Generating Low-Overhead Dynamic Binary Translators

Mathias Payer

ETH Zurich, Switzerland
mathias.payer@inf.ethz.ch

Abstract

Dynamic (on the fly) binary translation is an important
part of many software systems. In this paper we dis-
cuss how to combine efficient translation with the gen-
eration of efficient code, while providing a high-level
table-driven user interface that simplifies the genera-
tion of the binary translator (BT).

The translation actions of the BT are specified in
high-level abstractions that are compiled into transla-
tion tables; these tables control the runtime program
translation. This table generator allows a compact de-
scription of changes in the translated code.

We use fastBT, a table-based dynamic binary trans-
lator that uses a code cache and various optimizations
for indirect control transfers to illustrate the design
tradeoffs in binary translators. We present an analysis
of the most challenging sources of overhead and de-
scribe optimizations to further reduce these penalties.
Keys to the good performance are a configurable inlin-
ing mechanism and adaptive self-modifying optimiza-
tions for indirect control transfers.

Categories and Subject Descriptors
ming Languages]: Processors

D.3.4 [Program-

General Terms Languages, Performance, Optimiza-
tion, Security

Keywords Dynamic instrumentation, Dynamic trans-
lation, Binary translation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SYSTOR 2010 May 24-26, Haifa, Israel.
Copyright © 2010 ACM X-XXXXX-XXX-X/YY/MM...$5.00

Thomas R. Gross

ETH Zurich, Switzerland
trg@inf.ethz.ch

1. Introduction

Binary translation (BT) is the art of adding, remov-
ing or replacing individual instructions of the trans-
lated program. Two different approaches to BT exist:
(i) static, ahead-of-time translation and (ii) dynamic,
just-in-time translation at runtime. BT enables program
instrumentation and makes it possible to, e.g., add dy-
namic safety and validity checks to profile and validate
a binary program, extend the binary program to include
new functionality, or to patch the program at runtime.
Another aspect of BT includes virtualization, where
code is encapsulated in an additional layer of protec-
tion and all interactions between the binary code and
the higher levels are validated.

The key advantage of static translation is that the
translation process does not incur a runtime penalty and
can be arbitrarily complex. The principal disadvantage
is that static BT is limited to code regions that can be
identified statically. This approach is problematic for
dynamically loaded libraries, self-modifying code, or
indirect control transfers. Dynamic BT translates code
right before it is executed the first time. Dynamic BT
adapts to phase changes in the program and optimizes
hot regions incrementally. This paper focuses on dy-
namic translation.

Most dynamic translators include a code cache to
lower the overhead of translation. Translated code is
placed in this cache, and subsequent executions of the
same code region can benefit from the already trans-
lated code. An important design decision is that the
stack of the user program remains unchanged. This
principle makes virtualization possible where the pro-
gram does not recognize that it is translated. The
untranslated return addresses result in an additional
lookup overhead but are needed for some programs
(e.g., for exception management, debugging, and self-
modifying code).

The two key aspects in designing a fast binary trans-
lator are a lean translation process and low additional
runtime overhead for any translated code region. Three
forms of indirect control transfers are the source of
most of the dynamic overhead:

1. Indirect jumps: The target of the jump depends
on dynamic information (e.g., a memory address,
or a register) and is not known at translation time.
Therefore a runtime lookup is needed.

2. Indirect calls: Similar to indirect jumps the target is
not known and a runtime lookup is needed for every
execution.

3. Function returns: The target of this indirect control
transfer is on the stack and the stack contains only
untranslated addresses, therefore a runtime lookup
is needed.

This paper presents fastBT, a generator for low-
overhead, low footprint, table-based dynamic binary
translators with efficient optimizations for all forms of
dynamic control transfers (e.g., novel combined pre-
dictor and fast dynamic control transfer schemes that
adaptively select the optimal configuration for each in-
direct control transfer, or the fastRET return optimiza-
tion). We argue that a single optimization will not suf-
fice for a class of control transfers, but depending on
the arguments and the encoding the best fitting opti-
mization depends on the individual code location. De-
pending on the runtime behavior of the application a
less than optimal fit is adaptively replaced by a dif-
ferent strategy at runtime. This results in an optimal
translation on a per location basis for indirect control
transfers and not on a per class strategy. Additionally
fastBT offers a novel high-level interface to the trans-
lation engine based on the table generator without sac-
rificing performance.

fastBT’s design and implementation are architecture-
neutral but the focus of this paper is on IA-32 Linux.
The current implementation provides tables for the In-
tel IA-32 architecture, and uses a per-thread code cache
for translated blocks. The output of the binary transla-
tor is constructed through user-defined actions that are
called in the just-in-time translator and emit [A-32 in-
structions. The translation tables are generated from
a high-level description and are linked to the binary
translator at compile time. The user-defined actions and
the high-level construction of the translation tables of-
fer an adaptability and flexibility that is not reached by

other translators. E.g., the fastBT approach allows in a
few hundred lines of code the implementation of a li-
brary that dynamically detects and redirects all memory
accesses inside a transaction to a software transactional
memory system, or allows to redirect all system calls
to an authorization framework that encapsulates and
virtualizes the user program.

In this paper we present the general infrastructure
and methods to optimize indirect control transfers,
thereby reducing the overhead of dynamic BT. We
show different optimizations for function returns and
indirect jumps/calls. These evaluations are made us-
ing a low-overhead binary translator: When compar-
ing programs transformed by fastBT with the original
program using a “null” transformation (e.g., a transfor-
mation without additional instrumentation, checks, or
statistics compared to the original program) the trans-
formed programs exhibit a small speedup or a minor
slow-down (between -3% to 5% for the majority of
benchmarks, i.e. 17 programs), noticeable overhead of
6% to 25% for 9 benchmarks, and two outliers with
an overhead of 44% and 56%. The average overhead
introduced through dynamic BT is 6% for the SPEC
CPU2006 benchmarks. As part of the investigation
of different optimization strategies, we also compare
fastBT with HDTrans, PIN, and DynamoRIO; fastBT
always outperforms PIN and HDTrans in most bench-
marks. The comparison with DynamoRIO depends
on application characteristics and is discussed later in
depth.

2. A generic dynamic binary translator

A generic dynamic binary translator processes basic
blocks of input instructions, places the translated in-
structions into a code cache, and adds entries to the
mapping table. The mapping table is used to map be-
tween addresses in the original program and the code
cache. Only translated code of the original program that
is placed in the code cache is executed. The translator
is started and intercepts user code whenever the user
program branches to untranslated code. The user pro-
gram is resumed as soon as the target basic block is
translated. See Figure 1 for an overview of such a basic
translator.

The user stack contains only untranslated instruc-
tion pointers. This setup is needed to support excep-
tion management, debugging, and self-modifying code.
Each one of these techniques accesses the program

Translator Code cache

Opcode
|::> table

Trampoline to
translate 4
/

Mapping

Original program

Figure 1: Runtime layout of the binary translator. Basic
blocks of the original program are translated and placed in
the code cache using the opcode tables.

stack to match return addresses with known values.
These comparisons would not work if the stack was
changed, because the return addresses on the stack
would point into the code cache, instead of into the
user program. Therefore fastBT replaces every return
instruction with an indirect control transfer to return to
translated code. This design decision follows our user-
space virtualization principle to not let the program
know that it is translated.

2.1 Translation tables

The translation engine is a simple table-based iterator.
The translator is invoked with a pointer to an untrans-
lated basic block, allocates space for the translated in-
structions, adds an entry into the mapping table, and
translates the basic block one instruction at a time us-
ing the translation tables.

Instructions of the IA-32 architecture have a vari-
able length from 1 to 16 bytes. These instructions are
decoded using multidimensional translation tables. The
translation tables contain extensive information about
all possible encodings for all IA-32 instructions and pa-
rameters. The decoding of a new instruction starts with
the first byte of the instruction that is used as an index
into the first translation table. The indexed row con-
tains information about the instruction or a forwarding
pointer to the next table with the next instruction byte
if the instruction is not finished. The decoding process
continues until the instruction is decoded. The final in-
dexed row contains the information about the instruc-
tion. Table 1 shows an example.

After the decoding of the instruction the instruction
and parameters are passed to the corresponding action
function. The action function handles the transcription

&action_func

flags | *next_tbl (or NULL)

Table 1: Layout of an opcode table, the opcode byte is
used as table offset. The flags contain information about
parameters, immediate bytes, and registers.

of the instruction to the code cache. The function can
alter, copy, replace, or remove the instruction.

The translation process stops at recognizable ba-
sic block boundaries like conditional branches, indirect
branches, or return instructions. Backward branches are
not recognizable by a single-pass translator, in this case
the second part of the basic block is translated a second
time. The additional translation overhead for these split
basic blocks is negligible and smaller than the overhead
of a multi-pass translator.

At the end of a basic block the translator checks
if the outgoing edges are already translated, and adds
jumps to the translated target. For untranslated targets
a trampoline is constructed that starts the translation of
the target. Trampolines are short sequences of code that
transfer control flow to a different location.

2.2 Predefined actions

A translator needs different action functions to support
the identity transformation. The main challenge is to
redirect control flow into the code cache but contain
the illusion as if the program was executed from the
original location.

Simple action functions remove the instruction or
copy the instruction into the code cache. Other actions
are needed to keep the execution flow inside the code
cache:

action_jmp: Translates a direct jump in the original
program. This action uses the mapping table to look
up the translated target and encodes a branch to the
translated target into the code cache.

action_call: This action emits code to push the original
location onto the stack and emits a branch to the
translated call target.

action_jcc: Translates a conditional jump. Code that
branches to the translated jump targets is emitted
into the code cache. A trampoline is constructed for
untranslated targets.

action_jmp_ind: This action encodes a runtime lookup
that translates the original target into a target in

the code cache and emits a branch to the translated
target.

action_call_ind: Emits code that pushes the original
location onto the stack followed by a runtime lookup
and dispatch of the indirect target into a location in
the code cache.

action_ret: This action emits a translation of the return
address on the stack into a target in the code cache.

2.3 Code cache

It is likely that code regions are executed multiple times
during the runtime of a program. Therefore it makes
sense to keep translated code in a code cache for later
reuse. Code is translated only once, reducing the over-
all translation overhead.

As reported in [4] and [7] code sharing between
threads is low for desktop applications and moderate
for server applications. Therefore fastBT uses a per
thread cache-strategy to increase code locality and to
potentially extract better thread-local traces.

Important advantages of thread local caches are that
(1) accesses to the code cache need not be synchronized
between threads and the high overhead of locking is
avoided, and (ii) it is possible to emit hard-coded point-
ers to thread local data structures which remove the
need to call lookup functions. This feature is used in
the translator itself for syscall and signal handling and
to inline and optimize all thread local accesses from the
instrumented program.

A trampoline is a piece of code that triggers the
translation of a basic block. fastBT places these tram-
polines in a separate code region where they can be
reused after the target’s translation. This keeps the code
cache clean and increases code locality.

The combination of fastBT’s basic translator and the
code cache leads to a greedy trace extraction and code
linearization. Traces are formed as a side effect of the
first execution and placed in the code cache.

2.4 Mapping table

The mapping table is a hash map that maps addresses
in the original program to addresses in the code cache.
The hash map contains all translated basic blocks.

The original program does not know that it is trans-
lated, so all targets for indirect control transfers (e.g.,
function returns, indirect jumps, and indirect calls)
must be handled through an online lookup and dis-
patch. These dispatch mechanisms use the mapping ta-

ble to get the corresponding translated target in the code
cache. The translator uses the mapping table whenever
it translates function calls, conditional branches, and
direct branches.

The hash function that is used in these lookup func-
tions returns a relative offset into the mapping table.
This hash function is kept as simple as possible be-
cause (i) perfect or near perfect hashing is not needed,
(i) the overhead for hashing should be low, and (iii) it
should be implemented in a few machine code instruc-
tions. In the case of a collision the hash function loops
through the mapping table until the entry or NULL is
found. Tests with SPEC CPU2006 benchmarks and var-
ious programs showed that the simple hash function
addr<<3 & (HASHTABLE_SIZE-1) results in a low
number of collisions. Note that the hashtable size must
be 2% bytes. A good value for x is 23, which results in
an 8MB hashtable that holds up to 2%° individual ad-
dress mappings.

2.5 Signal and syscall handling

User-space binary translation systems need special
treatment for signals and system calls. A task or thread
can schedule individual signal handler functions and
execute system calls. The kernel transfers control from
kernel-space back to user-space after a system call or
after the delivery of a signal. A user-space binary trans-
lator cannot control these control transfers, but must
rewrite any calls that install signals or execute system
calls so that the binary translator regains control after
the context switch.

fastBT catches signal handlers and system calls and
wraps them into trampolines that return the control flow
to translated code. fastBT handles signals installed by
signal and sigaction and all system calls, covering both
interrupts and the sysenter instruction. The sysenter-
handling is specific to the syscall handling of the Linux
kernel 2.6 [12].

3. Table generator

The generic translator uses a multilevel translation ta-
ble with information about each possible machine code
instruction. Writing these translation tables by hand is
hard and error prone as many different combinations of
instructions and prefixes exist.

fastBT uses a two-level process to offer the program-
mer a high-level interface. A table generator uses high-
level opcode tables and generates the low-level trans-

Table generator

Target
opcode
tables

Optimized
translator
table

« High level interface
 Adapter functions

Figure 2: Compile time construction of the translator table.

lation tables. The low-level translation tables are then
used at runtime.

Figure 2 shows a schema of the compile-time table
generation process. The programmer can specify how
to handle specific instructions or where to insert or to
remove code. This attractive feature allows a compact
description of changes in the translated code with a
single point of change. Additional action functions that
are referenced at compile-time can then be added to the
runtime translator where they are used in the translation
process.

The supplied base tables contain detailed informa-
tion about register usage, memory accesses, different
instruction types (e.g., if the FPU is used) and informa-
tion about individual instructions. These base tables de-
fine an identity transformation where only control flow
instructions are altered to keep the execution flow un-
der the control of the translator.

bool isMemOp (const unsigned char* opcode,
const instr& disInf, std::string& action)

{

bool res;

/* check for memory access in instr. */
res = mayOpAccessMem(disInf.dstFlags);
res |= mayOpAccessMem(disInf.srcFlags);
res |= mayOpAccessMem(disInf.auxFlags);

/* change the default action */
if (res) { action = "handleMemOp"; }

return res;

}

// in main function:
addAnalysFunction(isMem0Op) ;

Figure 3: Example for an adapter function that redirects all
instructions that access memory to a special action - C++
Code.

Using adapter functions, the user can specify which
types or instructions are instrumented when the table is

produced. The table contains an action for each exist-
ing machine code instruction. These actions can be se-
lected during table generation based on the instruction
and the properties of the instruction (e.g., register ac-
cess, memory access, control flow, function calls, and
so on). Figure 3 shows an adapter function that redi-
rects all instructions that might access memory to a spe-
cial handler that is used in a simple software transac-
tional memory system. The output of the table genera-
tor is then compiled and linked together with the fastBT
sources to the binary translator library. This library is
then injected into the user program.

4. fastBT optimizations

Indirect control transfers are the highest source of over-
head in a dynamic binary translator. Code translation
and memory management are amortized by multiple
executions of the code. Indirect control transfers incur
overhead every time they are executed. The optimiza-
tions with the biggest effect in fastBT are those target-
ing indirect control transfers.

jmp reg/mem ‘ call reg/mem ‘ ret

- push eip -
push reg/mem | push reg/mem | (addr. on stack)
push tld push tld push tld

call ind_jmp | call ind_jmp | call ind_jmp

Figure 4: Naive translation of indirect jumps/calls and return
instructions. The (translated) target of indirect control trans-
fers is not known at translation time, so the target must be
looked up at runtime. #/d is thread local data.

Figure 4 shows a simple translation of the different
indirect control transfers. The naive approach uses the
ind_jump routine to translate control transfers which
is responsible for a large portion of the runtime over-
head. The indirect jump function maps and dispatches
an address in the user program to an address in the
code cache. This section discusses the different opti-
mizations for indirect control transfers used in fastBT.
These optimizations replace the call to ind_jump and
reduce the overhead through predictions, inlining, and
fast lookups.

4.1 Indirect jump/call optimizations

Indirect jumps and indirect calls are very similar. Both
result in a runtime lookup in the mapping table and a
control transfer to a dynamic location. Additionally the
indirect call pushes its source location onto the stack.

fastBT uses three different optimizations for indirect
control transfers: (i) a fast indirect control transfer that
is inlined into the code cache, (ii) a prediction that
compares the target with the last target and caches the
last destination, and (iii) a combination of both.

4.1.1 Fast indirect control transfer

The fast indirect control transfer is a set of instructions
that is inlined into the code cache. These instructions
execute a lookup into the mapping table and dispatch
to the corresponding basic block in the code cache.
Figure 5 shows an inlined control transfer for indirect
jumps. If an indirect call is translated then the pushfl
instructions can be omitted and a pushl $srcip must
be prepended.

pushfl

pushl %ebx, Jecx

movl 12(%esp), %ebx # load target
movl %ebx, %ecx

andl HASH_PATTERN, Y%ebx

cmpl maptbl_start(0,%ebx,8), %ecx
jne nohit

movl maptbl_start+4(0,%ebx,8), %ebx
movl %ebx, tld->jumptarget

popl %ecx, %ebx

popfl

jmpl *(tld->jumptarget)
nohit:

popl %ecx, %ebx

popfl

pushl $tld

call ind_jmp

Figure 5: A translated fast indirect control transfer. If the
mapping table lookup is successful, execution is redirected
to the translated counterpart, otherwise an ind_jump is used
to recover. tld is the pointer to thread local data.

Using this optimization an indirect jump in the
source program is translated to 14 instructions and an
indirect call in the source program is translated to 13
instructions if the mapping table lookup is successful.
Otherwise control is transfered from the code cache
to the translator, which checks if there was a mapping
table miss or if the target needs to be translated first.

4.1.2 Indirect branch prediction

The indirect branch prediction is an optimistic opti-
mization that speculates that the number of different
targets for a certain branch location is low. This opti-
mization caches one or two source addresses and des-
tinations locally in the code cache. If the prediction

is correct then execution can continue directly at the
translated target. Otherwise a fixup routine is executed
to update the local cache. Figure 6 shows the different
indirect branch predictions for indirect calls and indi-
rect jumps.

Indirect call Indirect jump

pushl $srcip pushfl

cmpl $ABCD, xx(Ysrc) cmpl $ABCD, xx(%src)
je $transAABBCCDD jne fixup

cmpl $EFO1, xx(Ysrc) popfl

je $transEFO01 jmp $transABCD

pushl xx(%src) fixup: popfl

pushl $tld pushl xx(%src)

pushl $addr0f (ABCD) pushl $tld

pushl $addr0f (EFO01) pushl $addr0f (ABCD)
call fix_ind_call pred | call fix_ind_jmp_pred

Figure 6: A translated indirect control transfer using the pre-
diction optimization. The prediction compares the indirect
target with the local cache. If there is no cache hit then a
fixup routine is used to recover. #/d is the pointer to thread
local data.

If the prediction is correct then an indirect jump is
translated to 5 instructions and an indirect call to 3 or
5 instructions depending on whether the first or sec-
ond prediction is correct. Otherwise a fixup routine is
executed which updates the prediction with the current
source address and destination. For the indirect call pre-
diction the least recently updated entry gets discarded.

4.1.3 Adaptive combined optimization

The indirect branch prediction is an optimistic opti-
mization. Depending on the usage of indirect control
transfers in the program and the number of branch tar-
gets the prediction can outperform a fast indirect con-
trol transfer or fall behind if the miss-rate is high.

The combined optimization for indirect control trans-
fers adds a counter for the number of mispredictions
per indirect control transfer. After a certain amount of
mispredictions the prediction is removed and replaced
by a fast indirect control transfer.

This optimization offers the best performance on av-
erage. All programs that we analyzed have some loca-
tions where the prediction is faster than the fast indirect
control transfer, but there are also locations which suf-
fer under a high miss-rate. The combined optimization
optimizes indirect control transfers on a per location
basis and not on a global, compile time selection of a
single optimization. The adaptive combined optimiza-

tion adaptively selects the best optimization for each
location.

4.1.4 Shadow jump table

The shadow jump table optimization is a novel opti-
mization for indirect jumps. This optimization is ap-
plied only to a subset of indirect jumps that look as
if they used a jump table (e.g., jmpl *addr(, Y%reg,
4), whereas reg is any register and addr is the base
address of a jump table).

For such jumps a shadow jump table is constructed
that contains translated locations instead of locations in
the user program. The indirect jump is then prepended
by a bound check, and the base address of the indirect
jump is replaced by the new shadow jump table. The
size of the jump table cannot be determined at compile
time, so the translated jump must check the bounds.
Figure 7 shows a translated indirect jump redirected
through a shadow jump table.

pushfl

cmpl JUMPTABLE SIZE, Yreg
jge jmpind

popfl

jmpl shadow_base(,%reg, 4)
jmpind:

popfl

pushl jmp_base(, %reg, 4)

pushl $tld

call ind_jmp

Figure 7: A translated indirect jump which uses the shadow
jump table optimization. The shadow jump table is con-
structed at translation time and values are patched in when-
ever a location is used the first time. #/d is the pointer to
thread local data.

This optimization translates an indirect jump into 5
instructions if the entry in the shadow jump table is al-
ready translated and the jump table is smaller than the
maximum size. This optimization covers most of the
cases where the prediction optimization does not suf-
fice and is able to outperform the fast indirect control
transfer.

4.2 Function call optimizations

Return instructions are responsible for a major fraction
of the instrumentation overhead. fastBT offers several
different optimization strategies for return instructions.
These optimizations reduce the costs of the indirect
control transfers.

The call/ret relationship offers an optimization op-
portunity, because the return address is already known
at the time of the call. The return cache optimization
tries to exhibit this duality and decreases the number of
executed instructions in the best case.

The indirect branch prediction does not work for re-
turn instructions although they are similar to indirect
jumps. The return instruction transfers control flow to
the address that is on the top of the stack. Many func-
tions are called from multiple locations, therefore a
simple predictor does not work. Even a combined pre-
dictor with fastRET is still slower than fastRET alone.

4.2.1 fastRET

The fastRET optimization applies the idea of a fast in-
direct control transfer to return instructions (see Sec-
tion 4.1.1). Similar code as for an indirect call is emit-
ted into the code cache that executes a lookup and dis-
patch of the address that is on the stack. This trans-
lates a return instruction into 12 instructions in the code
cache.

4.2.2 Return cache

The return cache optimization uses the duality between
a function call and the following return instruction and
is somewhat similar to HDTrans’ return caching.

The call instruction pushes the return instruction
onto the stack, updates the thread local return cache
and performs a jump to the translated call target. The
translation of the return instruction performs an indi-
rect jump through the return cache. These return cache
targets check if the top of the stack matches their pre-
diction. If the prediction does not match a fast indirect
jump is used to recover, otherwise execution continues
at the correct location.

Return instruction
pushl %ebx

movzbl 4(%esp), hebx
jmpl *rc(, %ebx, 4)

Return trampoline
cmpl 4(%esp), rip
jz hit

popl ’ebx

call ind_jmp

hit: popl %ebx

leal 4(%esp), %esp

Call instruction
movl $ret_tramp, rc+offs

Figure 8: Translated return and call instructions and the cor-
responding trampoline that is referenced through the return
cache, rc is the address of the return cache, rip is the return
instruction pointer.

Figure 8 shows a translated return instruction and the
corresponding trampoline that is reached through the

earlier indirect jump. This optimization results in 7 in-
structions if the cache contains the correct trampoline.
If the call and ret instructions do not match (e.g., due
to recursion) an additional indirect jump is executed.

Differences to HDTrans are that (i) fastBT uses a
generic return trampoline for the call instrumentation
that is backpatched only as soon as the return location
is translated, and (ii) the protocol expects that the ebx
register is already pushed and can be used in the return
trampoline and during the fixup phase, which saves
some instructions if there is no cache hit.

4.2.3 Function inlining

Function inlining is an effective way of reducing the
overhead of indirect control transfers. If a function is
inlined then the return instruction can be translated as
an addition of 4 to the esp register instead of an indirect
jump. This saves at least 12 instructions compared to
the fastRET optimization.

5. Performance evaluation

This section shows an in depth performance evaluation
of fastBT, including an analysis of individual configu-
rations and collected runtime statistics.

The benchmarks were run on an Ubuntu 9.04 sys-
tem with an E6850 Intel Core2Duo CPU running at
3.00GHz, 2GB RAM, and GCC version 4.3.3.

The SPEC CPU2006 benchmark suite version 1.0.1
is used to evaluate the single threaded performance.
We compare fastBT with three other binary translators:
HDTrans [24] version 0.4.1, PIN [18] revision 29972,
and DynamoRIO [5] version 1.4.0-20.

Averages in the tables are calculated by comparing
overall execution time for all programs of untranslated
runs against translated runs.

5.1 Instrumentation overhead

Figure 9 shows different configurations of fastBT and
compares the resulting overhead. The configuration
names are composed of optimizations for return in-
structions (Rx), indirect call instructions (Cx), and in-
direct jump instructions (Jx). Surveyed optimizations
for x are F for fast control transfers, P for predicting
optimizations, and C and Mult for combined optimiza-
tions. The different configurations are:

1. RFCFJF: A fast indirect control transfer is used
for return instructions, indirect calls, and indirect
jumps.

400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk

456.hmmer

458.sjeng
462.libquantum
464 .h264ref
471.omnetpp
473.astar

483 .xalancbmk
410.bwaves
416.gamess
433.milc
434.zeusmp
435.gromacs
436.cactusADM
437 leslie3d
444 namd

447 deall
450.soplex
453.povray

454 calculix

mqmm_ - T—1“!1“'-$'$

459.GemsFDTD

465.tonto g
1
|

470.Ibm

482.sphinx3 !

Average ;‘

0.00% 50.00% 100.00% 150.00%

B RFCFJF B RFCPJF O RFCFJP
B RFCCJC M RFCCJMult £ RCCCJMult

Figure 9: Overhead of different fastBT configurations rela-
tive to an untranslated run. Lower is better. The graph for
400.perlbench has been cut off for RECFJP, the overhead for
this outlier is 227.16%.

2. RFCPJF: A fast indirect control transfer is used for
return instructions and indirect jumps. A predictor is
used for indirect calls.

3. RFCFJP: A fast indirect control transfer is used for
return instructions and indirect calls. A predictor is
used for indirect jumps.

4. RFCCJC: The fastRET optimization is used to-
gether with the combined indirect call and jump op-
timization.

5. RFCCJMult: The fastRET optimization is used to-
gether with the combined indirect control transfer
optimization for indirect calls and indirect jumps
and the jump table optimization for suited indirect
jumps.

6. RCCCJMult: This configuration combines the com-
bined optimization for indirect calls and indirect
jumps, the jump table optimization for suited in-
direct jumps, and the return cache for return instruc-
tions.

The indirect call prediction is well suited for shared
libraries as targets are loaded dynamically after the pro-
gram has started and the library loader uses indirect
calls. Furthermore the targets of these calls remain con-
stant during program execution; as a consequence the
target cache has a high hit rate.

The comparison of the different optimization strate-
gies shows that different benchmarks profit from dif-
ferent optimizations. Benchmarks written in object ori-
ented languages profit from the indirect call predic-
tion as this optimization enables fast virtual calls with-
out a mapping table lookup. Other benchmarks like
400.perlbench profit from the jump table optimization
that speeds up switch statements that are used often in
interpreters.

The RFCFJP configuration shows bad performance
due to some indirect jump locations that incur a high
number of mispredictions. But the combined optimiza-
tion selects the best optimization for each individual lo-
cation so that the predictor can reduce overhead for in-
direct jumps as well. The statistics show that the num-
ber of removed predictions is low for all benchmarks.

The most important result of the comparison in Fig-
ure 9 is that no single optimization can work for a class
of indirect control transfers, but the binary translator
must adapt and select the best possible optimization
for each individual translated indirect control transfer.
The combined optimizations of fastBT are able to adap-
tively select the most promising configuration on a per
location basis and perform well in practice.

5.2 Difference to fastBT 0.1

An earlier version of fastBT [22] used a combination of
function inlining, an earlier version of fastRET, fast in-

direct control transfers for indirect jumps, and a single
prediction for indirect calls.

Benchmark fastBT 0.1 | fastBT
400.perlbench 88% 56%
403.gcc 39% 21%
445.gobmk 34% 18%
458.sjeng 49% 25%
464.h264ref 43% 6.2%
471.omnetpp 52% 14%
483.xalan 100% 24%
447 .dealll 99% 44%
453.povray 103% 22%

Table 2: Comparison of the old fastBT version to the current
optimizations for challenging benchmarks and an average
overhead for the benchmarks with overhead above 5%.

This combination offered good average performance
and low overhead, but the combined predictions and
fast control transfers, the jump table optimization for
indirect jumps and the return cache lower the average
overhead further. Table 2 offers an overview of the most
challenging benchmarks with the highest overhead.

The additional optimizations and combined opti-
mizations in the new version of fastBT show that it is
important to separate between predictable indirect con-
trol transfers with only a few target locations and other
transfers which incur a high miss-rate. The online anal-
ysis makes it possible to select the optimal optimization
for each individual indirect control transfer.

5.3 Benchmark statistics and classification

Table 3 shows detailed information of the different
SPEC CPU2006 benchmarks. For some benchmarks
inlining removes up to 85.1% of the function calls and
reduces the overhead significantly. For the remaining
benchmarks the return cache reduces the overhead in
most cases (between 0% and 48.9% of the calls are
redirected to the fast return optimization).

The table shows that for indirect jumps the jump
table optimization and the prediction cover most of
the indirect control transfers, and the fast redirection
is seldom needed.

For the majority of benchmarks the indirect call
prediction is sufficient. But some benchmarks show
poor performance for indirect calls. Further optimiza-
tions are needed to reduce the overhead of indirect
calls for benchmarks like 400.perlbench, 458.sjeng,
and 453.povray.

Benchmark Function calls (inlined) (retc miss) | Indirect jumps (jmptbl) (pred) | Indirect calls (pred)
400.perlbench 25814694843 8.1% 22.7% | 21930067960 93.7% 6.3% 3903053407 7.4%
401.bzip2 6680608156 0.0% 28.2% 1869734 8.8% 91.2% 2076 100.0%
403.gcc 11731029096 2.7% 20.4% 5275640406 84.8% 10.1% 653683244 52.9%
429.mcf 6945269263 0.0% 0.1% 1708543 0.0% 100.0% 574680 100.0%
445.gobmk 18001407703 1.3% 33.9% 93605731 1.0% 99.0% 185811548 4.1%
456.hmmer 212603875 27.6% 3.0% 163062236 39.0% 61.0% 1138925 100.0%
458.sjeng 24769309279 1.1% 13.6% | 10992929516 97.5% 2.5% 5070023361 0.0%
462.libquantum 1762604025 50.0% 0.0% 784 0.0% 100.0% 249 1.6%
464.h264ref 37463457335 7.4% 4.0% 1189567749 1.1% 98.9% | 28445058263 99.2%
471.omnetpp 19737972588 18.0% 33.1% 3153780227 21.3% 78.6% 2733908888 89.8%
473.astar 15647809660 35.2% 32.0% 10808740 0.0% 100.0% | 4996558207 100.0%
483.xalancbmk 28888952021 10.6% 17.7% 2627706146 27.0% 63.6% 9161680928 96.1%
410.bwaves 1270922878 85.1% 0.0% 216329663 0.0% 100.0% 4537 90.9%
416.gamess 2778622627 35.2% 33.0% 1889868887 74.1% 25.8% 820281 100.0%
433.milc 6682737588 1.4% 11.2% 11999701 32.0% 68.0% 3856876 100.0%
434.zeusmp 96755 38.2% 10.3% 20806 0.0% 82.2% 3084 100.0%
435.gromacs 3339398623 78.9% 4.8% 27898268 2.6% 95.7% 3274864 99.1%
436.cactusADM 1668709640 0.5% 0.4% 1650774821 0.0% 100.0% 223605 100.0%
437 leslie3d 6419497 50.7% 18.2% 2063899 0.0% 98.5% 88425 100.0%
444 namd 27828322 24.6% 5.0% 16777617 0.0% 88.9% 1969171 100.0%
447 dealll 52756915715 54.5% 38.8% | 21147326182 1.7% 98.3% 540282822 98.4%
450.soplex 2537751419 3.5% 3.3% 1707604759 83.8% 16.2% 27482402 100.0%
453.povray 25743213080 5.9% 28.6% 456989748 34.9% 65.0% 7072491440 5.0%
454.calculix 5193872239 25.5% 26.6% 502409545 2.1% 95.7% 11962078 100.0%
459.GemsFDTD 4527866169 50.3% 48.9% 1510763422 0.0% 99.9% 11839192 100.0%
465.tonto 28170484438 50.2% 21.5% 9572766779 7.6% 92.4% 2648364 100.0%
470.1bm 5268354 50.0% 0.0% 2627702 0.0% 100.0% 3761 100.0%
482.sphinx3 7456046206 10.6% 21.2% 273089361 0.0% 98.4% 6126896 100.0%

Table 3: Detailed per benchmark statistic. Out of the absolute number of function calls (inlined) are executed inline and (retc
miss) function calls miss the return cache. The absolute number of indirect jumps per benchmark is divided into the percentage
that is executed through a jump table (jmptbl) and through a prediction (pred). The remaining indirect jumps are executed
through a fast indirect jump. The overall number of indirect calls is executed through predictions (pred), the remaining calls

are executed with the fast indirect call.

The detailed statistics show that for these three
benchmarks only a small number of indirect calls is
responsible for a high percentage of overall calls. For
400.perlbench 24 out of 322 translated calls fall back
to the fast indirect call but are responsible for 92.6% of
the calls. For 458.sjeng one out of 43 translated indirect
calls is responsible for almost 100% of the fast indirect
calls. For 453.povray eight out of 112 indirect calls fall
back to the fast indirect call and are responsible for
95% of the overall indirect calls.

These information show that only a small fraction of
indirect calls is responsible for most of the remaining
indirect call overhead. A possible future optimization
could target the low predictor rate for some indirect
calls.

5.4 Comparative performance

Table 4 compares the overhead of fastBT to PIN, HD-
Trans, and DynamoRIO. fastBT outperforms PIN in
every benchmark and HDTrans in most benchmarks.
The 400.perlbench benchmark is the only benchmark
where the overhead of HDTrans is significantly lower
than the fastBT overhead (44% for HDTrans versus
56% for fastBT). Part of the additional overhead results
from the missed optimization opportunity for indirect
calls that exhibit a low correct prediction rate for the
400.perlbench benchmark.

The 483.xalancbmk benchmark shows that fastBT
predicts most of the indirect calls and indirect jumps for
benchmarks written in object oriented languages. The
resulting overhead for fastBT is 24% compared to 74%
for HDTrans, 97% for PIN, and 18% for DynamoRIO.

Benchmark no BT | fastBT | HDT PIN | dRIO
400.perlbench 486s 56% | 44% | 126% | 36%
401.bzip2 668s 4% 3% 36% 4%
403.gcc 441s 21% | 20% | 140% | 25%
429.mcf 405s 0% 0% 6% 0%
445.gobmk 611s 18% | 19% 91% | 32%
456.hmmer 926s 5% 4% 45% 1%
458.sjeng 727s 25% | 21% 64% | 23%
462.libquantum 1020s 1% 2% 25% 2%
464 .h264ref 989s 6% | 17% | 227% | 20%
471.omnetpp 4965 14% 18% 28% 8%
473.astar 601s 4% 7% 21% 2%
483.xalancbmk 371s 24% | 74% 97% 18%
410.bwaves 895s 2% 1% 11% 4%
416.gamess 1430s 3% | -6% 13% -7%
433.milc 827s 1% 1% 7% 2%
434.zeusmp 793s 0% 0% 6% 0%
435.gromacs 1440s 0% 0% 3% 0%
436.cactusADM | 1520s 0% 0% 1% 0%
437 leslie3d 1160s 0% 0% 19% 0%
444 namd 616s 1% 0% 7% -1%
447 dealll 552s 44% | 55% 54% 14%
450.soplex 538s 7% 3% 17% 2%
453.povray 362s 22% | 25% 39% 17%
454 calculix 1790s 2% | -1% 13% -1%
459.GemsFDTD | 1120s 2% 1% 4% 1%
465.tonto 925s 9% 9% 34% 8%
470.1bm 930s 0% 0% 0% -3%
482.sphinx3 846s 2% 3% 19% -1%
Average 839s 6% 7% 34% 5%

Table 4: Comparison of overhead introduced through differ-
ent binary translation systems (fastBT, HDTrans, PIN, and
DynamoRIO) using the SPEC CPU2006 benchmarks. No
BT denotes the runtime in seconds without BT.

The same predictors work for the 464.h264ref bench-
mark where fastBT has a low overhead of 6% com-
pared to 17% for HDTrans, 227% for PIN, and 20%
for DynamoRIO.

The average overhead for fastBT is 6% compared
to 7% for HDTrans, 34% for PIN, and 5% for Dy-
namoRIO. These numbers show that fastBT succeeds
to combine a high-level interface at compile time with a
simple table based translator implementation and pow-
erful optimization to achieve performance similar to a
full blown binary optimizer based on intermediate rep-
resentations like DynamoRIO.

5.5 Translation efficiency

The numbers in 5.4 show translation efficiency of the
presented binary translations and overhead introduced
through the binary translation process.

Table 5 shows a comparison of overhead for short
programs. This comparison uses the test dataset of the

Benchmark no BT fBT | HDT PIN | dRIO
400.perlbench 4s 29% 26% | 1415% | 308%
401.bzip2 8s 2% 0% 41% 3%
403.gcc Is 41% 48% 776% | 247%
429.mcf 3s 1% 0% 28% 5%
445.gobmk 21s 18% 19% 139% 43%
456.hmmer 6s 6% 5% 46% 0%
458.sjeng Ss 24% 20% 82% 28%
462 .libquantum <Is 33% 11% 453% | 100%
464.h264ref 23s 6% 23% 83% 25%
471.omnetpp 1s 66% | 142% 363% 74%
473.astar 11s 4% 6% 26% 5%
483.xalancbmk <lIs 56% | 139% | 3481% | 745%
410.bwaves 12s 2% 1% 16% 4%
416.gamess 1s 9% 15% 392% 84%
433.milc 10s 2% 4% 38% 9%
434.zeusmp 21s 0% 0% 14% 1%
435.gromacs 3s 2% 1% 42% 8%
436.cactusADM 4s 0% 0% 37% 7%
437 leslie3d 29s 0% 1% 21% 1%
444 namd 17s 1% 1% 13% 0%
447 .dealll 25s 36% 47% 69% 16%
450.soplex <lIs | 102% 45% | 3836% | 929%
453.povray Is 23% 28% 221% 62%
454 .calculix <Is 59% 45% | 2346% | 513%
459.GemsFDTD 4s 7% 13% 70% 15%
465.tonto Is 31% 27% 300% 74%
470.1bm 6s 1% 1% 8% 0%
482.sphinx3 2s 12% 9% 70% 18%
Average 8s 10% 13% 87% 21%

Table 5: Comparison of overhead for short programs intro-
duced through different binary translation systems (fastBT,
HDTrans, PIN, and DynamoRIO) using the SPEC CPU2006
benchmarks with the test dataset. No BT denotes the runtime
in seconds without binary translation.

SPEC CPU2006 benchmarks to measure the startup
and translation overhead of the different binary trans-
lators.

It is important that a binary translator produces effi-
cient code, but the overhead of the translation process
should be low as well. Only if both properties are ful-
filled it is possible to translate programs efficiently.

The average overhead for small programs as shown
in Table 5 is 10% for fastBT compared to 13% for
HDTrans, 87% for PIN, and 21% for DynamoRIO.
These numbers show that fastBT scales well for small
programs and that the fastBT translation process is
efficient.

It remains unclear whether approaches working with
an intermediate representation (IR) offer a significant
benefit over the simple table based translation ap-
proach because the overhead for profiling, trace se-

lection, as well as IR generation and optimization must
be compensated. The numbers show that fastBT com-
petes with IR based solutions for long running bench-
marks. Especially for short running programs IR based
translators cannot achieve competitive execution times
and fastBT outperforms the IR based solutions Dy-
namoRIO and PIN clearly.

6. Related work

Binary translation has a long history [10, 13, 19]. In
this section we focus on current binary translators that
are similar to fastBT either in the offered interface and
the target application or the design and implementa-
tion. Dynamic binary translators can be separated into
two groups: The first group uses a rewriting scheme
based on low-level translation tables (e.g., fastBT, HD-
Trans, Mojo [25], and JudoDBR [21]). The second
group parses the machine code stream into an interme-
diate representation (IR) and uses common compiler
techniques to work on that IR (e.g., DynamoRIO [6],
PIN [18], and Valgrind [20]).

IR-based approaches offer the advantage of more so-
phisticated optimization possibilities, but the IR trans-
lation comes at a higher runtime cost, which must be
amortized. IR-based translators can use profiles to gen-
erate runtime information but there is no structure or
type information at the machine-code level. Therefore
it is hard to achieve good performance with IR-based
translation systems. Some binary translation systems
(e.g., [15, 17]) use a dual approach of profiling and
adaptive optimization to limit the dynamic compilation
overhead. FX!32 [9] uses emulation for infrequently
executed code and profile generation and offline static
recompilation of hot code to speed up overall execu-
tion.

The most important overhead of dynamic binary
translators is the handling of indirect control transfers.
Hiser et al. [16] cover different indirect branch mech-
anisms like lookup inlining, sieves, and a translation
cache.

A related topic that uses binary translation is full
system virtualization. QEMU [3] provides full system
cross machine virtualization. VMware [8, 11] is a full
system virtualization system that uses dynamic trans-
lation for privileged instructions in supervisor mode,
unlike Xen [2] that uses para-virtualization, which re-
places privileged instructions at the source level.

6.1 HDTrans

HDTrans [23, 24] is a light-weight, table-based instru-
mentation system. A code cache is used for translated
code as well as trace linearization and optimizations
for indirect jumps. HDTrans resembles fastBT most
closely with respect to speed and implementation, but
there are significant differences.

HDTrans requires hand-coded low-level translation
tables that specify translation properties and actions
for every single instruction. This setup requires a very
deep understanding of the translator and relations be-
tween different optimizations. fastBT raises the level
of interaction with the translation system. Low-level
translation tables are generated using a table generator
that specifies transformations on a high level. Instruc-
tions transformations can be specified on their prop-
erties (e.g., memory access, specific registers, special-
function instructions, or extension groups like SSE and
FPU), or on an instruction opcode.

To make the indirect jumps faster HDTrans uses a
hash table of jump code blocks called sieve. The target
is hashed and then a jump into the sieve is issued. The
code block in the sieve then takes care of the jump to
the correct location whereas fastBT uses a simpler hash
table and hand optimized assembly code that is emitted
into the code cache. Instead of a sieve fastBT uses a
lookup table that maps locations in the code cache to
locations in the original program.

Return instructions are handled differently from
normal indirect control transfers to take care of the
call/ret relationship. HDTrans uses a (small) direct
mapped cache to speed up return instructions, with a
fall-back to the sieve. fastBT uses a similar approach
with the return cache that uses a bidirectional protocol.

Compared to fastBT, HDTrans translates longer
chunks of code at a time, stopping only at conditional
jumps or return instructions. This strategy can result in
longer stalls for the program. Trampolines to start the
translator for not already translated targets are inserted
into the basic blocks itself. Therefore the memory re-
gions for these instructions cannot be recycled after the
target is translated.

6.2 Dynamo and DynamoRIO

Dynamo is a dynamic optimization system developed
by Bala et al. [1]. DynamoRIO [5, 6, 14] is the binary-
only IA-32 version of Dynamo for Linux and Windows.
The translator extracts and optimizes traces for hot

regions. Hot regions are identified by adding profiling
information to the instruction stream. These regions
are converted into an IR, optimized and recompiled to
native code. DynamoRIO is also used in a project that
includes a manager for bounded caches that clears no
longer needed blocks out of the code cache [14]. The
main purpose of the DynamoRIO project is shifting
from a binary optimizer to a binary instrumentation
system.

Compared to fastBT, DynamoRIO translates ma-
chine code into an IR and uses a binary optimization
framework and heavy-weight transformations to gener-
ate code. fastBT on the other hand uses a light-weight
table based approach.

6.3 PIN

PIN [18] is a dynamic instrumentation system that ex-
ports a high-level instrumentation API that can be used
during the runtime of a program. The system offers
an online high-level interface to the instruction-flow of
the instrumented program. A user program can define
injections or alterations of the instruction stream of a
running application. PIN uses the user supplied defini-
tion and dynamically instruments the running program.
PIN employs code transformations like register reallo-
cation, inlining and instruction scheduling to make the
instrumented code fast, but PIN still must pay for the
high-level interface. Unfortunately the instrumentation
system of PIN is distributed in binary only, except the
library, which is available as open source.

In contrast to PIN, fastBT offers the high-level in-
terface at compile time. A table-based translator that
is then used at runtime is generated using the high-
level interface. This limits fastBT’s alteration possibil-
ities at runtime but removes unneeded flexibility. To
keep the design simple, fastBT also does not implement
transformations like register reallocation, although they
could be added to the fastBT framework.

6.4 Valgrind

Valgrind is described in [20] as heavy-weight dynamic
binary analysis tool. The main applications are check-
ers and profilers. Machine code is translated into an
IR, which is then instrumented using high-level plug-
ins. Valgrind keeps information about every instruction
and memory cell that is used at runtime. This feature
makes it possible to implement new and different in-
strumentation tools that are not possible in other envi-
ronments. Valgrind is designed primarily for flexibility

and not for performance. This makes Valgrind perfect
for basic block profiling, memory checking and debug-
ging. But due to the high overhead Valgrind is unsuited
for large and performance critical programs as shown
by experiments with the SPEC CPU2006 benchmark
suite.

7. Conclusion

Dynamic binary translation is an important building
block of many software systems, and its importance is
likely to increase in the future. We use fastBT to gain
insight into the overheads of binary translation. fastBT
is a low overhead, simple, table-based binary translator
that yields good performance: the translation is fast
and incremental, and the translated SPEC CPU2006
programs execute with low overhead of 6% on average
and between -3% and 6% overhead for the majority (17
out of 28) of programs.

fastBT demonstrates that a high-level interface to the
binary translator is not an impediment to low overhead
in the translated program. The lean translation process
makes it possible to use binary translation also in sce-
narios that include short running programs. Other bi-
nary translators that build up expensive internal datas-
tructures have only a slight edge for long running pro-
grams but are unable to recover the substantial trans-
lation overhead for short running programs. As we en-
vision the use of binary translators for a wide range
of scenarios (e.g., sandboxing, software transactional
memory) that involve programs with short execution
time, dynamic binary translators must limit the trans-
lation overhead. Only then it is possible to obtain effi-
ciency in the execution of the translated program as the
cost of translation incurs an execution penalty in the
context of a dynamic translator.

Different forms of indirect control transfers limit
performance of software-based translations. fastBT
lowers the overhead of all indirect control transfers us-
ing self-modifying optimizations that select a suitable
configuration for each individual location at runtime
instead of a global selection of a single optimization
for all indirect control transfers.

Using the table generator and a high-level interface a
user can configure the binary translator at compile time
and obtain a more flexible design than is possible by
using low-level tables.

Binary translation is an important part of the soft-
ware development tool chain. A table-based generator

like fastBT provides the best approach to unify profil-
ing of existing applications, runtime software modifi-
cations, as well as debugging and instrumentation of
complete large-scale programs.

References

[1] BALA, V., DUESTERWALD, E., AND BANERIJIA, S.
Dynamo: a transparent dynamic optimization system.
In PLDI ’00 (Vancouver, BC, Canada, 2000), pp. 1-12.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND,
S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT,
I., AND WARFIELD, A. Xen and the art of virtual-
ization. In SOSP 03 (New York, NY, USA, 2003),
pp- 164-1717.

[3] BELLARD, F. QEMU, a fast and portable dynamic
translator. In ATEC ’05 (Berkeley, CA, USA, 2005),
pp- 41-41.

[4] BRUENING, D., AND AMARASINGHE, S. Maintaining
consistency and bounding capacity of software code
caches. In CGO ’05 (Washington, DC, USA, 2005),
pp. 74-85.

[5] BRUENING, D., DUESTERWALD, E., AND AMARAS-
INGHE, S. Design and implementation of a dynamic
optimization framework for Windows. In ACM Work-
shop Feedback-directed Dyn. Opt. (FDDO-4) (2001).

[6] BRUENING, D., GARNETT, T., AND AMARASINGHE,
S. An infrastructure for adaptive dynamic optimization.
In CGO 03 (Washington, DC, USA, 2003), pp. 265—
275.

[7] BRUENING, D., KIRIANSKY, V., GARNETT, T., AND
BANERIJI, S. Thread-shared software code caches. In
CGO ’06 (Washington, DC, USA, 2006), pp. 28-38.

[8] BUGNION, E. Dynamic binary translator with a system
and method for updating and maintaining coherency of
a translation cache. US Patent 6704925, March 2004.

[9] CHERNOFF, A., HERDEG, M., HOOKwAY, R.,
REEVE, C., RUBIN, N., TYE, T., YADAVALLI, S. B.,
AND YATES, J. Fx!32: A profile-directed binary trans-
lator. IEEE Micro 18,2 (1998), 56—64.

[10] DEUTSCH, L. P.,, AND SCHIFFMAN, A. M. Efficient
implementation of the smalltalk-80 system. In POPL
’84 (New York, NY, USA, 1984), pp. 297-302.

[11] DEVINE, S. W., BUGNION, E., AND ROSENBLUM,
M. Virtualization system including a virtual machine

monitor for a computer with a segmented architecture.
US Patent 6397242.

[12] GARG, M. Sysenter based system call mecha-
nism in linux 2.6 (http://manugarg.googlepages.com/-
systemcallinlinux2_6.html).

Source code of the fastBT binary translator may be downloaded at
http://www.lst.inf.ethz.ch/research/fastBT/

[13] GILL, S. The diagnosis of mistakes in programmes
on the edsac. Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences
206, 1087 (1951), 538-554.

[14] HAZELWOOD, K., AND SMITH, M. D. Managing
bounded code caches in dynamic binary optimization
systems. TACO 06 3, 3 (2006), 263-294.

[15] HISER, J., KUMAR, N., ZHAO, M., ZHOU, S.,
CHILDERS, B. R., DAVIDSON, J. W., AND SOFFA,
M. L. Techniques and tools for dynamic optimization.
In IPDPS (2006).

[16] HISER, J. D., WILLIAMS, D., HU, W., DAVIDSON,
J. W., MARS, J., AND CHILDERS, B. R. Evaluating
indirect branch handling mechanisms in software dy-
namic translation systems. In CGO 07 (Washington,
DC, USA, 2007), IEEE Computer Society, pp. 61-73.

[17] KISTLER, T., AND FRANZ, M. Continuous program
optimization: Design and evaluation. [EEE Trans.
Comput. 50, 6 (2001), 549-566.

[18] Luk, C.-K., CoHN, R., MuTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI,
V.J., AND HAZELWOOD, K. Pin: building customized
program analysis tools with dynamic instrumentation.
In PLDI ’05 (New York, NY, USA, 2005), pp. 190-200.

[19] MAY, C. Mimic: a fast system/370 simulator. In
SIGPLAN ’87: Papers of the Symposium on Inter-
preters and interpretive techniques (New York, NY,
USA, 1987), pp. 1-13.

[20] NETHERCOTE, N., AND SEWARD, J. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In PLDI’07 (New York, NY, USA, 2007),
pp- 89-100.

[21] OLSZEWSKI, M., CUTLER, J., AND STEFFAN, J. G.
Judostm: A dynamic binary-rewriting approach to soft-
ware transactional memory. In PACT *07 (Washington,
DC, USA, 2007), pp. 365-375.

[22] PAYER, M., AND GROSS, T. Requirements for fast
binary translation. In 2nd Workshop on Architectural

and Microarchitectural Support for Binary Translation
(2009).

[23] SRIDHAR, S., SHAPIRO, J. S., AND BUNGALE,
P. P. HDTrans: a low-overhead dynamic translator.
SIGARCH Comput. Archit. News 35, 1 (2007), 135—-
140.

[24] SRIDHAR, S., SHAPIRO, J. S., NORTHUP, E., AND
BUNGALE, P. P. HDTrans: an open source, low-level
dynamic instrumentation system. In VEE '06 (New
York, NY, USA, 2006), pp. 175-185.

[25] WEN-KE CHEN, SORIN LERNER, R. C., AND
GILLIES, D. M. Mojo: A dynamic optimization sys-
tem. In ACM Workshop Feedback-directed Dyn. Opt.
(FDDO-3) (2000).

