and Static Analysis Trade-Offs.We investigate the
trade-offs between symbolic execution and the insensitive static
analysis SgxMonitor relies on. Specifically, we explore the actions in
two conditions: (i) using only the symbolic execution (symex), and
(ii) using only the insensitive static analysis (static). We consider
only those functions for which symex completes (i.e., no timeout).
Moreover, we consider symex as ground truth since we rely on its
soundness for a correct function exploration. Then, we compute
the Δ=100×(#actions static−#actions symex)/#actions symex, and
distinguish three cases. If Δ=0, symex and static identify the same
actions, nodes, and edges in the CFG. If Δ > 0, then static over ap-
proximates the actual CFG, creating rogue nodes and edges that may
lead to false negatives (i.e., attacks the model misses). If Δ<0, then
static under approximates the actual CFG, thus missing nodes and
edges that may lead to false positives (i.e., valid enclave events that
are flagged as an attack) at runtime.

Table 2 shows the trade-off between symex and static. For al-
most all the use case, besides StealthDB, Δ is positive, from 4.41% to
21.02%. Therefore, relying on static only would have increased that
attack surface up to 21.02%, potentially leading to false negatives.
For StealthDB, instead, Δ is negative (−4.16%), meaning that static
would have reduced the model accuracy, leading to false positives.
This is caused by an indirect jmp that the insensitive static analysis
did not resolve, thus reducing the actions explored.

Observing a non-zero Δ confirms our hypothesis on the suitabil-
ity of symbolic execution for modeling SGX enclaves with high
actions and code coverage. We fall back to a lightweight insensitive
static analysis only to model a small percentage of actions/code the
symbolic execution does not, thus limiting the overall risk of false
negatives and positives caused by the analysis’ imprecision. This is
analogous to reducing the TCB size to minimize the attack surface.

Precision.Wewant to inspect if the unexplored actions caused
by symbolic execution timeout may cause false positives. To this
end, we extract three models for each use case, namely: symex, by
using only symbolic execution and interrupting the exploration
once reached timeout (set at 10min.); static, by using only insensitive
static analysis; and symex+static, which is the one described in §5.5.
Using only symex models, two secure functions inContact gener-
ate false positives due to the function crecip that was not explored
completely. We observe similar cases in SGX-Biniax2 and libdvd-
css, in which critical functions for crypting/decrypting were not
correctly explored with only symex. We register false positives also

ACSAC ’22, December 5–9, 2022, Austin, TX, USA F. Toffalini et al.

Transaction Definition

𝑇 ECALL [(N,src,idx)idx≥0]
𝑇 ERET 𝑃∪[(T,src,⊘)]
𝑇OCALL1 𝑃∪[(G,src,ctx)]
𝑇OCALL2 𝑃∪[(D,src,⊘)]
𝑇ORET1 [(N,src,idx)idx=−2]
𝑇ORET2 𝑃∪[(C,src,ctx)]

(a) Transaction definition of SgxMonitor model for the
outside function interaction.

(in-use,
Ø, Ø)

(non-in-use,
Ø, Ø)

(non-in-use,
context, Ø)

(in-use,
context, G)<

(in-use,
context, C)

TECALL TERET
TOCALL1

TOCALL2

TORET1

TORET2

Enclave
initialization/deinitialization
phase ...

(b) SgxMonitor representation of outside functions interaction.

Figure 7: Example of outside functions interactionmodeling. We show the FSM representation and the transaction definitions,
respectively.

Transaction Definition

AEX handled at microcode level
𝑇THD1 [(N,src,idx)idx=−3]
𝑇THD2 𝑃∪[(J,src,ctx)]
𝑇THD3 𝑃∪[(T,src,⊘)]
𝑇 ERESUME 𝑃∪[(R,src,⊘)]
𝑇 IHD1 𝑃∪[(K,src,ctx)]
𝑇 IHD2 𝑃∪[(J,src,ctx)]
𝑇CONT 𝑃∪[(K,src,ctx)]

(a) Transaction definition of SgxMonitor model for the
exception handling interaction.

(non-in-use,
Ø, Ø)

(in-use,
Ø, Ø)

(in-use,
Ø, Ø)

AEX TTHD1

TTHD2

(in-use,
context, G)

(non-in-use,
context, C)

TTHD3

(in-use,
context, C)

(in-use,
context, C)

TIHD1

TCONT

TIHD2

TERESUME

Enclave
initialization/deinitialization
phase ...

(b) SgxMonitor representation of exception handling.

Figure8:Exampleofexceptionhandlingmodeling.WeshowtheFSMrepresentationandthetransactiondefinitions, respectively.

Table 3: Detailed information for the of five use cases used in our evaluation: Contact [7], libdvdcss [80], StealthDB [82],
SGX-Biniax2 [12], and a unit-test.

Use case LoC # secure cycl. cmplx. # nodes in CFG # edges in CFG # direct # indirect
function 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 calls calls

Contact [7] 4138 6 5.03 5.04 24.89 22.74 26.67 27.82 1085 16
libdvdcss [80] 3438 4 6.55 6.07 38.71 31.28 39.67 37.95 1084 2
StealthDB [82] 10351 3 6.35 4.72 36.14 23.38 40.40 27.51 1203 2
SGX-Biniax2 [12] 4696 7 3.73 4.20 18.56 16.25 20.19 20.02 583 2
unit-test 583 3 4.06 5.25 18.44 17.53 18.75 21.95 137 2

using staticmodels, in particular, one secure function in StealthDB
gave false positive because of a jmp not correctly resolved (see the
previous paragraph). Finally, symex+staticmodels did not generate
any false positivewhen compared with all our tests, thus showing
that the combination of symex+static can significantly model the
enclave behavior. Specifically, we stress libdvdcss, StealthDB, and
SGX-Biniax2with long macro-benchmarks (see §7.2.2). For Contact
and the unit-test, we first run our micro-benchmarks, without ob-
serving any false positives. Then, we also manually investigated the
cause of the unexplored actions. In most of the cases, pruned actions

are corner cases that never happen in real executions (e.g., a function
that tests a null-pointer that never happens).

Notably, the exception handler mechanism of Intel SGX SDK al-
ways introduces a few non-traversed actions. This is caused by the
routine internal_handle_exception that relies on a list of point-
ers created at runtime. Our Model Extractor automatically infers
this structure and resolves the indirect call in internal_handle_-
exception (further details inAppendixAppendix C). Therefore, our
Model Extractor automatically prunes those paths that never appear

Designing a Provenance Analysis for SGX Enclaves ACSAC ’22, December 5–9, 2022, Austin, TX, USA

1 DECLARE_LOCAL_FUNC do _ o c a l l
2 ; . . .
3 ; o c a l l _ c o n t e x t g en e r a t i o n
4 ; . . .
5 ; c a l l t r a c e _ c o n t e x t _ g e n e r a t i o n
6 mov %rsp , % r d i
7 c a l l t r a c e _ c o n t e x t _ g e n e r a t i o n
8 ; c a l l u p d a t e _ o c a l l _ l a s t s p
9 mov %rsp , % r d i
10 c a l l u p d a t e _ o c a l l _ l a s t s p
11 ; . . .
12 ; e n c l a v e s t a c k s e tup
13 ; . . .
14 ; c a l l t r a c e _ e e x i t
15 c a l l t r a c e _ e e x i t
16 ; . . .
17 ; r e s t o r e o u t s i d e s t a c k c on t e x t
18 ; . . .
19 ENCLU

Figure 9: Example of stop actions in do_ocall(), trace_con-
text_generation() and trace_eexit() report the generation
of a new ocall_context and the enclave exit (i.e., ENCLU),
respectively.

at runtime, i.e., if the enclave does not contain custom handlers, it
will never execute part of internal_handle_exception.

C SGX SDK EXCEPTIONHANDLING
In the following, we show an example of registration of a custom
exception handler, that happens by invoking the function sgx_reg-
ister_exception_handler. The enclave passes the address of the
exception handler as an argument, e.g., divide_by_zero_handler.
The Model Extractor (§5.5) parses the enclave code and identifies
all the sgx_register_exception_handler invocations. Then, it
performs a taint analysis to infer the address of the custom excep-
tion handler passed as second parameter to sgx_register_excep-
tion_handler. Finally, it uses this information to build a symbolic
structure that will be used to explore the function internal_han-
dle_exception, that actually dispatches the exception to the correct
handler, if any.

1 i f (s g x _ r e g i s t e r _ e x c e p t i o n _ h a n d l e r
(1 , d i v i d e _ by_ z e r o _h and l e r) == NULL) {

2 p r i n t f (" r e g i s t e r f a i l e d \ n ") ;
3 } e l s e {
4 p r i n t f (" r e g i s t e r s u c c e s s \ n ") ;
5 }

D STOPACTIONS
Figure 9 shows two examples of stop actions that trace the genera-
tion of ocall_context (i.e., trace_context_generation()) and
the enclave exit (i.e., trace_eexit()) inside do_ocall(). Most im-
portantly, there are no attacker-controlled transfers between the
two tracing functions, therefore, the monitor can security trace the
state change and the enclave exit.

E ACTIONS PER SECOND
Figure 10 measures the provenance analysis speed in terms of num-
ber of actions reported and validated per second (on the y-axes) for

bx1 bx2 bx3 bx4 bx5 bx6 bx7 ct1 ct2 ct3 ct4 ct5 ct6 sd1 sd2 ut1 ut2 ut3
Secure function

104

105

106

107

108

#a
ct
io
n/
se

c.

SGX-Biniax2
Contact
StealthDB
unit-test

Figure 10: Number of actions processed per second of Con-
tact (ctx), SGX-Biniax2 (bxx), StealthDB (sdx) and unit-test
enclave (utx). Median value is 260K action per second and is
depicted as a dashed line.

each secure functions of Contact, SGX-Biniax2, StealthDB, and the
unit-test enclave (on the x-axes). The execution time encompasses
the context-switch delay, actions emission, transmission, and veri-
fication at themonitor side. All the secure functions, but ct1, ct5 and
bx7, express a throughput that ranges from 167K action/sec (bx2) to
496K action/sec (ct6), with a median value of 260K action/sec.

The results in Figure 10 are in line with the previous works [72].
ct1, instead, reports a fewer number of actions and biases the analysis
speed. Finally, bx7 and ct5perform sealing operations [6] and thus in-
troduce an extra delay per action. Overall, this experiment show Sgx-
Monitor overhead is generally constant among the secure functions.

	Abstract
	1 Introduction
	2 SGX Background
	3 Threat Model
	4 SgxMonitor: System Design
	4.1 Action Reporting Mechanism
	4.2 Secure Communication Protocol

	5 SgxMonitor: the Enclave Model
	5.1 State Definition
	5.2 Action Definition
	5.3 Graphs of Actions Definition
	5.4 Transaction Definition
	5.5 Model Extractor
	5.6 Model Verifier

	6 Implementation
	7 Evaluation
	7.1 RQ1 - Security Evaluation
	7.2 RQ2 - Usage Evaluation

	8 Related Works
	9 Conclusion
	Acknowledgments
	References
	A Model Examples
	A.1 Outside Function Modeling
	A.2 Exception Handling Modeling

	B Use Case Analysis
	C SGX SDK Exception Handling
	D Stop Actions
	E Actions Per Second

