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Abstract
Signature-based similarity metrics are the primary mech-
anism to detect malware on current systems. Each file is
scanned and compared against a set of signatures. This ap-
proach has several problems: (i) all possible detectable mal-
ware must have a signature in the database and (ii) it might
take a substantial amount of time between initial spread of
the malware and the time anti-malware companies generate
a signature to protect from the malware.

On the other hand, the malware landscape is changing:
there are only few malware families alive at a certain point in
time. Each family evolves along a common software update
and maintenance cycle. Individual malware instances are
repacked or obfuscated whenever they are detected by a
large set of anti-malware products, basically resulting in
an arms race between malware authors and anti-malware
products.

Anti-malware products are not efficient if they follow
this arms race and we show how it is possible to maximize
the advantage for malware distributors. We present MalDiv,
an automatic diversification mechanism that uses compiler-
based transformations to generate an almost infinite amount
of binaries with the same functionality but very low similar-
ity, resulting in different signatures. Malware diversity builds
on software diversity and uses open decisions in the com-
piler to reorder and change code and data. In addition, static
data is encrypted using a set of transformations. Such a tool
allows malware distributors to generate an almost unlimited
amount of binaries that cannot be detected using signature-
based matching.

1. Introduction
The malware landscape is changing but current defenses still
rely on assumptions made more than 20 years ago: reac-
tion and adaptation to new malware families is slow and the
amount of different new malware samples an anti-malware
company can cope with is limited due to some manual analy-
sis involved in the process of generating new signatures. On
the malware side, it is all about money. Attacks are (usually)
no longer carried out by hobbyists or home grown hackers,
but by larger groups that adhere to a strict software develop-

ment cycle. A new piece of malware is developed over some
time, sold to different customers, and updated in a regular
software release maintenance and development cycle.

There are no longer thousands of different viruses, worms,
and other malware alive at any point in time but only a
few malware families. These few malware families are up-
dated on a regular basis and diversified using packers (or
crypters) [15, 23, 24, 26, 28]. Packers are small programs
that hide the real code and data of the malware and unpack
(or decrypt) it at runtime. The advantage of using a packer is
that only a small amount of code must be changed to produce
a completely different binary that evades signature-based
detection as carried out by current defense technologies like
anti-malware products. Yet, each new version incurs some
cost. Somebody needs to manually update the packer or up-
date the configuration of the packer to produce a new, man-
ually diversified version of a specific malware family.

Due to the huge amount of manually diversified and
packed binaries of only few malware families found in the
wild we infer that malware diversification is already used
in practice to circumvent signature-based matching, albeit
using a slow, partly manual process.

Classic defenses are severely limited when facing diversi-
fied binaries. Anti-malware products (basically all anti-virus
products evolved into anti-malware products) still work ac-
cording to old assumptions of anti-virus software made in
the late 80ies or early 90ies: each file is scanned and com-
pared against a database of well-known bad examples. This
database must be updated regularly and deployed to all the
clients. A slow update cycle allows new malware to spread
fast and far before it can be detected. In addition, the re-
sources of defensive systems are constraint in multiple ways:
(i) the amount of performance slowdown a user accepts is
limited, (ii) the update frequency of the database is limited
by the amount of bandwidth and server resources that the
anti-malware company has available, and (iii) the number of
malware samples that can be analyzed is constrained by the
amount of reverse engineers that the company can employ.

Defending current systems against malware is already
a hard task (relying on these old practices). In this paper
we present MalDiv, a new way to automatically diversify
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malware using a compiler-based diversification approach.
This approach allows us to quickly and automatically gen-
erate large amounts of unique binaries using a single, unique
source code base. MalDiv produces binaries with low simi-
larity between each other using the same source code. Mal-
Div is effective, if two binaries produced from the same
source code have low similarity, e.g., a signature for a first
file does not match a second file.

For MalDiv we rely on software diversity [4] as a base-
line. Software diversity uses open choices during the com-
pilation of source code to accomplish different goals, e.g., it
can be used to randomize the data layout on the heap to pro-
tect against memory corruption (an exploit only succeeds on
the specific diversified binary it was written for but not on
other diversified binaries) [4, 5, 9, 10, 13, 17]. The goal of
malware diversity is to minimize similarity between differ-
ent binaries and we diversify both code and data.

If the malware authors can produce new (different) bi-
naries faster than the anti-malware companies can come up
with signatures then signature-based detection approaches
are completely mitigated. In addition, MalDiv can be tuned
to mitigate against other similarity metrics and heuristics as
well, resulting in an arms race between the anti-malware
companies that need to come up with new (more sophisti-
cated and probably more resource intensive) matching tech-
niques.

The paper is organized as follows: Section 2 introduces
background information in malware detection (presenting
different techniques used to detect malware); Section 3 in-
troduces MalDiv, our software diversity mechanism geared
towards malware diversity; Section 4 evaluates MalDiv; and
Section 5 concludes.

2. Malware detection
On a high level each anti-malware product offers compara-
ble functionality: it (i) scans each file before it is executed or
used; (ii) extracts a signature of the scanned file; (iii) com-
pares the signature against a database of known bad signa-
tures (using some similarity metric); and (iv) either puts the
file into quarantine if it matches or allows execution or us-
age of the file. Anti-malware products differ in the size of
the database, the speed of their response to newly diversi-
fied malware samples, and their heuristics for some similar-
ity metrics.

The signature database is updated frequently and anti-
malware companies collect large sets of potentially mali-
cious binary samples. These samples are analyzed first auto-
matically and later manually to generate precise signatures if
they are malicious. This manual analysis limits the amount
of signatures that can be generated in a specific amount of
time.

Anti-malware products run under the assumption that
they are installed on a clean and uncompromised machine
and that they will catch all malware. If any malware is al-

lowed to execute (on the same or higher privilege level as the
anti-malware software) then all security guarantees given by
the anti-malware product are void (as the malware might
disable or remove the anti-malware software). So in the end,
anti-malware software uses similar techniques like malware
to integrate itself deeply into the operating system (or more
recently the hypervisor) to protect itself from malware ac-
cess. Unfortunately, users are only willing to accept limited
performance impact so anti-malware software must scan all
files using a limited computational budget.

Modern anti-malware products, e.g., ClamAV [18], a
well-known open-source anti-malware scanner rely on a set
of similarity metrics with corresponding signatures:

Hash-based matching is a static technique that calculates a
hash (e.g., MD5, or SHA1) of a file or part of a file and
compares this simple hash against the signature for this
similarity metric. This technique uses very low resources
but the similarity metric fails if a single byte of the hashed
area changes.

Sequence-based matching is a static technique that matches
a small static sequence of bytes that identifies the mal-
ware family. This technique is more resilient against
changes in the binary but the signature writer must be
more careful not to match benign files as well.

Regular-expression-based matching is another static tech-
nique that uses a regular expression as signature, extend-
ing the computational expressiveness of sequence-based
matching. A malware instance is identified if the regular
expression matches a binary.

Behavioral matching is a static technique that identifies
malware according to a set of heuristics, e.g., system
calls commonly used in malware or other potentially ma-
licious functionality. This technique is a general detection
technique as it matches “general malicious behavior” and
not specific malware instances.

Dynamic behavioral matching is a dynamic technique that
extends behavioral matching. It uses a sandbox to analyze
the potentially malicious files. All interactions with the
operating system and modifications of the runtime sys-
tem are monitored and matched against a set of heuris-
tics. Advantages of this technique are that the effects of
packers or other diversification can be mitigated but due
to limited resources the analysis can only run for a short
amount of time and is therefore incomplete.

All signature-based techniques have the disadvantage that
they only match prior known malware that is in the signature
database. Several other approaches have been developed to
mitigate the drawbacks of signature-based matching. Some
approaches detect the packer and try to unpack the actual
malware code [15, 23, 26, 28]. Unfortunately, this approach
only works for known packers or packing techniques. Other
approaches try to normalize binaries to undo the effects of
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diversification [3]. These techniques are limited to simple
transformations (comparable to peephole optimizations car-
ried out by the code generator in a compiler).

All behavioral techniques must cope with false positives
and the incompleteness of their heuristics, resulting in an
arms race with the attackers. Dynamic techniques face the
additional drawback that the sandbox can be detected by the
malware [2, 7, 11, 25, 27, 29] resulting in another arms race
that tries to detect if a piece of code evades analysis [1, 7,
14, 16, 19, 21, 22]. Many of these dynamic techniques are
too resource intensive to be used on consumer machines.

Other similarity metrics outside of anti-malware products
can be used as well. Bindiff [8], for example, reconstructs
the control-flow graph of the binary and uses graph-based
matching as a similarity metric between two binaries.

3. Malware diversity
Malware diversity is a new form of software diversity that
maximizes the differences between individual compiled in-
stances to reduce the similarity. Compared to existing soft-
ware diversification, malware diversity does not need to pro-
duce high performance code. Malware diversity disrupts
similarity metrics by adding many small changes to code
and data layout throughout the produced binary.

MalDiv diversifies both code and data. The code is di-
versified using already existing diversification techniques
like instruction selection, register selection, control-flow
changes, or side-effect free computation. Malware diversity
focuses on maximum diversity in the generated code. Data
is diversified using per-instance encodings of static data.

3.1 Software diversity
Software diversity [4] adds a different spin to compilation:
under the assumption that the compiler version, flags, and
source code remain static for all compilations software diver-
sity produces different binaries for each compilation instead
of deterministically producing the same binary over and over
again. Software diversity can be used for many purposes: (i)
to combat the “software monoculture” [10, 12, 13], (ii) to
hide steganographic messages in binaries [6], or (iii) to pro-
tect software against exploits [4, 5, 9, 10, 17]. Diversification
engines use different compiler techniques to produce differ-
ent code and/or data layout for each compilation:

Instruction selection the code generator may select many
different instructions to carry out some computation (e.g.,
an addition can be expressed using a subtraction) or may
reorder instructions that do not depend on each other at
will.

Register selection the register allocator may shuffle the list
of free general purpose registers at any point in time
shuffle or enforce an artificial sparsity of general purpose
registers.

Control-flow changes the compiler can reorder, merge, or
split basic blocks, reorder branch targets in switch state-
ments, or use different inlining settings.

Side-effect free instructions the compiler can add garbage
computation alongside the regular computation at will or
even weave a second program into the program to change
the instruction mix.

Variable diversification the compiler may reorder the vari-
ables on the stack. If the compiler can prove that no
pointer ever escapes the diversified part of the program
it can also reorder and modify the contents of structures
and objects.

In general, software diversity relies on small changes of
the aggressiveness in the optimization toolchain of a modern
optimizing compiler. For example, if common subexpression
elimination is less aggressive and only (randomly) removes
some (random) subexpressions at some (random) points in
time then the diversity is increased.

3.2 Data diversification
In addition to all the code diversification and data layout di-
versification, each binary also contains static data that is used
during computation. This static data is often an ideal candi-
date for partial signatures. For MalDiv, we have looked into
several diversification patterns for this static data. Of course,
other diversification approaches for static data are possible
and can easily be added to the diversification toolchain.

1. During compilation the static data is encrypted using a
random key. At startup all data is decrypted before the
original application starts.

2. A second approach compresses all static data into a small
blob of data that unpacks the data at runtime.

3. A third approach decrypts the data only when it is first
used, adding a short test if the data has already been
decrypted before each use. This approach helps against
dynamic behavioral analysis that tries to match the data
region of the running malware process after unpacking
the static data.

A large set of different encryption/decryption schemes
are possible, from simple XOR-based encryption to more
sophisticated encryption schemes. To protect the decryption
code in the binary from becoming a signature it is diversified
alongside the other source code.

3.3 Implementation
We implemented MalDiv, a prototype of our malware diver-
sity engine on top of the multicompiler [13], building on the
LLVM [20] compiler framework. We use a combination of
the existing diversity mechanisms and provide pre-set set-
tings that maximize the diversity for the existing diversifi-
cation mechanisms. In addition, we have added the simple
XOR-based data diversification mechanism.
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The project GitHub page http://github.com/gannimo/
MalDiv contains all the resources needed to build the diver-
sifying compiler, instructions on how to get the original mul-
ticompiler, the static data diversification module, and a set
of examples that show how to use the diversifying compiler.

4. Evaluation
This section presents an evaluation of the current MalDiv
prototype implementation. We compare the similarity of a
set of diversified binaries using different metrics: hash-based
similarity and longest common substrings. We also discuss
possible mitigations against malware diversity.

As binaries we use a set of SPEC CPU2006 benchmarks
written in C/C++, nmap, and a simple port scanner.

4.1 Hash-based similarity
Hash-based similarity is not effective for any of the diver-
sified binaries. Both the binary as a whole and individual
segments (code and data regions) change due to the diversi-
fication between individual instances. Due to these changes
neither whole-binary nor segment-based/partial hashing of
binaries can be used to detect instances of the same malware.

4.2 Common substrings
To evaluate the power of individual signatures we test a set
of diversified binaries for common substrings (a sequence of
bytes that occurs in both files). Finding common substrings
is computationally very expensive but allows us to check if
some part of a binary remains static across several diversified
instances.
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Figure 1. List of common subsequences for SPEC
CPU2006 benchmarks (log scale).

Figure 1 shows (i) the list of SPEC benchmarks always
comparing two different diversified versions with each other,
(ii) perlbench compared with bzip and perlbench compared
with gobmk to show the similarity between two different
programs, and (iii) two diversified versions of nmap and a
simple port scanner.

From Figure 1 we see that few shared substrings are
longer than 20 bytes of length and most shared substrings
are shorter than 20 bytes. The longer substrings all fall into
one of the following criteria: start files (shared among all
programs compiled by the same compiler), function call se-
quences (pushing parameters on to the stack), mov sequences
(a set of mov instructions that initialize structures), float-
ing point sequences that are currently not (yet) diversified,
or hand written assembler instructions. Of these substrings
only the handwritten assembly instructions pose a problem
as they cannot be automatically broken up by the compiler.
Apart from these limitations it will be hard for malware an-
alysts to come up with efficient signatures for diversified bi-
naries.

4.3 Possible mitigation
The evaluation showed that any signature-based matching
is no longer effective for diversified binaries. Combined
with the high frequency in which diversified binaries can
be generated malware diversity allows malware authors to
spread fast and far without wide-spread detection (individual
malware instances can still be analyzed on a per-case basis).

Static and dynamic behavioral analysis of individual mal-
ware samples is of course possible and will discover simple
malware families. We assume that malware authors will rely
on existing anti-debugging and anti-forensics tools to miti-
gate these risks. Anti-debugging and anti-forensics is orthog-
onal to malware diversity and not part of MalDiv. Malware
products will quickly incorporate anti-debugging and anti-
forensic measurements on their own.

Graph-based binary similarity analysis tools like bindiff
can still effectively recover some similarity between di-
versified instances due to the limited diversification of the
control-flow that is implemented in the current MalDiv pro-
totype. Bindiff shows reasonably high similarity between
diversified instances and reasonably low similarity between
functionally different binaries due to the differences in the
control flow graph. Unfortunately, bindiff has a very high
analysis cost of up to 15 minutes to compare two diversified
instances. We reason that such a high analysis overhead will
remain unpractical for wide-spread deployment of such an
analysis technique.

5. Conclusion
Malware detection engines rely on signatures and common
behavior to successfully detect malware. The assumption of
these detection mechanisms is that each malware (family)
can be classified using some form of signature.

In this paper we introduce malware diversity which
breaks the above mentioned assumption. Our prototype Mal-
Div, a malware diversification technique automatically di-
versifies malware during the compilation. The LLVM-based
technique produces a large amount of binaries with very low
similarity in a short amount of time.
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