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Ubiquitous Computing and Security

Sensors and WSNs are pervasive
Small + cheap  smart thermostats, production pipelines, “precision” agriculture

Internet of Things as generalization
Smart embedded systems + Internet-based services

Security is paramount
Stringent requirements on:

• end-to-end system reliability

• trustworthy data delivery

• service availability
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Wireless Sensor Networks (WSNs)

WSNs must be functional 

at any time.

But…

Unreliable medium

Constrained resources

Unattended environment

 Transient/permanent failures
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Motivations & Premises

Low-level languages + no memory protection
NesC suffers same problems as C

Common techniques not applicable!
Very constrained platform, no virtual memory, high overhead, …

High modularity + whole program analysis
Allows language-based techniques

Not all checks are needed
Some can be verified statically
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nesCheck

Static Analysis + Dynamic Instrumentation

Automatically catch memory bugs,

provide sound memory safety guarantees

while minimizing performance overhead.

APPLICATIONS: Automatic hardening of embedded software, consumer and corporate devices, …
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Memory Safety Goals

Bugs [static]

Find all statically-provable bugs  report errors

Violations [static]

Find all violations report warnings

Checks reduction [static]

Statically determine “safe” violations

Runtime checks [dynamic]

Instrument remaining violations, catch all memory errors at runtime.
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TARGET PLATFORM COMPILATION
gcc

nesCheck Toolchain
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INSTRUMENTATION

nesCheck

opt pass

METADATA CALCULATION + CHECKS REDUCTION

nesCheck

opt pass

TYPE INFERENCE

nesCheck

opt pass

SSA CONVERSION + TRANSFORMATION TO IR
clang

COMPOSITION + PREPROCESSING ncc
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Static Analysis
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Type System and Inference Engine

Safe

Sequence

Dynamic

foreach declaration of pointer variable p do

classify(p, SAFE);

foreach instruction I using pointer p do

r  result of(I);

if I performs pointer arithmetic then

classify(p, SEQ);

classify(r, SAFE);

if I casts p to incompatible type then

classify(p, DYN);

classify(r, DYN);
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Operational Semantics | Type Inference
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Metadata

In-memory metadata
One instance per variable at any time

Explicit metadata variable
Logical variables across basic blocks

Metadata table entry
In-memory runtime information

p

sl sh

b e

0x00 0xff

void f(int a) {

int* p;

if (a > 0)

}

p = malloc(4 * sizeof(int));

else

p[3] = 13;

p = malloc(20 * sizeof(int));

1

2

3

4

metadata pmeta;

pmeta.size = 4 * sizeof(int);

pmeta.size = 20 * sizeof(int);

check(p[3], pmeta) && p[3] = 13;
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Dynamic 

Instrumentation
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Dynamic Checks Instrumentation

For any violating pointer dereference
Before GetElementPointer LLVM instruction:

• If pointer access was classified SAFE by static analysis, skip check.

• Prepare bounds check: if (!checkBounds(p, offset, pmeta)) { trapFunction(); }

• Check always false?  Skip check
(e.g., p[i] for p with fixed length >= 3 and i inferred as 2)

• Check always true?  Report memory bug
(e.g., p[i] for p with fixed length < 3 and i inferred as 2)

• Add bounds check.

Checks reduction
Based on type tracking and pointer usage

When propagated metadata results in constant check
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Dynamic Checks Instrumentation

Optimizations to reduce metadata table lookups:
Functions taking pointer parameters:

void f(int* p)  void f(int* p, metadata pmeta)

Functions returning pointers:

int* f()  {int*, metadata} f()

return p;  return {p, pmeta};
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Evaluation Results
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Type Inference

AVERAGES

Safe: 81%

Seq: 13%

Dyn: 6%

Pointer Percentage
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Checks Reduction

Average: 20% reduction
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Code Size, Performance, and Memory Overhead

As low as 7%, always <10kbCode size 5%, performance 6%

Overhead bytes
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Fault Injection

AVERAGES

Static: 21.6%

Not Run: 36.8%

Dynamic (caught): 41.5%

Uncaught: 0%
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State of the Art

CCured
Removes checks of SAFE pointers only

SoftBound
Instruments all pointers

SafeTinyOS
Requires extensive annotations or exclusion of entire components

Relies on Deputy source-to-source compiler
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Naïve vs. Optimized Improvement

Average improvement: 

41.13%

Overhead

NAÏVE:

no check reduction optimizations

NESCHECK:

with full check reduction optimizations
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Conclusion

nesCheck
Type system for pointer types: safe, seq, dyn

Statically prove pointer operations safe

Protect potentially unsafe operations at runtime

APPLICATIONS: Automatic hardening of embedded software, consumer and corporate devices, …

https://github.com/HexHive/nesCheck


