
MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Memory Safety for Embedded 

Devices with nesCheck

Daniele MIDI, Mathias PAYER, Elisa BERTINO
Purdue University

AsiaCCS 2017



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Ubiquitous Computing and Security

Sensors and WSNs are pervasive
Small + cheap  smart thermostats, production pipelines, “precision” agriculture

Internet of Things as generalization
Smart embedded systems + Internet-based services

Security is paramount
Stringent requirements on:

• end-to-end system reliability

• trustworthy data delivery

• service availability



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Wireless Sensor Networks (WSNs)

WSNs must be functional 

at any time.

But…

Unreliable medium

Constrained resources

Unattended environment

 Transient/permanent failures



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Motivations & Premises

Low-level languages + no memory protection
NesC suffers same problems as C

Common techniques not applicable!
Very constrained platform, no virtual memory, high overhead, …

High modularity + whole program analysis
Allows language-based techniques

Not all checks are needed
Some can be verified statically



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

nesCheck

Static Analysis + Dynamic Instrumentation

Automatically catch memory bugs,

provide sound memory safety guarantees

while minimizing performance overhead.

APPLICATIONS: Automatic hardening of embedded software, consumer and corporate devices, …



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Memory Safety Goals

Bugs [static]

Find all statically-provable bugs  report errors

Violations [static]

Find all violations report warnings

Checks reduction [static]

Statically determine “safe” violations

Runtime checks [dynamic]

Instrument remaining violations, catch all memory errors at runtime.



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

TARGET PLATFORM COMPILATION
gcc

nesCheck Toolchain

n
e
sC

h
e
ck

INSTRUMENTATION

nesCheck

opt pass

METADATA CALCULATION + CHECKS REDUCTION

nesCheck

opt pass

TYPE INFERENCE

nesCheck

opt pass

SSA CONVERSION + TRANSFORMATION TO IR
clang

COMPOSITION + PREPROCESSING ncc



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Static Analysis



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Type System and Inference Engine

Safe

Sequence

Dynamic

foreach declaration of pointer variable p do

classify(p, SAFE);

foreach instruction I using pointer p do

r  result of(I);

if I performs pointer arithmetic then

classify(p, SEQ);

classify(r, SAFE);

if I casts p to incompatible type then

classify(p, DYN);

classify(r, DYN);



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Operational Semantics | Type Inference



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Metadata

In-memory metadata
One instance per variable at any time

Explicit metadata variable
Logical variables across basic blocks

Metadata table entry
In-memory runtime information

p

sl sh

b e

0x00 0xff

void f(int a) {

int* p;

if (a > 0)

}

p = malloc(4 * sizeof(int));

else

p[3] = 13;

p = malloc(20 * sizeof(int));

1

2

3

4

metadata pmeta;

pmeta.size = 4 * sizeof(int);

pmeta.size = 20 * sizeof(int);

check(p[3], pmeta) && p[3] = 13;



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Dynamic 

Instrumentation



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Dynamic Checks Instrumentation

For any violating pointer dereference
Before GetElementPointer LLVM instruction:

• If pointer access was classified SAFE by static analysis, skip check.

• Prepare bounds check: if (!checkBounds(p, offset, pmeta)) { trapFunction(); }

• Check always false?  Skip check
(e.g., p[i] for p with fixed length >= 3 and i inferred as 2)

• Check always true?  Report memory bug
(e.g., p[i] for p with fixed length < 3 and i inferred as 2)

• Add bounds check.

Checks reduction
Based on type tracking and pointer usage

When propagated metadata results in constant check



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Dynamic Checks Instrumentation

Optimizations to reduce metadata table lookups:
Functions taking pointer parameters:

void f(int* p)  void f(int* p, metadata pmeta)

Functions returning pointers:

int* f()  {int*, metadata} f()

return p;  return {p, pmeta};



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Evaluation Results



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Type Inference

AVERAGES

Safe: 81%

Seq: 13%

Dyn: 6%

Pointer Percentage



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Checks Reduction

Average: 20% reduction



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Code Size, Performance, and Memory Overhead

As low as 7%, always <10kbCode size 5%, performance 6%

Overhead bytes



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Fault Injection

AVERAGES

Static: 21.6%

Not Run: 36.8%

Dynamic (caught): 41.5%

Uncaught: 0%



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

State of the Art

CCured
Removes checks of SAFE pointers only

SoftBound
Instruments all pointers

SafeTinyOS
Requires extensive annotations or exclusion of entire components

Relies on Deputy source-to-source compiler



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Naïve vs. Optimized Improvement

Average improvement: 

41.13%

Overhead

NAÏVE:

no check reduction optimizations

NESCHECK:

with full check reduction optimizations



MATHIAS PAYER – PURDUE UNIVERSITY ASIACCS 2017

Conclusion

nesCheck
Type system for pointer types: safe, seq, dyn

Statically prove pointer operations safe

Protect potentially unsafe operations at runtime

APPLICATIONS: Automatic hardening of embedded software, consumer and corporate devices, …

https://github.com/HexHive/nesCheck


