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Abstract
Modern systems rely on Address-Space Layout Ran-

domization (ASLR) and Data Execution Prevention (DEP)
to protect software against memory corruption vulnera-
bilities. The security of ASLR depends on randomizing
regions in memory which can be broken by leaking ad-
dresses. While information leaks are common for client
applications, server software has been hardened to reduce
such information leaks.

Memory deduplication is a common feature of Virtual
Machine Monitors (VMMs) that reduces the memory
footprint and increases the cost-effectiveness of virtual
machines (VMs) running on the same host. Memory
pages with the same content are merged into one read-only
memory page. Writing to these pages is expensive due
to page faults caused by the memory protection, and this
cost can be used by an attacker as a side-channel to detect
whether a page has been shared. Leveraging this memory
side-channel, we craft an attack that leaks the address-
space layouts of the neighboring VMs, and hence, defeats
ASLR. Our proof-of-concept exploit, CAIN (Cross-VM
ASL INtrospection) defeats ASLR of a 64-bit Windows
Server 2012 victim VM in less than 5 hours (for 64-bit
Linux victims the attack takes several days). Further, we
show that CAIN reliably defeats ASLR, regardless of the
number of victim VMs or the system load.

1 Introduction
Virtualizing at machine boundaries provides strong

isolation guarantees. Public Infrastructure-as-a-Service
(IaaS) clouds leverage this isolation to securely multiplex
physical resources between different tenants, each run-
ning their own customized operating system (OS) and
applications for their unique needs. Running multiple
instances of the same type of OS, often with similar soft-
ware stacks, leads to multiple copies of the same data on
memory and disk. Techniques have been developed to
reduce the duplication of data (i.e., deduplication). Dupli-
cate pages (for memory) or duplicate file system blocks

(for disks) are shared among VMs. Deduplication directly
reduces the required resources for VMs, allowing to run
more VMs on the same hardware configuration.

While deduplication reduces resource requirements of
VMs, it also introduces a side-channel that allows other
VMs to probe for the existence of specific memory pages.
This attack vector operates by crafting a memory page
with equal contents to a memory page that exists on neigh-
boring VMs (victims). If this page indeed exists on a
victim VM, then the deduplication process merges this
crafted page with the page residing on the victim’s mem-
ory. This page is then marked as read-only and gets shared
by the attacker and the victim. Measuring write times al-
lows the detection of merged pages. If the merge has
happened, writing to the page takes much longer because
of the page-fault on the read-only shared page, and the re-
sulting CoW (Copy-on-Write) for creating a private copy
of the modified page. This attack has previously been
used to leak binary versions of software [20]. Further,
this attack has also been used to detect the location of
sensitive data structures in a victim’s memory [9], leading
to successful AES [5] key retrieval.

We show that this side-channel attack allows attackers
to break the core defense mechanism, Address-Space Lay-
out Randomization (ASLR), of popular operating systems
against memory-related security vulnerabilities. Com-
mon systems like Windows or Linux use Data Execution
Prevention (DEP) to prohibit execution of data on the
stack or heap regions of a process. The only regions
that remain executable are program code and its (dynami-
cally linked) libraries. ASLR randomizes the locations of
these regions, making it probabilistically unlikely for an
attacker to gain code execution or perform a code-reuse
attack using a memory error, such as a stack or heap
overflow. ASLR and DEP heavily rely on each other:
Without DEP, an attacker can inject new executable code
into the address space of a process and without ASLR,
the attacker can mount code-reuse attacks through return-
oriented programming (ROP) [15, 19] or other related



techniques [2, 4, 3, 21]. Hence, breaking only one of the
two defenses is enough to compromise the main line of
defense against memory-error attacks. While information
leaks are abundant on clients, e.g., through a memory
corruption vulnerability and client-side scripting (like
JavaScript), they are much harder to find on servers.

We show that it is possible to “leak” (or recover) the
randomized base addresses (RBAs) of libraries and exe-
cutables loaded within user space processes in neighbor-
ing VMs by leveraging the memory page deduplication
side-channel.

Using KVM [13], an off-the-shelf VM monitor (VMM)
that employs memory deduplication, we show the effec-
tiveness of our attack in a realistic setting. Our proof of
concept exploit, CAIN, breaks ASLR of a 64 bit Win-
dows Server 2012 victim VM in less than 5 hours using
default configurations. We estimate a successful attack
to take several days on a recent 64 bit Linux system, de-
pending on how much memory is available (e.g., with
4GB of memory we estimate an attack time of around 18
days). Using a webserver scenario, we show that CAIN
can reliably break ASLR even when the VM is under
various degrees of system load. Further, we show that
breaking ASLR of multiple neighboring VMs is also fea-
sible and increasing the number of VMs running on the
same physical hardware does mainly affect the required
attack time. These results show that memory deduplica-
tion in a cloud setting compromises the current defense
against memory-error attacks on popular systems. We
will discuss mitigations against this attack, but we believe
that additional research in this area is necessary due to
the increasing popularity of IaaS clouds [1].

2 Threat Landscape in Public Clouds
In public clouds, systems are not only subject to attacks

from the outside but also from malicious neighbors run-
ning on the same physical hardware. VMs of different
organizations and companies are deployed right next to
VMs of potentially untrusted parties (e.g., anyone with a
credit card). Weak and vulnerable systems running on the
same physical hardware pose a security risk for all their
co-located neighbors. In this paper, we describe an attack
that can be used to break ASLR of neighboring VMs. This
attack abuses the sharing of physical memory resources
between multiple VMs. Before delving into the low-level
details of the attack, we give a brief overview of ASLR
in modern systems and we discuss how memory sharing
is done in KVM, one of the most popular VM monitors.
While we focus on KVM in this paper, the same attack
vector exists on other VM monitors as well [14, 22].

2.1 Address Space Layout Randomization
Windows Microsoft recently introduced improvements
to ASLR with Windows 8 [12]. Microsoft Windows

x86 64 OSes have High Entropy ASLR providing up
to 33 bits of entropy for stacks and 24 bits for heaps [12].
Despite these improvements, base addresses of executa-
bles (17 bits) or DLLs (19 bits) still have limited amount
of entropy. Another particularity of Windows ASLR
is its per-system randomization of DLL base addresses.
As PE files usually contain many relocations, ASLR is
only done once per system boot. Thus, most DLLs (e.g.,
ntdll.dll) share the same virtual address between all
processes on the same system. This setup allows Windows
to keep only one copy of the DLL in memory, reducing
memory consumption.

Linux In Linux based systems, ASLR for shared li-
braries is provided by mmap(). The user-space dy-
namic linker and loader, ld-linux, loads ELF dy-
namic shared objects by mapping the binary images
from disk over mmap() into the process’ virtual address
space. mmap() randomizes the addresses of mappings
over mmap_rnd() [8]. For 32 bit x86 Linux systems,
mmap_rnd() provides 8 bits of entropy and for 64 bit
x86 28 bits. Linux based systems deploy PIC (Position-
Independent Code) for shared libraries. With PIC, base
addresses can still be randomized individually for each
process without having to duplicate the executable pages.
However, the main executables are often prelinked for
speed (e.g., on 32bit x86). These executable images are
loaded at well-known addresses. Recent x86 64 Linux
Distributions have started to ship executables as PIC,
which allows full ASLR (randomizing every region of
a process). On 32 bit x86 systems, PIC still incurs major
performance overhead [17], making full ASLR costly.

2.2 Kernel Same-page Merging (KSM)
KSM is the memory deduplication implementa-

tion of the Linux kernel which is used by KVM.
KSM’s behavior can be configured over sysfs

(/sys/kernel/mm/ksm/). Over run KSM can be
enabled ’1’ or disabled ’0’. The values in
sleep_millisecs and pages_to_scan define how of-
ten KSM will be invoked (e.g., sleep_millisecs = 200,
5 times per second) and how many pages KSM scans
per invocation (e.g., pages_to_scan = 100, 100 pages)
which would result in 500 pages per second. Depending
on the workload, different values are optimal [18].

When KSM is active, a kernel thread regularly inspects
memory pages that are subject to memory deduplication.
When two equal pages are found, they are merged and
both page table entries will from now on point to the same
physical page. The page is marked as read only and a
write to it triggers a CoW operation.

Internally KSM uses two red-black trees with page
hashes, a stable tree that holds all shared pages, and an
unstable tree that keeps track of all potential candidates.
When scanning, KSM looks at one page at a time. If there
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is a match in the stable tree, the page is merged. If not,
and the page was not modified since the last scan, the
page is put into the unstable tree. If a page with the same
content already exists in the unstable tree, the pages are
merged as well. The unstable tree is then purged when all
pages were scanned, and the next iteration starts.

3 Breaking ASLR with CAIN
Our proof-of-concept implementation of the attack

called CAIN (Cross-VM ASL INtrospection) is imple-
mented as a C++ program that runs as an unprivileged
user space process on Linux. We make the following
assumptions in the design of CAIN:

• There is a measurable and noticeable difference in the
time a memory write operation takes depending on
whether the page at the write address is shared or not.

• Noise will not eliminate these differences, i.e., when
write operations take generally longer, writing to a
CoW page will still be noticeable.

• There is a duration M which is smaller than any CoW
operation. Depending on the architecture and the OS,
we can assume that a CoW will take at least M cycles.

• The probability that two or more randomized base ad-
dresses (RBAs) over all running VMs are exactly the
same, or with adjacent addresses is negligible.

• The probability that the same false positive is subse-
quently affected by noise multiple times such that it
will always be identified as a correct guess is negligible.

Only the first assumption must hold for the attack to
succeed. The others are important to merely increase the
reliability and speed of CAIN.

3.1 Attack Overview
We designed the attack to be automated and indepen-

dent of the VMM, the VMM’s underlying memory dedu-
plication implementation, and the memory architecture.
Conceptually, we brute force all possible randomized
base addresses (RBAs) by taking advantage of time differ-
ences in memory write operations to deduplicated mem-
ory pages that are marked as read-only. These time dif-
ferences provide us with a side-channel that reveals if a
page is shared between VMs or not. To get correct results,
the attacker must wait a certain amount of time for the
crafted page to get merged. The right amount of time is
not known upfront and the attack becomes unsuccessful
if the attacker does not wait until after the merge. Further-
more, the side-channel contains noise, resulting in false
positives and false negatives.

To brute force the RBA, we construct guesses that con-
sist of entire pages that we know must exist in the victim
VMs. The entropy of these pages should depend entirely
on the RBA. We can therefore create all possible pages
with one base address guess per page and then derive its

Figure 1: PE file format on disk and in memory.

existence over the memory deduplication side-channel,
effectively derandomizing ASLR.

There are two main challenges. First, we need to con-
struct pages that are suitable for the attack. We discuss
how to construct these pages for Windows in Section 3.2,
and for Linux in Section 3.3. Second, the attack must be
automated and reliable, requiring handling noise that is
present within the memory deduplication side-channel.
To address these challenges, CAIN runs in three distinct
phases that we discuss in Section 3.4.

3.2 Attacking Windows
To attack ASLR on Windows, we need a page that con-

tains the ASLR base address of a specific library, i.e., the
page’s entropy has to be exactly the entropy of ASLR. In
addition, the page should be mostly static or, ideally, read-
only on the victim VM such that it is reliably merged with
our guess (given enough time). Data pages on the stack
or heap are therefore not suitable as they are (i) highly
dynamic and (ii) contain high entropy. When examin-
ing a Windows process in memory, we see that similar
to other systems, executable file images (PE executables
and DLLs) are memory mapped into the process’ address
space. These mappings usually contain code pages, data
pages, and information required by the loader to setup
the memory layout of the process and to perform all the
required relocations. Examining the very first page of a
PE file (e.g., ntdll.dll) reveals an interesting property:
it is entirely static except for the ImageBase field in the
optional header.

As illustrated in Figure 1 when a PE file is mapped into
memory during process creation, the first page contains
the DOS, COFF, and Optional Header. Within the Op-
tional Header, there is a field ImageBase that contains
0x180000000 on the disk image of the file. But once
loaded in memory, this field will be updated with the load
address of the PE file in memory, i.e., the RBA. We can
easily extract this first page given any DLL or executable
image. Given this page, we can now brute force the RBA
with the technique described in Section 3.1.

Note that when running multiple Windows VMs with
the exact same OS version, the first page of, e.g.,
ntdll.dll will be exactly the same (except for the dif-
ferent system-wide RBA). By detecting all RBAs, the
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Figure 2: Attacker memory when attacking Windows.

attacker can reveal the exact number of Windows VMs
running on the same physical machine.

To brute force the RBA of a specific DLL, we recon-
struct the exact first page of that DLL in the attacker’s
memory and adapt the RBA within the ImageBase field.
Figure 2 shows how attacker memory looks like. The high-
lighted pages contain the same contents (the attacker’s
guess and the first page of the target DLL in the vic-
tim’s memory), which is then merged at some point in
time. This is the attacker’s goal, and writing to this page
triggers a CoW, which allows the attacker to detect the ex-
istence of the same page and the exact RBA of the victim
VM.

3.3 Attacking Linux
Attacking Linux based VMs requires more effort and is

less effective due to the different ASLR design. The 64 bit
Linux ASLR implementation uses 28 bits of entropy for
mmap() [8].

Mapped code pages of ELF files under Linux are
mostly identical due to PIC (Position-Independent Code)
support (at least for ELF shared objects). Other pages like
data pages are not suitable under Linux because of their
high entropy characteristics. Looking closer at the ELF
file mappings of Linux processes, we can see mappings
with different protection flags. The GNU_RELRO segment
provides some pages that are mapped into a process as
r--. Before the pages are actually marked read-only
relocations are performed. Many R_X86_64_RELATIVE

relocations point exactly to sections in the GNU_RELRO

segment. These relocation entries instruct the dynamic
linker to add the base address of the ELF binary image to
the value found at these locations (originally loaded from
the ELF disk image). This is exactly what the attacker
needs as it is now possible to reconstruct these pages,
given the binary image and a guess for the RBA of that
specific ELF shared object (e.g., the libc.so).

Once such a page is found, the attacker mounts the
same attack as for Windows by taking advantage of the
memory deduplication side-channel. However, because
of the additional entropy bits in Linux for mmap (28 bits
compared to 19 bits on Windows), the attacker either
needs more memory or more time to brute force this
significantly larger space.

3.4 Attack Phases
CAIN operates in these three phases in order to find

the RBAs: (i) sleep time detection, (ii) filtering, and (iii)
verification.

To automate the attack wait time for the underlying
memory deduplication implementation to merge pages
has to be estimated. Section 3.5 describes this step in
more detail. Next, we eliminate as many guesses with as
little memory as possible. Bruteforcing the entire ASLR
entropy space requires a lot of memory. As we need one
page per guess, this step would at least require the creation
of 219 × PAGESIZE = 2GB to attack a 64 bit Windows
or 228 × PAGESIZE = 1024GB to attack a 64 bit Linux.
Depending on the available memory, filtering can be done
in one round (at least against Windows) or multiple rounds
by splitting up the search space. More on filtering can be
found in Section 3.6. The last step consists of verifying
the remaining guesses in a more reliable way and thus
eliminating false positives, by using more memory per
guess. This is described in Section 3.7.

3.5 Sleep Time Detection
To perform a fully automated attack, CAIN estimates

the amount of time it waits (the attack’s sleep time per
round) for the guess (crafted page) to be merged with the
target page. This is important as waiting too little would
miss a correct guess and waiting too long would unneces-
sarily extend attack time. The required sleep time for the
memory deduplication implementation to merge pages
varies and depends on several factors. First, it depends
on the algorithms and data structures used by the imple-
mentation. Second, run-time factors like total amount of
memory subject to deduplication, CPU load, and other
characteristics can influence the required sleep time. We
consider the memory deduplication implementation to be
a blackbox and propose a simple iterative approach to
estimate the required sleep time.

We first allocate a buffer and within it we generate a
large number of random pages. We then copy every sec-
ond page of the first half of the buffer to the same location
in the second half of the buffer. The buffer now consists
of N pairs of pages (that contain random bytes) with the
same content (R-1, R-2,..., R-N) and unique random
pages between these pages. We now try a first estimate
and wait, e.g., 10min. After that time, we start touching
all the pages within the first half of the buffer by moving
a pointer over the first byte of every page and write to it.
During this sweep, we measure write times and when the
write time of every second page is significantly longer
than the ones of the adjacent random pages we mark the
page as potentially merged. The page was either merged
or accidentally detected as merged because of noise. De-
pending on the detection rate, we do the following:
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Figure 3: Attacker memory during filtering.

• if detection rate is greater than 95%, we add a safety
margin of 20% to the last sleep time estimate and return
this as the result;

• if detection rate is less than 50%, we double the last
time estimate, and rerun the algorithm with the new
(twice as large) estimate;

• if detection rate is in between 50% and 95%, we multi-
ply the last time estimate with the inverse of the detec-
tion rate, and rerun the algorithm with the new estimate.

This simple search will return a sleep time that has a
high detection rate. Depending on the memory dedupli-
cation implementation this technique might not produce
optimal results. In this case the attacker can either come
up with a better way to estimate sleep time, or just use a
conservatively long wait time (e.g., 10 hours).

3.6 Filtering
Depending on the number of entropy bits and the

memory available for the attack, R filtering rounds with
R = 2(Entropy−log2(Memory/PAGESIZE)) are necessary.
Assuming the attacker has 2 GB of available memory, at-
tacking Windows with 19 bits of ASLR entropy requires
only one filtering round because all the crafted guesses fit
into one memory buffer of 2GB.

During filtering we construct the memory layout shown
in Figure 3. We fill all the available memory with guess
pages. For Windows this is the first page of the DLL that
we want to derandomize. For all the base address guesses,
we create a page and adapt the ImageBase field of these
pages, with one guess for each base address. We then
wait for the estimated sleep time.

Next, we touch all pages by writing to each page’s
first byte, measuring how long each write takes. If we
encounter a page with a significantly higher write time
than its neighbors, we mark it as a potential candidate,
admitting it to the next phase. We define significantly
higher write time as at least two times greater than the
average write time of the adjacent pages. In Figure 3,
the highlighted page has a measured write access time of
2,667 cycles, whereas the neighbor pages have an average
access time of (29+ 34)/2 = 31.5 cycles. We found a
threshold factor of two to be very conservative. Write
times that trigger a CoW often take much longer than non-
CoW write times. However, to avoid false negatives the

Figure 4: Attacker memory during verification.

threshold factor should not be too large. Furthermore, we
also check the write time to be above a certain minimal
write time (M) for CoW operations to avoid false positives.
In our implementation we use 1,000 cycles, but this value
can be adapted according to the underlying architecture
and system. The exact same parameters worked well in
our tests on a Workstation setup (Intel i7-4770 CPU, 8
cores, 8 GB memory) and a Server setup (AMD Opteron
6272 Dual CPU, 32 cores, 32 GB memory). An attacker
can select alternative values if our heuristics do not work.

Last, we check if the adjacent write times do not di-
verge significantly from each other. We verify that the
differences between write times is not greater than a third
of the larger write time of both. We noticed that when
write access times are affected by noise, they start to di-
verge. This additional criteria helps us filter out such
cases. These detection heuristics may cause false nega-
tives and false positives. False negatives happen when
noise results in a write of an adjacent page to a page with
the correct guess. The probability of this is low, but if it
happens, CAIN terminates without finding a result. The
attacker can then run CAIN again. In our experiments,
false negatives occurred rarely (usually due to short wait
times). False positives are, however, more common due to
noise. We deal with them in the next phase of the attack.

At the end of all filtering rounds, we have a set of
potential guesses that contain all the RBAs. Note that
every guess is checked exactly once during filtering.

3.7 Verification
We now have to verify each of the remaining guesses

to remove false positives. Because most candidates are
already eliminated, we now have more memory at our
disposal. We again craft pages with the corresponding
guesses. This time, we allocate random pages in between
these pages. Figure 4 shows the memory layout during
verification rounds.

After waiting the estimated sleep time, we try again to
detect all merged pages. Candidates that are not detected
as being shared are removed. The number of rounds de-
pends on the results. We continue verifying candidates as
long as the set of candidates between verification rounds
differ. As soon as the set between verification rounds does
not change, or there is only one candidate left, we stop the
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attack. This convergence usually happens after 2 to 3 ver-
ification rounds. The main purpose of verification rounds
is to reliably filter out false positives caused by noise. We
can assume that if a page is falsely detected as a candidate
because of noise, the page will with high probability not
be affected by noise again in the next verification round.
The attack completes after the last verification round, and
all the remaining guesses are reported as hits.

3.8 Post-CAIN Attack
Depending on the victim OS and the number of victims,

at the end of the CAIN phase the attacker will have one
or a set of derandomized base addresses for a specific
library module like e.g., ntdll.dll or libc.so. In the
case of multiple Windows victims or one or more Linux
victims the base addresses are not linked to specific VMs
(Windows and Linux) or processes (Linux). First, note
that code-reuse attacks do not require more code or gad-
gets than usually found in one large library [19]. It is
therefore sufficient to derandomize the base address of
ntdll.dll (Windows) or libc.so (Linux) to perform a
code-reuse attack and thus fully bypass ASLR. Second, in
most cases attacked processes or threads will restart after
a failed attack attempt. Thus trying out all derandomized
base addresses will work in case the memory layout is not
re-randomized. Even in the presence of ASLR brute-force
protections that limit the number of process restarts, since
the number of required trials is very low, these protec-
tions are likely not effective. Third, attackers can also
just derandomize a library or the executable itself that
is known to be used only in the targeted VM or process
thereby eliminating the need to guess at all. An extension
of CAIN further uses the derandomized base addresses
to link the base addresses to a specific VM or process by
constructing pages that contain values derived from the de-
randomized base address of e.g., ntdll.dll or libc.so
and that are known to only exist in a specific VM or pro-
cess. With the knowledge of a library’s base address and
the software running on the host, CAIN constructs tar-
geted pages that are only used by that software to identify
the correct base address. Possible candidates are pages
containing the Import Address Table (IAT) in Windows
or the PLT (Process Linkage Table) entries in the GOT
(Global Offset Table) .got.plt in Linux. These pages
contain pointers to libraries, allowing CAIN to further
link a base address to a process or even a VM in case the
process is known to only exist in one VM.

4 Evaluation
We evaluate CAIN attacks in different scenarios.

All experiments run on a dual CPU blade server
with two AMD Opteron 6272 CPUs (16 cores each)
and 32 GB of RAM. The system runs on Ubuntu
Server 14.04.2 LTS x86 64 (Linux Kernel 3.16.0), us-

ing the standard KVM software in its default config-
uration as VMM. Except for the sleep_millisecs

(/sys/kernel/mm/ksm/sleep_millisecs) parameter
that instructs KSM how many milliseconds it must sleep
in-between scan cycles, we keep all the parameters at
their default values. All the VMs are configured with 4
virtual CPUs and 4 GB of memory. We run one attacker
VM with Ubuntu Linux 14.04, and up to 7 VMs with
Windows Server 2012 Datacenter (6.2.9200).

4.1 Attacking a Single Windows VM
We first evaluate the attack against a single vic-

tim. For the default configuration of sleep_millisecs
(200 milliseconds), a total successful attack takes 288
minutes, i.e., less than 5 hours: Our sleep time estimate is
96 minutes per round, and the attack requires one filter-
ing round and two verification rounds. From the initial
524’288 (19 bits of entropy) possible base addresses 6179
(12.6 bits of entropy) advance to the verification phase.
The first verification round eliminates 6172, and the last
round eliminates the remaining 6 false positives. We ver-
ified that the remaining candidate is the correct RBA of
ntdll.dll in the victim VM.

Figure 5 shows the attack duration with different values
for sleep_millisecs. Each dot represents one com-
pleted round. After each round the set of base addresses
and therefore the ASLR entropy is reduced till the cor-
rect base address is found (i.e., ASLR entropy = 0). As
expected, the shorter the KSM cycles (more pages are
potentially merged within the same amount of time), the
faster the attack. The ASLR entropy is effectively re-
duced from 19 bits to 0 bits, i.e., the exact value. In
our experiments, the attack always takes 3 rounds de-
spite the sleep_millisecs value. Depending on noise
the number of rounds can vary. For sleep_millisecs
20 milliseconds, the attack takes only 36 min (12 min
per round). Note that our sleep time estimation is not
optimal, and an attacker could invest more time and effort
to optimize it, resulting in even shorter attack times. This
becomes clear when looking at the attack time for 120,
160, and 200 milliseconds. All these configurations result
in the same sleep time estimation and thus the exact same
overall attack time. A more fine-grained sleep time esti-
mation would probably reduce the attack time for these
sleep_millisecs configurations. The continuous lines
in Figure 5 denote fully performed and verified attacks
whereas the dotted lines denote only estimations.

Next, we look at how a system under load reacts to the
attack. We use a victim VM running a Internet Informa-
tion Services (IIS) webserver and a different system to
generate web requests with ab (the Apache Benchmark
tool). The IIS webserver hosts two files. One static html
file of size 56 KB and one jpg file of size 1054 KB. The
files correspond to average html and jpg file sizes hosted
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Figure 5: Attacking a single Windows VM.

Figure 6: Attacking a Windows VM under load. sleep ms = 20

by webservers [6]. We use the following configurations:
1. 1 request per second per file (“1 req/sec”);
2. 10 requests per second per file (“10 req/sec”);
3. 100,000,000 requests with 1,000 concurrent connec-

tions kept alive per second per file (“max”).
Figure 6 shows that the attack is not influenced by the

generated load. We successfully leaked the correct RBA
for all load scenarios in 36 minutes per attack. Note that
we use sleep_millisecs 20 to reduce the required time
for testing.

4.2 Attacking Multiple Windows VMs
We run the attack against multiple victim VMs with

sleep_millisecs 20. The scenarios consist of up to
six concurrently running victims. Figure 7 shows that
increasing the number of concurrent VMs also increases
the required attack time (due to the additional memory
which requires longer sleep times). The attack against
six running victim VMs takes 384 minutes in total, with
one filtering and three verification rounds. Compared
to the single victim attack (two verification rounds), the
attack requires one additional verification round to make
sure the set of candidates converges (last horizontal step
where entropy stabilizes). The remaining 6 candidates
are the correct ntdll.dll RBAs of all running victim
VMs. Note that due to the nature of our attack, all RBAs
of all co-located VMs are leaked during a single run of
our attack. In Figure 7, we assume the attacker targets
any of the co-located Windows VMs (i.e., in case of 6
victims, of the 219 = 524288 base addresses 524288 - 5
= 524283 have to be eliminated). In all reported attack

Figure 7: Attacking multiple Windows VMs. sleep ms = 20

times our attack recovered the RBAs of all co-located
Windows VMs (no false negatives and no false positives).

4.3 Attacking a Single Linux VM
We propose using the page described in Section 3.3

to mount attacks against Linux victims. Linux RBAs
of shared libraries have higher entropy, resulting in in-
creased memory requirements on the attacker side. We
can not expect to be able to allocate 228 ∗ PAGESIZE
(=1 TB) of memory, but we can divide the attack into
multiple filtering rounds. Assuming 4 GB of memory we
estimate an attack against a 64 bit Linux VM to require
2(28−log2(4GB/4096)) = 256 filtering rounds. Assuming
the average elimination rate for filtering rounds in our
experiments, additionally, four verification rounds are
required (last one for convergence). The 261 rounds in
total with the default sleep_millisecs configuration
(200 milliseconds i.e., 96 minutes per round) will result
in a total estimated attack time of 261× 96minutes =
25056minutes = 17.4days. Doubling the available at-
tacker memory will reduce the required attack time by
half. With 8 GB of memory, we therefore estimate an
attack time of 8.7 days and with 16 GB, 4.35 days. As-
suming a Linux victim VM with a reasonable uptime this
attack becomes feasible.

4.4 Attacking Real-World Environments
Based on our experimental setup, we believe that

CAIN-like attacks are highly feasible in real cloud en-
vironments. Our setup uses standard software and server-
grade hardware. Still, it is crucial that memory dedupli-
cation is enabled within the VMM for our attack. We
contacted a number of commercial cloud providers with
a questionnaire to investigate the popularity of memory
deduplication in real-world settings. Based on the re-
sponses we received, it is clear that memory deduplication
is indeed used in public cloud settings. Some providers
use it as their default configuration and some providers
do not use it at all: i.e., they explicitly disable it or their
underlying VMM does not support it.

Further, the resources available to an attacker and the
number of VMs running have an impact on attack time.
As most commercial IaaS offerings have more than 4 GBs
of RAM, memory availability is not an issue. As we
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performed our experiments with up to 6 victim VMs,
concurrently running VMs should not be an issue either.
One point to consider is operational noise, e.g., due to
the migration of VMs to different hosts (e.g., for a host
kernel update or to rebalance load). These events can
not be excluded and might prevent an ongoing attack,
especially when attack time is in the order of weeks. As
these maintenance tasks are mostly performed in larger
intervals, we do not consider this a serious problem for a
determined attacker.

5 Mitigations
The CAIN issue cannot be accounted to one specific

vulnerability in the VMM or system that can be punctually
fixed. We describe multiple potential mitigations for the
attack and discuss their effectiveness and implications.

VMM layer: Deactivation of memory deduplication
Deactivating memory deduplication will effectively mit-
igate all attack vectors. This measure unfortunately
eliminates all the highly appreciated benefits of mem-
ory deduplication, namely the increase of operational
cost-effectiveness through inter-VM memory sharing.

VMM layer: Attack detection Instead of preventing
the attack directly, the VMM can observe the guest VM
and detect an ongoing attack based on memory creation
and page fault behavior. We do not propose any specific
heuristic but we suggest the concept of detecting the attack
instead of preventing it.

ASLR layer: Increase ASLR entropy One of the fac-
tors making the attack feasible is the limited entropy in
RBAs. We suggest to further increase ASLR entropy to
not only mitigate the attack described here, but to continue
making ASLR more effective.

Process layer: More entropy in sensitive memory
pages The pages we use in the attack are good can-
didates because their entropy consists solely on the ASLR
entropy i.e., we can reliably construct the page once a
base address is known or guessed. Increasing entropy in
these pages or making sure that no such pages exist can
mitigate the issue.

6 Related Work
There are a number of studies that use a similar side-

channel attack on memory deduplication for different
purposes as ours. Suzaki et al. [20] showed that it is
possible to identify running applications in neighboring
VMs. Owens and Wang [16] fingerprinted neighboring
OSes with a similar attack, and Irazoqui et al. [10] man-
aged to detect cryptographic libraries along with the IP
addresses of the neighboring VMs. Xiao et al. [23] cre-
ated a covert channel in virtualized environments using
this side-channel to create a stealthy backdoor.

There has been a large body of work around side-
channel attacks over shared CPU caches. Most notably
FLUSH+RELOAD [25] showed that it is possible to leak
data from a sensitive process such as one that does crypto-
graphic primitives. Irazoqui et al. [9] improved the attack,
retrieving AES cryptographic key in the cloud through a
combination of FLUSH+RELOAD and a memory dedupli-
cation side-channel. They recently improved their attack
to successfully retrieve private keys from other crypto-
graphic libraries [11]. Using a similar attack, Zhang et
al. [26] could leak sensitive application-level data to hi-
jack user accounts, and to break SAML single sign-on.

Hund et al. [7] propose a technique based on shared
CPU cache timing side channels to leak kernel space
ASLR from user space.

Recent work showed that the VMM can force page-
faults in the guest VMs in order to retrieve sensitive infor-
mation from the VMs, such as RBAs [24]. In this paper,
we showed that we can retrieve RBAs without the VMM
privileges required for inducing page-faults in the guest
VM. Instead, our exploit, CAIN, relies on the page-faults
resulting from the memory deduplication process.

7 Conclusion
We described CAIN (Cross-VM ASL INtrospection),

an attack against memory deduplication in virtualized
environments that breaks ASLR of Windows and Linux
targets running on the same physical hardware. Our attack
prepares well-known memory pages that contain the ran-
domized base address and uses the memory deduplication
side-channel to detect if the page exists on the target VM.

Our proof-of-concept exploit against KSM, the memory
deduplication implementation used by KVM, a popular
VMM, breaks ASLR of a 64 bit Windows in less than
5 hours, and of a 64 bit recent Linux system in around
18 days. We have shown that the attack time depends on
attacker available memory, the number of co-located VMs
and the memory deduplication configuration in place.

We discussed possible mitigations and their implica-
tions, but given the great interest to support multiple ten-
ants in cloud-based environments, we think that addi-
tional investigation of CAIN-like attacks and defenses is
urgently required.

We have notified the affected vendors about CAIN; the
issue is tracked under CVE-2015-2877.
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