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Abstract
Securing the rapidly expanding Internet of Things (IoT)
is critical. Many of these “things” are vulnerable bare-
metal embedded systems where the application executes
directly on hardware without an operating system. Un-
fortunately, the integrity of current systems may be com-
promised by a single vulnerability, as recently shown by
Google’s P0 team against Broadcom’s WiFi SoC.

We present ACES (Automatic Compartments for
Embedded Systems)1, an LLVM-based compiler that au-
tomatically infers and enforces inter-component isola-
tion on bare-metal systems, thus applying the principle
of least privileges. ACES takes a developer-specified
compartmentalization policy and then automatically cre-
ates an instrumented binary that isolates compartments at
runtime, while handling the hardware limitations of bare-
metal embedded devices. We demonstrate ACES’ abil-
ity to implement arbitrary compartmentalization policies
by implementing three policies and comparing the com-
partment isolation, runtime overhead, and memory over-
head. Our results show that ACES’ compartments can
have low runtime overheads (13% on our largest test ap-
plication), while using 59% less Flash, and 84% less
RAM than the Mbed µVisor—the current state-of-the-
art compartmentalization technique for bare-metal sys-
tems. ACES ‘ compartments protect the integrity of priv-
ileged data, provide control-flow integrity between com-
partments, and reduce exposure to ROP attacks by 94.3%
compared to µVisor.

1 Introduction

The proliferation of the Internet of Things (IoT) is bring-
ing new levels of connectivity and automation to embed-
ded systems. This connectivity has great potential to im-
prove our lives. However, it exposes embedded systems

1ACES is available as open-source at https://github.com/
embedded-sec/ACES.

to network-based attacks on an unprecedented scale. At-
tacks against IoT devices have already unleashed mas-
sive Denial of Service attacks [30], invalidated traffic
tickets [14], taken control of vehicles [23], and facili-
tated robbing hotel rooms [8]. Embedded devices face
a wide variety of attacks similar to always-connected
server-class systems. Hence, their security must become
a first-class concern.

We focus on a particularly vulnerable and constrained
subclass of embedded systems—bare-metal systems.
They execute a single statically linked binary image pro-
viding both the (operating) system functionality and ap-
plication logic without privilege separation between the
two. Bare-metal systems are not an exotic or rare plat-
form: they are often found as part of larger systems. For
example, smart phones delegate control over the lower
protocol layers of WiFi and Bluetooth to a dedicated
bare-metal System on a Chip (SoC). These components
can be compromised to gain access to higher level sys-
tems, as demonstrated by Google P0’s disclosure of vul-
nerabilities in Broadcom’s WiFi SoC that enable gain-
ing control of a smartphone’s application processor [6].
This is an area of growing concern, as SoC firmware has
proven to be exploitable [16, 15, 17].

Protecting bare-metal systems is challenging due to
tight resource constraints and software design patterns
used on these devices. Embedded devices have limited
energy, memory, and computing resources and often lim-
ited hardware functionality to enforce security proper-
ties. For example, a Memory Management Unit (MMU)
which is required for Address Space Layout Randomiza-
tion [42] is often missing. Due to the tight constraints,
the dominant programming model shuns abstractions, al-
lowing all code to access all data and peripherals without
any active mitigations. For example, Broadcom’s WiFi
SoC did not enable Data Execution Prevention. Even if
enabled, the entire address space is readable/writable by
the executing program, thus a single bug can be used to
trivially disable DEP by overwriting a flag in memory.

https://github.com/embedded-sec/ACES
https://github.com/embedded-sec/ACES
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Figure 1: ACES’s development tool flow overview.

Conventional security principles, namely, least priv-
ileges [45] or process isolation are challenging to im-
plement in bare-metal systems. Bare-metal systems no
longer focus on a dedicated task but increasingly run
multiple independent or loosely related tasks. For exam-
ple, a single SoC often implements both Bluetooth and
WiFi, where neither Bluetooth nor WiFi needs to access
the code and data of the other. However, without isola-
tion, a single bug compromises the entire SoC and possi-
bly the entire system [6].

While many bare-metal systems employ no defenses,
there are ongoing efforts to improve their security.
EPOXY [12] demonstrated how DEP, diversity, and
stack protections can be deployed on bare-metal systems.
However, EPOXY does not address the issue of least
privileges or process isolation. MINION [27] uses the
compiler and dynamic analysis to infer thread-level com-
partments and uses the OS’s context switch to change
compartments. It uses a fixed algorithm to determine the
compartments, providing the developer no freedom in
determining the best security boundaries for their appli-
cation. ARM’s Mbed µVisor [39] is a compartmentaliza-
tion platform for ARM Cortex-M series devices. µVisor
enables the developer to create compartments within a
bare-metal application, thereby restricting access to data
and peripherals to subsets of the code. It requires the de-
veloper to manually partition data and manage all com-
munication between compartments. Compartments are
restricted to individual threads, and all code is always ex-
ecutable, since no compartmentalization exists for code,
only for data and peripherals. This results in a daunting
challenge for developers, while only achieving coarse-
grained data/peripheral compartments.

We present ACES (Automatic Compartments for
Embedded Systems), an extension to the LLVM com-
piler that enables the exploration of strategies to apply
the principle of least privileges to bare-metal systems.
ACES uses two broad inputs—a high level, generic com-
partmentalization policy and the program source code.
Using these, it automatically applies the policy to the
application while satisfying the program’s dependencies
(i.e., ensuring code can access its required data) and the

underlying hardware constraints. This enables the devel-
oper to focus on the high-level policy that best fits her
goals for performance and security isolation. Likewise,
the automated workflow of ACES frees the developer
from challenging implementation issues of the security
controls.

Our work breaks the coupling between the applica-
tion, hardware constraints, and the security policy, and
enables the automatic enforcement of compartmentaliza-
tion policies. ACES allows the formation of compart-
ments based on functionality, i.e., distinct functionality
is separated into different compartments. It uses a piece
of hardware widely available in even the low-end embed-
ded devices called the Memory Protection Unit (MPU) to
enforce access protections to different segments of mem-
ory from different parts of code. ACES moves away from
the constraint in MINION and µVisor that an entire pro-
cess or thread needs to be at the same privilege level.
ACES extends the LLVM tool-chain and takes the pol-
icy specification as user input, as shown in Figure 1. It
then creates a Program Dependence Graph (PDG) [21]
and transforms compartmentalization into a graph parti-
tioning problem. The result of the compilation pipeline
is a secure binary that runs on the bare-metal device. We
evaluate three policies to partition five IoT applications.
The results demonstrate the ability to partition applica-
tions into many compartments (ranging from 14 to 34)
protecting the integrity of data and restricting code reuse
attacks. The policies have modest runtime overhead, on
average 15.7% for the strongest policy.

In summary, our contributions are: (1) Integrity of
code and data for unmodified applications running on
bare-metal embedded devices. (2) Automated enforce-
ment of security compartments, while maintaining pro-
gram dependencies and respecting hardware constraints.
The created compartments separate code and data, on
a sub-thread level, breaking up the monolithic memory
space of bare-metal applications. (3) Use of a micro-
emulator to allow selective writes to small data regions.
This eases restrictions on compartmentalization imposed
by the MPU’s limited number of regions and their size.
(4) Separating the compartmentalization policy from the
program implementation. This enables exploration of
security-performance trade-offs for different compart-
mentalization policies, without having to rewrite appli-
cation code and handle low level hardware requirements
to enforce the policy.

2 Threat Model and Assumptions

We assume an attacker who tries to gain arbitrary code
execution with access to an arbitrary read/write primi-
tive. Using the arbitrary read/write primitive, the attacker
can perform arbitrary malicious execution, e.g., code in-



jection (in executable memory) or code reuse techniques
(by redirecting indirect control-flow transfers [47]), or
directly overwrite sensitive data. We assume that the
software itself is trustworthy (i.e., the program is buggy
but not malicious). Data confidentiality defenses [11] are
complementary to our work. This attacker model is in
line with other control-flow hijack defenses or compart-
mentalization mechanisms.

We assume the system is running a single statically
linked bare-metal application with no protections. We
also assume the hardware has a Memory Protection Unit
(MPU) and the availability of all source code that is to be
compartmentalized. Bare-metal systems execute a single
application, there are no dynamically linked or shared
libraries. Lack of source code will cause a reduction in
precision for the compartmentalization for ACES.

ACES applies defenses to: (1) isolate memory cor-
ruption vulnerabilities from affecting the entire system;
(2) protect the integrity of sensitive data and peripherals.
The compartmentalization of data, peripherals, and code
confines the effect of a memory corruption vulnerabil-
ity to an isolated compartment, prohibiting escalation to
control over the entire system. Our threat model assumes
a powerful adversary and provides a realistic scenario of
current attacks.

3 Background

To understand ACES’ design it is essential to understand
some basics about bare-metal systems and the hardware
on which they execute. We focus on the ARMv7-M ar-
chitecture [3], which covers the widely used Cortex-M(3,
4, and 7) micro-controllers. Other architectures are com-
parable or have more relaxed requirements on protected
memory regions simplifying their use [2, 5].

Address Space: Creating compartments restricts ac-
cess to code, data, and peripherals during execution. Fig-
ure 2 shows ARM’s memory model for the ARMv7-M
architecture. It breaks a 32bit (4GB) memory space into
several different areas. It is a memory mapped architec-
ture, meaning that all IO (peripherals and external de-
vices) are directly mapped into the memory space and
addressed by dereferencing memory locations. The ar-
chitecture reserves large amounts of space for each area,
but only a small portion of each area is actually used.
For example, the Cortex-M4 (STM32F479I) [48] device
we use in our evaluation has 2MB of Flash in the code
area, 384KB of RAM, and uses only a small portion of
the peripheral space—and this is a higher end Cortex-M4
micro-controller. The sparse layout requires each area to
have its own protection scheme.

Memory Protection Unit: A central component of
compartment creation is controlling access to memory.
ACES utilizes the MPU for this purpose. The MPU en-
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Figure 2: ARM’s memory model for ARMv7-M devices

ables setting permissions on regions of physical memory.
It controls read, write, and execute permissions for both
privileged and unprivileged software. An MPU is similar
to an MMU, however it does not provide virtual memory
address translation. On the ARMv7-M architecture the
MPU can define up to eight regions, numbered 0-7. Each
region is defined by setting a starting address, size, and
permissions. Each region must be a power of two in size,
greater than or equal to 32 bytes and start at a multiple
of its size (e.g., if the size is 1KB then valid starting ad-
dress are 0, 1K, 2K, 3K, etc). Each region greater than
256 bytes can be divided into eight equally sized sub-
regions that are individually activated. All sub-regions
have the same permissions. Regions can overlap, and
higher numbered regions have precedence. In addition
to the regions 0-7, a default region with priority -1 can
be enabled for privileged mode only. The default region
enables read, write, and execute permissions to most of
memory. Throughout this paper, we use the term, “MPU
region” to describe a contiguous area of memory whose
permissions are controlled by one MPU register.

The MPU’s restrictions significantly complicate the
design of compartments. The limited number of regions
requires all code, global variables, stack data, heap data,
and peripherals that need to be accessed within a com-
partment to fit in eight contiguous regions of memory.
These regions must satisfy the size and alignment re-
strictions of the MPU. The requirement that MPU region
sizes be a power of two leads to fragmentation, and the
requirement that MPU regions be aligned on a multiple
of its size creates a circular dependency between the lo-
cation of the region and its size.

Execution Modes: ARMv7-M devices support priv-
ileged and unprivileged execution modes. Typically,
when executing in privileged mode, all instructions can
be executed and all memory regions accessed. Peripher-
als, which reside on the private peripheral bus, are only
accessible in privileged mode. Exception handlers al-
ways execute in privileged mode, and unprivileged code
can create a software exception by executing an SVC



Figure 3: Illustration of ACES’ concept of compart-
ments. ACES isolates memory (a) – with permissions
shown in the column set – and restricts control-flow be-
tween compartments (b).

(i.e., supervisor call) instruction. This will cause the
SVC exception handler to execute. This is the mech-
anism through which system calls are traditionally cre-
ated in an OS. Bare-metal systems traditionally execute
all code in privileged mode.

4 Design

ACES automatically enforces the principle of least priv-
ileges on bare-metal applications by providing write and
control-flow integrity between regions of the program,
i.e., if a given code region is exploited via a vulnerability
in it, the attack is contained to that compartment. A sec-
ondary goal of ACES is enabling a developer to explore
compartmentalization strategies to find the correct trade-
offs between performance and security, without needing
her to change the application.

4.1 PDG and Initial Region Graph
A compartment is defined as an isolated code region,
along with its accessible data, peripherals, and allowed
control-flow transfers. Each instruction belongs to ex-
actly one compartment, while data and peripherals may
be accessible from multiple compartments. Thus, our
compartments are code centric, not thread centric, en-
abling ACES to form compartments within a single
thread. Figure 3 shows several compartments, in it Com-
partment A enables access to code region X and read-
write access to peripheral 1, data region 1, and data re-
gion 3. Compartment A can also transition from Foo
into compartment C by calling Baz. Any other calls out-
side of the compartment are prohibited. When mapped to
memory, a compartment becomes a region of contiguous

code, and zero or more regions of data and peripherals.
ACES utilizes the MPU to set permissions on each re-
gion and thus, the compartments must satisfy the MPU’s
constraints, such as starting address and number of MPU
regions.

The starting point to our workflow is a Program De-
pendence Graph (PDG) [21]. The PDG captures all
control-flow, global data, and peripheral dependencies
of the application. While precise PDGs are known to
be infeasible to create—due to the intractable aliasing
problem [43], over approximations can be created using
known alias analysis techniques (e.g., type-based alias
analysis [33]). Dynamic analysis gives only true depen-
dencies and is thus more accurate, with the trade off that
it needs to be determined during execution. ACES’ de-
sign allows PDG creation using static analysis, dynamic
analysis, or a hybrid.

Using the PDG and a device description, an initial re-
gion graph is created. The region graph is a directed
graph that captures the grouping of functions, global
data, and peripherals into MPU regions. An initial re-
gion graph is shown in Figure 4b, and was created from
the PDG shown in Figure 4a. Each vertex has a type
that is determined by the program elements (code, data,
peripheral) it contains. Each code vertex may have di-
rected edges to zero or more data and/or peripheral ver-
tices. Edges indicate that a function within the code ver-
tex reads or writes a component in the connected data/pe-
ripheral vertices.

The initial region graph is created by mapping all func-
tions and data nodes in the PDG along with their associ-
ated edges directly to the region graph. Mapping periph-
erals is done by creating a vertex in the region graph for
each edge in the PDG. Thus, a unique peripheral vertex
is created for every peripheral dependency in the PDG.
This enables each code region to independently deter-
mine the MPU regions it will use to access its required
peripherals. The initial region graph does not consider
hardware constraints and thus, applies no bounds on the
total number of regions created.

4.2 Process for Merging Regions

The initial region graph will likely not satisfy perfor-
mance and resource constraints. For example, it may
require more data regions than there are available MPU
regions, or the performance overhead caused by transi-
tioning between compartments may be too high. Several
regions therefore have to be merged. Merging vertices
causes their contents to be placed in the same MPU re-
gion. Only vertices of the same type may be merged.

Code vertices are merged by taking the union of their
contained functions and associated edges. Merging code
vertices may expose the data/peripheral to merged func-
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tions, as the compartment encompasses the union of
all its contained function’s data/peripheral dependencies.
However, it improves performance as more functions are
located in the same compartment. Similar to merging
code vertices, merging of data vertices takes the union
of the contained global variables and the union of their
edges. All global variables in a vertex are made avail-
able to all dependent code regions. Thus, merging two
data vertices increases the amount of code which can ac-
cess the merged data vertices.

Unlike code and global variables, which can be placed
anywhere in memory by the compiler, peripheral ad-
dresses are fixed in hardware. Thus, ACES uses a device
description to identify all peripherals accessible when the
smallest MPU region that covers the two merged periph-
erals is used. The device description contains the address
and size of each peripheral in the device. Using the de-
vice description peripheral vertices in the PDG can be
mapped to a MPU region which gives access to the pe-
ripheral. To illustrate, consider two peripherals vertices
that are to be merged and a device description contain-
ing four peripherals A, B, C, and D at addresses 0x000,
0x100, 0x200, and 0x300 all with size 0x100. The first
vertex to be merged contains peripheral B at address
0x100 and the second Peripheral D at address 0x300.
The smallest MPU region that meets the hardware re-
strictions (i.e., is a power of 2 aligned on a multiple of its
size) covers addresses 0x000-0x3FF, and thus enables ac-
cess to peripherals A-D. Thus, the vertex resulting from
merging peripherals B and D, will contain peripherals A,
B, C, and D.

4.3 Compartmentalization Policy and Op-
timizations

The compartment policy defines how code, global vari-
ables, and peripherals should be grouped into compart-
ments. An example of a security-aware policy is group-

ing by peripheral, i.e., functions and global variables
are grouped together based on their access to peripher-
als. ACES does not impose restriction on policy choice.
Obviously, the policy affects the performance and isola-
tion of compartments, and, consequently, the security of
the executable binary image. For example, if two func-
tions which frequently call each other are placed in dif-
ferent code compartments then compartment transitions
will occur frequently, increasing the overhead. From a
security perspective, if two sets of global variables ~V1 and
~V2 are placed in the same compartment and in the origi-
nal program code region C1 accessed ~V1 and C2 accessed
~V2 then unnecessary access is granted—now both code
regions can access the entire set of variables. ACES en-
ables the developer to explore the performance-security
trade-offs of various policies.

After applying the compartmentalization policy, it
may be desirable to adjust the resulting compartments.
These adjustments may improve the security or the per-
formance of the resulting compartmented binary. For ex-
ample, if performance is too slow it may be desirable to
merge regions to reduce compartment transitions. To ac-
commodate this, we enable adjustment passes to be ap-
plied to the region graph after the compartment forma-
tion. Developer-selected optimizations may be applied to
the region graph. An example of an optimization is the
transformation from Figure 4c to Figure 4d. It merges
functions 3 and 4 because they access the same memory
regions and peripherals. After the optimizations are ap-
plied, the resulting region graph is lowered to meet hard-
ware constraints.

4.4 Lowering to the Final Region Graph

Lowering is the process by which ACES ensures all
formed compartments meet the constraints of the tar-
geted hardware. As each compartment consists of a sin-
gle code vertex and its peripherals and data vertex. Each



code vertex’s out degree must be lower or equal to the
number of available MPU regions because the number of
access permissions that can be enforced is upper bounded
by that. Any code region not meeting this criteria is low-
ered, by merging its descendant data and peripheral ver-
tices until its out-degree is less than or equal to the cap.
ACES does this iteratively, by merging a pair of data
or peripheral vertices on each iteration. The vertices to
merge are determined by a cost function, with the low-
est cost merge being taken. Examples of cost functions
include: the number of functions that will gain access
to unneeded variables in the data regions, how security
critical a component is (resulting in a high cost of merg-
ing), and the cost of unneeded peripherals included in the
merge of two peripherals.

4.5 Program Instrumentation and Com-
partment Switching

ACES sets up the MPU configuration to isolate ad-
dress spaces of individual processes, similar to how a
desktop operating system handles the MMU configura-
tion. ACES generates the appropriate MPU configura-
tion from the final region graph and inserts code during
a compilation pass to perform compartment transitions.
Ensuring that the proper MPU configuration is used for
each compartment is done by encoding each compart-
ment’s MPU configuration into the program as read-only
data and then on each compartment transition, the appro-
priate configuration is loaded into the MPU.

Inserting compartment transitions requires instru-
menting every function call between compartments and
the associated return to invoke a compartment switch-
ing routine. Each call from one compartment into an-
other has associated metadata listing the valid targets of
the transition. For indirect function calls, the metadata
lists all possible destinations. At runtime, the compart-
ment switching routine decides if the transition is valid
using this metadata. If authorized, it saves the current
MPU configuration and return address to a “compart-
ment stack”, and then configures the MPU for the new
compartment. It then completes the call into the new
compartment. On the associated return, the compart-
ment stack is used to authenticate the return and restore
the proper MPU configuration. The MPU configuration,
compartment stack, and compartment switching routine
are only writable by privileged code.

4.6 Micro-emulator for Stack Protection
The final element of ACES is stack protection. The con-
straints of MPU protection (starting address, size) mean
that it is difficult to precisely protect small data regions
and regions that cannot be easily relocated, such as the

stack. To overcome these limitations we use a micro-
emulator. It emulates writes to locations prohibited by
the MPU regions, by catching the fault cause by the
blocked access. It then emulates, in software, all the ef-
fects of the write instruction, i.e., updates memory, reg-
isters, and processor flags. A white-list is used to restrict
the areas each compartment is allowed to write.

An MPU region is used to prevent writing all data
above the stack pointer on the stack. Thus, the entered
compartment is free to add to the stack and modify any
data it places on the stack. However, any writes to pre-
vious portions of the stack will cause a memory access
fault. Then the micro-emulator, using a white-list of al-
lowed locations, enables selective writes to data above
the stack pointer.

To generate the white-list, static or dynamic analysis
may be used. With static analysis large over approxima-
tions to available data would be generated. Whereas dy-
namic analysis may miss dependencies, potentially lead-
ing to broken applications. To support dynamic analysis,
the emulator supports two modes of operation: record
and enforce. In record mode, which happens in a benign
training environment, representative tests are run and all
blocked writes emulated and recorded on a per compart-
ment basis. The recorded accesses create a white-list
for each compartment. When executing in enforce mode
(i.e., after deployment) the micro-emulator checks if a
blocked access is allowed using the white-list and either
emulates it or logs a security violation. Significant use
of dynamically allocated data on desktop systems would
make dynamic analysis problematic. However, the lim-
ited memory on bare-metal systems requires developers
to statically allocate memory, enabling dynamic analysis
to readily identify data dependencies.

5 Implementation

ACES is implemented to perform four steps: program
analysis, compartment generation, program instrumenta-
tion, and enforcement of protections at runtime. Program
analysis and program instrumentation are implemented
as new passes in LLVM 4.0 [32] and modifications to its
ARM backend. Compartment generation is implemented
in Python leveraging the NetworkX graph library [25].
Runtime enforcement is provided in the form of a C run-
time library. For convenience, we wrap all these compo-
nents with a Makefile that automates the entire process.

5.1 Program Analysis
Our program analysis phase creates the PDG used to gen-
erate the region graph, and is implemented as an IR pass
in LLVM. To create the PDG it must identify control
flow, global variable usage, and peripheral dependencies



for each function. Control-flow dependencies are iden-
tified by examining each call instruction and determin-
ing its possible destinations using type-based alias anal-
ysis [33]. That is, we assume an indirect call may call
any function matching the function type of the call in-
struction. This identifies all potential control-flow de-
pendencies, but generates an over-approximation.

Over-approximations of global variable accesses re-
sult in overly permissive compartments. We found
that LLVM’s alias analysis techniques give large over-
approximations to data dependencies. Thus, we gener-
ate an under-approximation of the global variables that
are accessed within each function using LLVM’s use-
def chains. We form compartments with this under-
approximation and then use the micro-emulator to au-
thenticate access to missed dependencies at runtime
(Section 4.6). To understand our peripheral analysis, re-
call that the ARMv7-M architecture is a memory mapped
architecture. This means regular loads and stores to con-
stant addresses are used to access peripherals. In soft-
ware this is a cast of a constant integer to a pointer, which
is then dereferenced. ACES uses the cast and derefer-
ence as a heuristic to identify dependencies on peripher-
als. Using these analyses, ACES creates a PDG suitable
for compartmentalization.

5.2 Compartment Creation

Compartment creation uses the PDG, a compartmental-
ization policy, and the target device description to cre-
ate a final region graph. It is implemented in Python
using the NetworkX [25] graph library, which provides
the needed graph operations for ACES (like traversal and
merging). By separating this component from LLVM,
we enable the rapid investigation of different compart-
mentalization policies without having to manage the
complexities of LLVM. Policies are currently imple-
mented as a python function. Creating a new policy re-
quires writing a graph traversal algorithm that merges re-
gions based on desired criteria. We envision that the re-
search community could develop these policies, and an
application developer would select a policy much like
they select compiler optimizations today.

The region graph is created from the PDG as outlined
in Section 4.1. However, the nuances of handling periph-
erals justify further explanation. Peripherals are merged
using the device description to build a tree of all the pos-
sible valid MPU regions that cover the device peripher-
als, called the “device tree”. In the device tree, the pe-
ripherals are the leaves and the interior nodes are MPU
regions that cover all their descendant peripherals. For
example, if peripheral P1 is at memory-mapped address
[α,α +∆1] and peripheral P2 is at address [β ,β +∆2],
then the intermediate node immediately above it will al-

low access to addresses [α,β +∆2]. Thus, the closer to
the root a node is, the larger the MPU region and the
more peripherals it covers. Using this tree, the small-
est possible merge between two peripherals can be found
by finding their closest common ancestor. The device
tree also identifies peripherals on the private peripheral
bus which requires access from privileged mode. Code
regions dependent on these peripherals must execute in
privileged mode; for security, the number and size of
such regions should be limited by the policy.

To start, we implement two compartmentaliza-
tion policies, “Peripheral” and “Filename”. The
Peripheral policy is a security policy that isolates pe-
ripherals from each other. Thus for an attack to start by
exploiting one peripheral and affect another (e.g., com-
promising a WiFi SOC to get to the application proces-
sor) multiple compartments would have to be traversed.
The policy initially gives each code vertex adjacent to
one or more peripherals in the PDG a unique color. Two
code vertices adjacent to the same set of peripherals get
the same color. It then proceeds in rounds, and in each
round any code vertex with a control-flow dependency
on vertices of only one color is given the same color.
Rounds continue until no code vertices are merged, at
which point all uncolored code vertices are merged into
a single vertex. The Filename policy is a naı̈ve policy
that demonstrates the versatility of the policies ACES can
apply, and pitfalls of such a policy. It groups all functions
and global variables that are defined in the same file into
the same compartment.

Two optimizations to the region graph can be applied
after applying the Filename policy. Merging all code
regions with identical data and peripheral dependencies,
this reduces compartment transitions at runtime without
changing data accessible to any compartments. The sec-
ond optimization examines each function and moves it
to the region that it has the most connections to, us-
ing the PDG to count connections. This improves the
performance of the application by reducing the number
of compartment transitions. By applying these two op-
timizations to the Filename policy we create a third
compartmentalization policy, “Optimized Filename”.

After applying optimizations, the region graph is low-
ered to meet hardware constraints. For our experimen-
tal platform, this ensures that no code vertex has more
than four neighboring data/peripheral vertices. While the
MPU on our target ARMv7-M devices has eight regions,
two regions are used for global settings, i.e., making all
memory read-only and enabling execution of the default
code region, as will be explained in Section 5.3. Stack
protection and allowing execution of the code vertex in
the current compartment each requires one MPU region.
This leaves four MPU regions for ACES to use to enable
access to data and peripheral regions. Every code vertex



with an out-degree greater than four iteratively merges
data or peripheral vertices until its out-degree is less than
or equal to four. After lowering, the final region graph is
exported as a JSON file, which the program instrumen-
tation uses to create the compartments.

5.3 Program Instrumentation

Program instrumentation creates a compartmentalized
binary, using the final region graph and the LLVM bit-
code generated during program analysis. It is imple-
mented by the addition of a custom pass to LLVM and
modifications to LLVM’s ARM backend. To instrument
the program, all compartment transitions must be iden-
tified, each memory region must be placed so the MPU
can enforce permissions on it, and the MPU configura-
tion for each region must be added.

Using the final region graph, any control edge with a
source and destination in different compartments is iden-
tified as a compartment transition. We refer to the func-
tion calls that cause a transition as compartment entries,
and their corresponding returns as compartment exits.
Each compartment transition is instrumented by modi-
fication to LLVM’s ARM backend. It associates meta-
data to each compartment entry and replaces the call in-
struction (i.e., BL or BLX on ARM) with an SVC in-
struction. The return instructions of any function that
may be called by a compartment entry are replaced with
an SVC instruction. The SVC instruction invokes the
compartment switching routine, which changes compart-
ments and then, depending on the type of SVC executed,
completes the call or return.

The compartment pseudo code for the compartment
switching routine is shown in Algorithm 1, and is called
by the SVC handler. It switches compartments by re-
configuring the MPU, and uses a compartment stack to
keep track of the compartment entries and exits. This
stack is never writable by the compartment, protecting it
from unauthorized writes. The stack also enables deter-
mining if a compartment entry needs to change compart-
ments or just return to the existing compartment. This
is needed because functions with an instrumented return
can be called from within and outside of a compartment.
When called from within a compartment there will be no
entry on the compartment stack. Thus, if the return ad-
dress does not match the top of the compartment stack,
the compartment switching routine exits without modify-
ing the MPU configuration. This also results in the com-
partment exit routine executing more frequently than the
compartment entry routine, as seen in Figure 5.

While, LLVM can instrument source code it compiles,
it cannot instrument pre-compiled libraries. Ideally, all
source code would be available, but as a fallback, ACES
places all pre-compiled libraries and any functions they

call in an always executable code region. When called,
this code executes in the context of the callee. Thus, the
data writable by the library code is restricted to that of
the calling compartment. This is advantageous from a
security perspective, as it constrains the libraries’ access
to data/peripherals based on the calling context. We envi-
sion in the future libraries could be distributed as LLVM
bitcode instead of machine code, enabling ACES to ana-
lyze and instrument the code to create compartments.

After instrumenting the binary, ACES lays out the pro-
gram in memory to enable the MPU to enforce permis-
sions. The constraints of the MPU in our target platform
require that each MPU region be a power of two in size
and the starting address must be a multiple of its size.
This introduces a circular dependency between determin-
ing the size of a region and its layout in memory. ACES
breaks this dependency by using two linker scripts se-
quentially. The first ignores the MPU restrictions and
lays out the regions contiguously. The resulting binary
is used to determine the size of all the regions. After
the sizes are known, the second linker script expands
each region to a power of two and lays out the regions
from largest to smallest, starting at the highest address in
Flash/RAM and working down. This arrangement mini-
mizes the memory lost to fragmentation, while enabling
each region to be located at a multiple of its size. ACES
then generates the correct MPU configuration for each
region and uses the second linker script, to re-compile the
program. The MPU configuration is embedded into read-
only memory (Flash), protecting it against attacks that
modify the stored configuration in an attempt to change
access controls. The output of the second linker script is
a compartmented binary, ready for execution.

5.4 Micro-emulator for Stack Protection

The micro-emulator enables protection of writes on the
stack, as described earlier in Section 4.6. The MPU
restrictions prohibits perfect alignment of the MPU re-
gion to the allocated stack when entering a compartment.
Thus, some portions of the allocated stack may remain
accessible in the entered compartment. To minimize this,
we disable as many sub-regions of the MPU as possible,
while still allowing the current compartment to write to
all the unallocated portions of the stack. With less restric-
tive MPUs—e.g., the ARMv8-M MPU only requires re-
gions be multiples of 32 bytes in size and aligned on a 32
byte boundary—this stack protection becomes stronger.
In addition, the micro-emulator handles all writes where
our static analysis under approximates and enables ac-
cess to areas smaller than the MPU’s minimum region
size.

The micro-emulator can be implemented by modify-
ing the memory permissions to allow access to the fault-



Algorithm 1 Compartment Switching Procedure
1: procedure CHANGE COMPARTMENTS
2: Lookup SVC Number from PC
3: if SVC 100 then . Compartment Entry
4: Look up Metadata from PC
5: if Target in Metadata then . Target Addr. in LR
6: Get MPU Config from Metadata for Target
7: else
8: Fault
9: end if

10: Set MPU Configuration
11: Fixup Ret. Addr. to Skip Over Metadata
12: Push Stack MPU Config to Comp. Stack
13: Push Fixed Up Ret. Addr. to Comp. Stack
14: Adjust Stack MPU region
15: Fixup Stack to Exit into Target
16: Exit SVC
17: else if SVC 101 then . Compartment Entry
18: if Ret. Addr is on Top of Comp. Stack then
19: Get Return MPU Config using LR
20: Set MPU Config
21: Pop Comp. Stack
22: Pop Stack MPU Config
23: Restore previous Stack MPU Config
24: end if
25: Fixup Stack to Exit to Ret. Addr.
26: Exit SVC
27: else
28: Call Original SVC
29: end if
30: end procedure

ing location and re-executing the store instruction, or em-
ulating the store instruction in software. Re-executing
requires a way to restore the correct permissions imme-
diately after the store instruction executes. Conceptually,
instruction rewriting, copying the instruction to RAM, or
using the debugger to set a breakpoint can all achieve
this. However, code is in Flash preventing rewriting in-
structions; copying the instruction to RAM requires mak-
ing RAM writable and executable, thus exposing the sys-
tem to code injection attacks. This leaves the debugger.
However, on ARMv7-M devices, it can only be used by
the internal software or an external debugger, not both.
Using the debugger for our purpose prevents a developer
from debugging the application. Therefore, we choose to
emulate the write instructions in software.

The micro-emulator is called by the MemManage
Fault handler, and emulates all the instructions that write
to memory on the ARMv7-M architecture. As the em-
ulator executes within an exception, it can access all
memory. The handler emulates the instruction by per-
forming all the effects of the instruction (i.e., writing to
memory and updating registers) in its original context.
When the handler exits, the program continues execut-
ing as if the faulting instruction executed correctly. The
emulator can be compiled in record or enforce mode. In
record mode (used during training for benign runs), the
addresses of all emulated writes are recorded on a per
compartment basis. This allows the generation of the
white-list for the allowable accesses. The white-list con-
tains start and stop address for every addresses accessible
through the emulator for each compartment. When gen-
erating the list, any recorded access to a global variable

is expanded to allow access to all addresses. For exam-
ple, if a single address of a buffer is accessed, the white
list will contain the start and stop address for the entire
buffer. The current emulator policy therefore grants ac-
cess at variable granularity. This means the largest pos-
sible size of all variables does not have to be exercised
during the recording runs. However, as peripherals often
have memory mapped configuration register (e.g., setting
clock sources) and other registers for performing is func-
tion (e.g., sending data). The white-list only allows ac-
cess to peripheral addresses that were explicitly accessed
during recording. Thus, a compartment could configure
the peripheral, while another uses it.

6 Evaluation

To evaluate the effectiveness of ACES we compare the
Naı̈ve Filename, Optimized Filename, and Peripheral
compartmentalization policies. Our goal is not to iden-
tify the best policy, but to enable a developer to compare
and contrast the security and performance characteristics
of the different policies. We start with a case study to il-
lustrate how the different compartmentalization policies
impact an attacker. We then provide a set of static met-
rics to compare policies, and finish by presenting the pol-
icy’s runtime and memory overheads. We also compare
the ACES’ policies to Mbed µVisor, the current state-of-
the-art in protecting bare-metal applications.

For each policy, five representative IoT applications
are used. They demonstrate the use of different peripher-
als (LCD Display, Serial port, Ethernet, and SD card) and
processing steps that are typically found in IoT systems
(compute based on peripheral input, security functions,
data sent through peripheral to communicate). PinLock
represents a smart lock. It reads a pin number over a se-
rial port, hashes it, compares it to a known hash, and if
the comparison matches, sends a signal to an IO pin (akin
to unlocking a digital lock). FatFS-uSD implements
a FAT file system on an SD card. TCP-Echo imple-
ments a TCP echo server over Ethernet. LCD-Display
reads a series of bitmaps from an SD card and displays
them on the LCD. Animate displays multiple bitmaps
from an SD card on the LCD, using multiple layers of
the LCD to create the effect of animation. All except
PinLock are provided with the development boards and
written by STMicroelectronics. We create four binaries
for each application, a baseline without any security en-
hancement, and one for each policy. PinLock executes
on the STM32F4Discovery [49] development board and
the others execute on the STM32F479I-Eval [48] devel-
opment board.



6.1 PinLock Case Studies

To illustrate ACES’ protections we use PinLock and
examine ways an attacker could unlock the lock with-
out entering the correct pin. There are three ways an
attacker could open the lock using a memory corrup-
tion vulnerability. First, overwriting the global variable
which stores the correct pin. Second, directly writing to
the memory mapped GPIO controlling the lock. Third,
bypassing the checking code with a control-flow hijack
attack and executing the unlock functionality. We as-
sume a write-what-where vulnerability in the function
HAL UART Receive IT that can be used to perform
any of these attacks. This function receives characters
from the UART and copies them into a buffer, and is de-
fined in the vendor provided Hardware Abstraction Li-
braries (HAL).

Memory Corruption: We first examine how ACES im-
pacts the attackers ability to overwrite the stored pin. For
an attacker to overwrite the stored pin, the vulnerable
function needs to be in a compartment that has access
to the pin. This occurs when either the global variable is
in one of the compartments’ data regions or its white-
list. In our example, the target value is stored in the
global variable key. In the Naı̈ve Filename and Op-
timized Filename policies the only global variable ac-
cessible to HAL UART Receive IT’s compartment is
a UART Handle, and thus the attacker cannot overwrite
key. With the peripheral policy key is in a data region
accessible by HAL UART Receive IT’s compartment.
Thus, key can be directly overwritten. Directly writing
the GPIO registers is similar to overwriting a global vari-
able and requires write access to the GPIO-A peripheral.
Which is not accessible to HAL UART Receive IT’s
compartment under any of the policies.

Control-Flow Hijacking: Finally, the attacker can un-
lock the lock by hijacking control-flow. We consider an
attack to be successful if any part of the unlock call chain,
shown in Listing 1, is executable in the same compart-
ment as HAL UART Receive IT. If this occurs, the
attacker can redirect execution to unlock the lock ille-
gally. We refer to this type of control-flow attack as di-
rect, as the unlock call chain can be directly executed.
For our policies, this is only possible with the Peripheral
policy. This occurs because HAL UART Receive IT
and main are in the same compartment. For the other
policies HAL UART Receive IT’s compartment does
not include any part of the unlock call chain. A second
type of attack—a confused deputy attack—may be pos-
sible if there is a valid compartment switch in the vul-
nerable function’s compartment to a point in the unlock
call chain. This occurs if a function in the same com-
partment as the vulnerable function makes a call into the
unlock call chain. This again only occurs with the Pe-

Listing 1: PinLock’s unlock call chain and filename of
each call

main // main.c
unlock // main.c
BSP LED On // stm32f401 discovery.c
HAL GPIO WritePin // stm32f4xx hal gpio.c

Table 1: Summary of ACES’ protection on Pin-
Lock for memory corruption vulnerability in function
HAL UART Receive IT. (X) – prevented, 7– not pre-
vented

Policy Overwrite Control Hijack
Global GPIO Direct Deputy

Naı̈ve Filename X X X X
Optimized Filename X X X X
Peripheral 7 X 7 7

ripheral policy, as main contains a compartment switch
into unlock’s compartment. A summary of the attacks
and the policies protections against them is given in Ta-
ble 1.

6.2 Static Compartment Metrics
The effectiveness of the formed compartments depends
on the applied policy. We examine several metrics of
compartments that can be used to compare compartmen-
talization policies. Table 2 shows these metrics for the
three compartmentalization policies. All of the met-
rics are calculated statically using the final region graph,
PDG, and the binary produced by ACES.

Number of Instructions and Functions: The first set
of metrics in Table 2 are the number of instructions
and the number of functions used in the ACES binaries,
with percent increase over baseline shown in parenthe-
ses. To recap, the added code implements: the compart-
ment switching routine, instruction emulation, and pro-
gram instrumentation to support compartment switching.
They are part of the trusted code base of the program and
thus represent an increased risk to the system that needs
to be offset by the gains it makes in security. ACES’
runtime support library is the same for all applications
and accounts for 1,698 of the instructions added. The
remaining instructions are added to initiate compartment
switches. As many compartments are formed, we find
in all cases the number of instructions accessible at any
given point in execution is less than the baseline. This
means that ACES is always reducing the code that is
available to execute.

Reduction in Privileged Instructions: Compartmental-
ization enables a great reduction in the number of in-
structions that require execution in privileged mode, Ta-
ble 2, shown as “% Priv.”. This is because it enables



Table 2: Static Compartment Evaluation Metrics. Percent increase over baseline in parentheses for ACES columns.
Application Policy ACES #Regions Instr. Per Comp Med. Degree Exposure #ROP

#Instrs. %Priv. #Functs. Code Data Med. Max In Out Med. #Stores. Reduction

PinLock
Naı̈ve Filename 8,374(50.9%) 2.9% 193(17.0%) 14 7 1,501 2,739 6 3 118 (11.0%) 345 (47.9%)
Opt. Filename 8,332(50.1%) 26.2% 193(17.0%) 11 6 1,418 2,983 3 1 737 (68.8%) 341 (48.5%)
Peripheral 8,342(50.3%) 9.8% 193(17.0%) 20 8 1,298 3,291 1 1 489 (45.7%) 345 (47.9%)

FatFs-uSD
Naı̈ve Filename 21,222(18.4%) 1.2% 324( 9.5%) 23 13 1,563 6,825 6 4 164 ( 4.2%) 432 (74.2%)
Opt. Filename 21,083(17.6%) 15.0% 324( 9.5%) 19 2 1,380 10,316 2 1 3,081 (79.6%) 709 (57.6%)
Peripheral 21,096(17.7%) 3.4% 324( 9.5%) 23 9 1,565 8,701 1 1 1,560 (40.4%) 699 (58.2%)

TCP-Echo
Naı̈ve Filename 34,477(12.7%) 0.7% 445( 6.7%) 37 23 1,789 5,058 26 8 256 ( 4.7%) 384 (85.3%)
Opt. Filename 34,324(12.2%) 10.6% 445( 6.7%) 28 4 1,476 14,395 23 3 3,970 (74.9%) 646 (75.2%)
Peripheral 33,408(9.2% ) 0.6% 445( 6.7%) 23 11 1,198 23,100 1 1 3,327 (61.6%) 1,759 (32.5%)

LCD-uSD
Naı̈ve Filename 38,806(12.1%) 0.6% 462( 6.5%) 33 17 10,290 14,291 10 4 93 ( 1.5%) 1,173 (58.5%)
Opt. Filename 38,452(11.1%) 19.7% 462( 6.5%) 25 5 10,006 15,499 7 3 3,500 (59.5%) 1,385 (51.0%)
Peripheral 38,109(10.1%) 1.9% 462( 6.5%) 34 15 9,900 17,188 2 2 3,247 (55.0%) 1,524 (46.0%)

Animation
Naı̈ve Filename 38,894(12.1%) 0.6% 466( 6.4%) 33 16 10,265 14,246 10 5 105 ( 1.7%) 1,178 (58.7%)
Opt. Filename 38,499(10.9%) 28.7% 466( 6.4%) 23 3 9,954 18,317 6 3 4,257 (72.5%) 1,401 (50.8%)
Peripheral 38,194(10.1%) 1.9% 466( 6.4%) 34 17 9,850 19,015 2 2 2,498 (42.1%) 1,568 (45.0%)

only the code which accesses the private peripheral bus
and the compartment transition logic to execute in priv-
ileged mode. The Naı̈ve Filename and Peripheral policy
show the greatest reductions, because of the way they
form compartments. As only a small number of func-
tions access the private peripheral bus—defined in a few
files—the Naı̈ve Filename creates small compartments
with privileged code. The Optimized Filename starts
from the Naı̈ve policy and then merges groups together,
increasing the amount of privileged code, as privileged
code is merged with unprivileged code. Finally, the Pe-
ripheral policy identifies the functions using the private
peripheral bus. It then merges the other functions that
call or are called by these functions and that have no de-
pendency on any other peripheral. The result is it a small
amount of privileged code.

Number of Regions: Recall a compartment is a single
code region and collection of accessible data and periph-
erals. The number of code and data regions created in-
dicates how much compartmentalization the policy cre-
ates. As the number of compartments increases, addi-
tional control-flow validation occurs at runtime as com-
partment transitions increase. Generally, larger numbers
of regions indicate better security.

Instructions Per Compartment: This metric measures
how many instructions are executable at any given point
in time, and thus usable in a code reuse attack. It is the
number of instructions in the compartment’s code region
plus the number of instructions in the default code re-
gion. Table 2 shows the median, and maximum num-
ber of instructions in each compartment. For all policies,
the reduction is at least 23.9% of the baseline applica-
tion, which occurs on TCP-Echo with the Peripheral pol-
icy. The greatest (83.4%) occurs on TCP-Echo with the
Naı̈ve Filename policy, as the TCP stack and Ethernet
driver span many files, resulting in many compartments.
However, the TCP stack and Ethernet driver only use the
Ethernet peripheral. Thus, the Peripheral policy creates

a large compartment, containing most of the application.
Compartment Connectivity: Compartment connectiv-

ity indicates the number of unique calls into (In De-
gree) or out of a compartment (Out Degree), where a
unique call is determined by its source and destination.
High connectivity indicates poor isolation of compart-
ments. Higher connectivity indicates increasing chances
for a confused deputy control-flow hijack attack between
compartments. The ideal case would be many compart-
ments with minimal connectivity. In all cases, the Naı̈ve
Filename policy has the worst connectivity because the
applications make extensive use of abstraction libraries,
(e.g., hardware, graphics, FatFs, and TCP). This results
in many files being used with many calls going between
functions in different files. This results in many com-
partments, but also many calls between them. The Opti-
mized Filename policy uses the Naı̈ve policy as a starting
point and relocates functions to reduce external compart-
ment connectivity, but can only improve it so much. The
Peripheral policy creates many small compartments with
very little connectivity and one compartment with high
connectivity.

Global Variable Exposure: In addition to restricting
control-flow in an application, ACES reduces the num-
ber of instructions that can access a global variable. We
measure the number of store instructions that can access
a global variable—indicating how well least privileges
are enforced. Table 2 shows the median number of store
instructions each global variable in our test applications
is writable from, along with the percent of store instruc-
tions in the application that can access it. Smaller num-
bers are better. The Filename policy has the greatest re-
duction in variable exposure. The other policies create
larger data and code regions, and thus have increased
variable exposure. In addition, lowering to four mem-
ory regions causes multiple global variables to be merged
into the same data region, increasing variable exposure.
Having more MPU regions (the ARMv8-M architecture



supports up to 16) can significantly improve this metric.
As an example, we compiled Animation using the Opti-
mized Filename policy and 16 MPU regions (lowering to
12 regions). It then creates 28 data regions versus three
with eight MPU regions.

ROP Gadgets: We also measure the maximum number
of ROP gadgets available at any given time during execu-
tion, using the ROPgadget compiler [46]. ROP gadgets
are snippets of instructions that an attacker chains to-
gether to perform control-hijack attacks while only using
existing code [47]. As shown in Table 2, ACES reduces
the number of ROP gadgets between 32.5% and 85.3%
compared to the baseline; the reduction comes from re-
ducing the number of instructions exposed at any point
during execution.

6.3 Runtime Overhead

Bare-metal systems have tight constraints on execution
time and memory usage. To understand ACES’ im-
pact on these aspects across policies, we compare the
IoT applications compiled with ACES against the base-
line unprotected binaries. For applications compiled us-
ing ACES, there are three causes of overhead: compart-
ment entry, compartment exit, and instruction emulation.
Compartment entries and exits replace a single instruc-
tion with an SVC call, authentication of the source and
the destination of the call, and then reconfiguration of the
MPU registers. Emulating a store instruction replaces a
single instruction with an exception handler, authentica-
tion, saving and restoring context, and emulation of the
instruction.

In the results discussion, we use a linguistic
shorthand—when we say “compartment exit” or simply
“exit”, we mean the number of invocations of the com-
partment exit routine. Not all such invocations will ac-
tually cause a compartment exit for the reason described
in Section 5.3.

All applications—except TCP-Echo—were modified
to start profiling just before main begins execution and
stops at a hard coded point. Twenty runs of each appli-
cation were averaged and in all cases the standard devia-
tion was less than 1%. PinLock stops after receiving 100
successful unlocks, with a PC sending alternating good
and bad codes as quickly as the serial communication
allows. FatFS-uSD formats its SD card, creates a file,
writes 1,024 bytes to the file, and verifies the file’s con-
tents, at which point profiling stops. LCD-uSD reads and
displays 3 of the 6 images provided with the application,
as quickly as possible. Profiling stops after displaying
the last image. The Animation application displays 11 of
the 22 animation images provided with the application
before profiling stops. Only half the images were used to
prevent the internal 32bit cycle counters from overflow-
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Figure 5: Runtime overhead for applications.

ing. For TCP-Echo, a PC directly connected to the board
sends TCP packets as fast as possible. We start profil-
ing after receiving 20 packets—to avoid measuring the
PC’s delay in identifying the IP address of the board—
and measure receiving 1,000 packets. This enables an
accurate profiling of ACES’ overhead, omitting the ini-
tialization of the board, which performs many compart-
ment transitions.

The performance results for the three policies are
shown in Figure 5. It shows the total overhead, along
with the breakdown of portion of time spent executing
compartment entries, compartment exits, and emulating
instructions. Perhaps unintuitive, the time spend exe-
cuting these components does not always contribute to
a proportional increase in total execution time. This is
because the programs block on IO. ACES changes what
it does while blocking, but not how long it blocks. This
is particularly evident on PinLock which has no measur-
able increase in total execution time for any policy, yet
executes over 12,000 compartment entries and exits with
the Naı̈ve and Optimized Filename policies. This is be-
cause the small percentage of the time it spends execut-
ing compartment switches is hidden by the time spent
waiting to receive data on the relatively slow serial port.
The other applications wait on the Ethernet, uSD card, or
LCD. In some cases, the overhead is not all attributed to
compartment entries, exits or emulated instructions, this
is because our instrumentation causes a small amount of
overhead (about 60 instructions) on each event. In the
case of LCD-uSD with the Naı̈ve policy which executes
over 6.8 million compartment entries, exits, and emula-
tor calls this causes significant overhead.

Looking across the policies and applications we see
that the Naı̈ve Filename policy has the largest impact on
execution. This is because the programs are written us-
ing many levels of abstraction. Consider TCP-Echo: it
is written as an application on top of the Lightweight IP



Library (LwIP) implementation of the TCP/IP stack [19]
and the boards HAL. LwIP uses multiple files to imple-
ment each layer of the TCP stack and the HAL uses a
separate file to abstract the Ethernet peripheral. Thus,
while the application simply moves a received buffer to a
transmit buffer, these function calls cause frequent com-
partment transitions, resulting in high overhead. The
Optimized Filename policy improves the performance
of all applications by reducing the number of compart-
ment transitions and emulated instructions. This is ex-
pected as it optimizes the Naı̈ve policy by moving func-
tions to compartments in which it has high connectiv-
ity, thus reducing the number of compartment transi-
tions. This also forms larger compartments, increasing
the likelihood that needed data is also available in the
compartment reducing the number of emulated calls. Fi-
nally, the Peripheral policy gives the best performance,
as its control-flow aware compartmentalization creates
long call chains within the same compartment. This re-
duces the number of compartment transitions. The stark
difference in runtime increase between policies high-
lights the need to explore the interactions between poli-
cies and applications, which ACES enables.

6.4 Memory Overhead
In addition to runtime overhead, compartmentalization
increases memory requirements by: including ACES’s
runtime library (compartment switcher, and micro-
emulator), adding metadata, adding code to invoke com-
partment switches, and losing memory to fragmentation
caused by the alignment requirements of the MPU. We
measure the increase in flash, shown in Figure 6, and
RAM, show in Figure 7, for the test applications com-
piled with ACES and compare to the baseline breaking
out the overhead contributions of each component.

ACES increases the flash required for the runtime li-
brary by 4,216 bytes for all applications and policies.
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Figure 6: Flash usage of ACES for test applications
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Figure 7: RAM usage of ACES for test applications

Fragmentation accounts for a significant amount of the
increase in flash usage ranging from 26% of the baseline
on Optimize Filename LCD-uSD to 70% on Peripheral
PinLock. Fragmentation can also cause a large increase
in RAM usage. This suggests that compartmentalization
policies may need to optimize for fragmentation when
creating compartments to reduce its impact. The MPU
in the ARMv8-M architecture only requires regions be a
multiple of 32 bytes and aligned on a 32 byte boundary.
This will nearly eliminate memory lost to fragmentation
on this architecture. For example, Peripheral TCP-Echo
would only lose 490 bytes of flash and 104 bytes of RAM
to padding versus 38,286 bytes and 17,300 bytes to frag-
mentation. Metadata and switching code increase are the
next largest components, and are application and policy
dependent. They increase with the number of compart-
ment transitions and size of emulator white-lists.

Figure 7 shows the increase in RAM usage caused
by ACES. Its only contributors to overhead are the run-
time library and fragmentation. The runtime library
consists of a few global variables (e.g., compartment
stack pointer), the compartment stack, and the emulator
stack. The compartment stack—ranges from 96 bytes
(Peripheral PinLock) to 224 bytes (Optimized Filename
Animation)—and the emulator stack uses 400 bytes on
all applications. Like flash, fragmentation can also cause
a significant increase in RAM usage.

6.5 Comparison to Mbed µVisor
To understand how ACES compares to the state-of-the-
art compartmentalization technique for bare-metal sys-
tems, we use the Mbed µVisor from ARM [39]. Mbed
µVisor is a hypervisor designed to provide secure data
and peripheral isolation between different compartments
in the application (the equivalent term to compartment
that µVisor uses is “box”). It is linked as a library to
Mbed OS [38] and initialized at startup.



Table 3: Comparison of security properties between
ACES and Mbed µVisor

Tool Technique DEP Compartmentalization Type

Code Data Peripheral

ACES Automatic X X X X

Mbed µVisor Manual 7(Heap) 7 X X

Table 3 shows a comparison of security protections
provided by ACES and Mbed µVisor. Mbed µVisor re-
quires manual annotation and specific µVisor APIs to be
used to provide its protections, while ACES is automatic.
Additionally, Mbed µVisor does not enforce code iso-
lation, as all code is placed in one memory region that
is accessible by all compartments. Furthermore, Mbed
µVisor does not enforce DEP on the heap. Both en-
force data and peripheral isolation among compartments.
ACES enforces fine-grained compartmentalization by al-
lowing code and data to be isolated within a thread, while
Mbed µVisor requires a thread for each compartment
with no isolation within a thread. Another advantage
of ACES over Mbed µVisor is its compartments are not
hard-coded into the application, enabling them to be au-
tomatically determined from high-level policies.

We compare ACES and Mbed µVisor by porting Pin-
Lock to Mbed µVisor. With µVisor, we used two com-
partments, which logically follows the structure of the
application—one compartment handles the IO commu-
nication with the serial port and the other handles the
computation, i.e., the authentication of the pincode read
from the serial port. The first has exclusive access to
the serial port reading the user’s pincode. The second
compartment cannot access the serial port but can only
request the entered pin from the first compartment. The
authenticator then computes the hash and replies to the
first compartment with the result. Mbed µVisor requires
specific APIs and a main thread for each compartment,
thus there is significant porting effort to get this (and any
other application) to execute with µVisor. Table 4 shows
a comparison between ACES and Mbed µVisor for Flash
usage, RAM usage, runtime, and number of ROP gad-
gets. Since Mbed µVisor requires an OS, Flash and
memory usage will be inherently larger. It allocates gen-
erous amounts of memory to the heap and stacks, which
can be tuned to the application. For our comparison, we
dynamically measure the size of the stacks and ignore
heap size, thus under-reporting µVisor memory size. Av-
eraged across all policies, ACES reduces the Flash usage
by 58.6% and RAM usage by 83.9%, primarily because
it does not require an OS.

ACES runtime is comparable (5.0% increase), thus
ACES provides automated protection, increased com-
partmentalization, and reduced memory overhead with
little impact on performance.

We investigate the security implications of having

Table 4: Comparison of memory usage, runtime, and
the number of ROP gadgets between ACES and Mbed
µVisor for the PinLock application.
Policy Flash RAM Runtime # ROP Gadgets

# Cycles Total Maximum Average

ACES-Naı̈ve Filename 33,504 4,712 526M 525 345 (53.2%) 234 (36.0%)
ACES-Opt. Filename 33,008 4,640 525M 671 341 (44.8%) 247 (32.4%)
ACES-Peripheral 34,856 5,136 525M 645 345 (47.2%) 204 (31.3%)
Mbed µVisor 81,604 30,004 501M 5,997 5,997 (100%) 5,997 (100%)

code compartmentalization by analyzing the number of
ROP gadgets using the ROPgadget compiler [46]. With-
out code compartmentalization, a memory corruption
vulnerability allows an attacker to leverage all ROP gad-
gets available in the application—the “Total” column
in Table 4. Code compartmentalization confines an at-
tacker to ROP gadgets available only in the current com-
partment. Averaged across all policies, ACES reduces
the maximum number of ROP gadgets by 94.3% over
µVisor.

7 Related Work

Micro-kernels: Micro-kernels [35, 28] implement least
privileges for kernels by reducing the kernel to the min-
imal set of functionality and then implement additional
functions as user space “servers”. Micro-kernels like
L4 [35] have been successfully used in embedded sys-
tems [20]. They rely on careful development or for-
mal verification [28] of the kernel and associated servers
to maintain the principle of least privilege. ACES cre-
ates compartments within a single process, while micro-
kernels break a monolithic kernel into many processes.
In addition, the process of creating micro-kernels is man-
ual while ACES’ compartments are automatic.
Software Fault Isolation and Control-flow Integrity:
Software fault isolation [50, 51] uses checks or pointer
masking to restrict access of untrusted modules of a
program to a specific region. SFI has been proposed
for ARM devices using both software (ARMor) [55],
and hardware features (ARMlock) [56]. ARMlock uses
memory domains which are not available on Cortex-M
devices. ACES works on micro-controllers and uses the
MPU to ensure that code and data writes are constrained
to a compartment without requiring pointer instrumenta-
tion. It also enables flexible definitions of what should be
placed in each compartment whereas SFI assumes com-
partments are identified a priori.

Code Pointer Integrity [31] prevents memory corrup-
tions from performing control flow hijacks by ensur-
ing the integrity of code pointers. Control-flow in-
tegrity [1, 34, 53, 54, 41, 10] restricts the targets of in-
direct jumps to a set of authorized targets. This restricts
the ability of an attacker to perform arbitrary execution,
however arbitrary execution is still possible if a suffi-



ciently large number of targets are available to an at-
tacker. ACES enforces control-flow integrity on control
edges that transition between compartments. It also re-
stricts the code and data available in each compartment,
thus limiting the exposed targets at any given time.
Kernel and Application Compartmentalization: There
has been significant work to isolate components of
monolithic kernels using an MMU [57, 52, 18]. ACES
focuses on separating a single bare-metal system into
compartments using an MPU and addresses the specific
issues that arise from the MPU limitations. Privtrans [9]
uses static analysis to partition an application into priv-
ileged and unprivileged processes, using the OS to en-
force the separation of the processes. Glamdring [36]
uses annotations and data and control-flow analysis to
partition an application into sensitive and non-sensitive
partitions—executing the sensitive partition in an Intel
SGX [13] enclave. Robinov et al. [44] partition An-
droid applications into compartments to protect data and
utilize ARM’s TrustZone environment to run sensitive
compartments. These techniques rely on an OS [9, 36]
for process isolation or hardware not present on micro-
controllers [36, 37, 44] or significant developer annota-
tion [24, 36, 37]. In contrast ACES works without an
OS, only requires an MPU, and does not require devel-
oper annotations.
Embedded system specific protections: NesCheck [40]
provides isolation by enforcing memory safety. MIN-
ION [27] provides automatic thread-level compart-
mentalization, requiring an OS, while ACES provides
function-level compartmentalization without an OS.
ARM’s TrustZone [4] enables execution of software in
a “secure world” underneath the OS. TrustZone exten-
sions are included in the new ARMv8-M architecture.
At the time of writing, ARMv8-M devices are not yet
available. FreeRTOS-MPU [22] is a real-time OS that
uses the MPU to protect the OS from application tasks.
Trustlite [29] proposes hardware extensions to micro-
controllers, including an execution aware MPU, to en-
able the deployment of trusted modules. Each mod-
ule’s data is protected from the other parts of the pro-
gram by use of their MPU. TyTan [7] builds on Trustlite
and develops a secure architecture for low-end embedded
systems, isolating tasks with secure IPC between them.
In contrast, ACES enables intraprocess compartmental-
ization on existing hardware and separates compartment
creation from program implementation.

8 Discussion and Conclusion

As shown in Section 6.3, compartmentalization policies
may significantly impact runtime performance. To re-
duce the runtime impact, new policies should seek to
place call chains together, and minimize emulating vari-

able accesses. The PDG could be augmented with pro-
filing information of baseline applications so that com-
partment policies can avoid placing callers and callees of
frequently executed function calls in different compart-
ments. In addition, the number of emulator calls could
be reduced by improved alias analysis or adding dynam-
ically discovered accesses to the PDG. This would enable
an MPU region to be used to provide access to these vari-
ables. Finally, optimizations to the way emulated vari-
ables are accessed could be made to ACES. For exam-
ple, the emulator could be modified to check if the store
to be emulated is from memcpy. If so, permissions for
the entire destination buffer could be validated and then
the emulator could perform the entire buffer copy. Thus,
the emulator would only be invoked once for the entire
copy and not for each address written in the buffer.

Protecting against confused deputy attacks [26] is
challenging for compartmentalization techniques. They
use control over one compartment to provide unexpected
inputs to another compartment causing it to perform in-
secure actions. Consider PinLock that is split into an un-
privileged compartment and the privileged compartment
with the unlock pin. An attacker with control over the
unprivileged compartment may use any interaction be-
tween the two compartments to trigger an unlock event.
To guard against confused deputy attacks, ACES restricts
and validates the locations of all compartment transi-
tions. The difficulty of performing these attacks depends
on the compartmentalization policy. For security, it is
desirable to have long compartment chains, resulting in
many compartments that must be compromised to reach
the privileged compartment.

In conclusion, ACES enables automatic application of
compartments enforcing least privileges on bare-metal
applications. Its primary contributions are (1) decoupling
the compartmentalization policy from the program im-
plementation, enabling exploration of the design space
and changes to the policy after program development,
e.g., depending on the context the application is run in.
(2) The automatic application of compartments while
maintaining program dependencies and ensuring hard-
ware constraints are satisfied. This frees the developer
from the burden of configuring and maintaining mem-
ory permissions and understanding the hardware con-
straints, much like an OS does for applications on a
desktop. (3) Use of a micro-emulator to authorize ac-
cess to data outside a compartment’s memory regions,
allowing imprecise analysis techniques to form compart-
ments. We demonstrated ACES’s flexibility in com-
partment construction using three compartmentalization
policies. Compared to Mbed µVisor, ACES’ compart-
ments use 58.6% less Flash, 83.9% less RAM, with com-
parable execution time, and reduces the number of ROP
gadgets by an average of 94.3%.
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