
I Control Your Code
Attack Vectors through the Eyes of Software-based

Fault Isolation

Mathias Payer
<mathias.payer@nebelwelt.net>

mailto:mathias.payer@nebelwelt.net

2 12/28/10

Motivation

 Current exploits are powerful because
 Applications run on coarse-grained user-privilege level

 Every exploit has full user-privileges

 Local privilege escalation through auxiliary attacks

 Tight security-models limit privileges on both
 A per-application level and
 A per-user level

 Idea: each application only has access to the data
owned by a specific user that is useful for the
application

2Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

3 12/28/10

Fahrplan

 Introduction
 Protection through virtualization
 Attack Vectors

 Code Injection
 Return-oriented programming
 Format String Attacks
 Arithmetic Overflow
 Data Attacks
 x86_64 vs. i386 code

 Demo
 Conclusion

3Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

4 12/28/10

Introduction

 Software security is a challenging problem
 Both managed and unmanaged languages are prone to

attacks
 Many different forms of attacks exist

 Low-level bugs are omni-present
 And high-level languages compile down to low-level code

 Hard to eliminate bugs
 They are hard to find and hard to fix

4Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

5 12/28/10

Introduction

 Programmers rely on too many assumptions
 That are not necessarily part of the semantics of the

programming language, e.g.,
 Memory layout (little vs. big endian)
 Type sizes (long is always 4 byte long)
 Variable placement (layout of structures)

 Goal of this talk:
 Understand attack vectors and constraints
 Know how to defend yourself against the attacks

 Different techniques and security measurements
 Security analysis

 Know your assumptions (e.g., language, compiler, architecture)

5Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

6 12/28/10

Fahrplan

 Introduction
 Protection through virtualization
 Attack Vectors

 Code Injection
 Return-oriented programming
 Format String Attacks
 Arithmetic Overflow
 Data Attacks
 x86_64 vs. i386 code

 Demo
 Conclusion

6Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

7 12/28/10

Protection through virtualization

 Like many other problems in CS security can be
increased through an additional layer of indirection

 We propose a user-space virtualization system that
secures all program code and authorizes all system
calls

application

code

u
se

r
sp

ace SFI and guard
s

ke
rn

el (privileged code)

application

code

ke
rn

el (privileged code)

7Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

8 12/28/10

Protection through virtualization

 Security principles:
 All code is translated before it is executed. Additional

guards are added to the translated code
 Catches control flow transfers to illegal locations (code injection)
 Catches illegal control flow transfers (arc attacks)
 Catches jumps into other instructions
 Catches switches between i386 and x86_64

 All system calls are authorized by a policy
 Catches privilege escalation

 Catches data bugs that execute unintended system calls

8Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

9 12/28/10

Virtualization in a nutshell

● Translates individual basic blocks
● Verifies code source / destination
● Checks branch targets and origins

1 1'
2 2'
3 3'
… ...

Original code Code cacheMapping table

Translator

1

2

4
3

1'

2'

3'

R RX

Indirect control
flow transfers
use a dynamic
check to verify
target and origin

 See: Generating Low-Overhead Dynamic Binary Translators
(Mathias Payer, youtube.com/watch?v=VIxaQeAHIxs)

9Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

10 12/28/10

Static security guards

 Check code location
 Exported in module / object as code region
 Verify permissions of the page according to the module

 Check target of static control transfers
 Permission check (through GOT – global offset table) for

inter-module transfers
 Verify valid instructions from the beginning of a function to

the target of the jump instruction

10Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

11 12/28/10

Dynamic security guards

 Dynamic checks for dynamic control transfers
 Return instructions, indirect calls, indirect jumps
 Verify that target is valid and translated
 Untranslated targets fall back into the static check

 Verify return instructions
 Validate stack and use a shadow stack

11Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

12 12/28/10

System call authorization

 System calls redirect to an authorization framework
 Policy based authorization

 For wide variety of system calls and parameter combinations

 Authorization functions
 For redirected system calls

 Reimplementations of system calls in user space
 Additional validation of dangerous system calls : mmap (overlapping

regions); mprotect (make code executable); fork (new processes);
clone (new threads)

 System calls are allowed, redirected to the
authorization function, or the program is terminated
with a security exception

12Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

13 12/28/10

Fahrplan

 Introduction
 Protection through virtualization
 Attack Vectors

 Code Injection
 Return-oriented programming
 Format String Attacks
 Arithmetic Overflow
 Data Attacks
 x86_64 vs. i386 code

 Demo
 Conclusion

13Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

14 12/28/10

Attack vectors

 Attacks redirect control flow
 New or alternate locations are reached
 Execution is different from unaltered run

 An attack exploits the fact that the programmer or
the runtime system is unable to check
 the bounds of a buffer or
 to detect a type overflow or
 to detect an out-of-bounds access

14Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

15 12/28/10

Code injection

 Injects new executable code into the process image
of a running process
 Into buffer on the stack
 Into heap-based data structures

 Redirects control flow to the injected code
 Overwriting the RIP (return instruction pointer)
 Overwriting function pointers, destructors, or data

structures of the memory allocator

15Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

16 12/28/10

Code injection: stack-based

 Exploits a missing or incomplete bound check on
stack-based buffers

 Exploit uses two steps:
 Buffer on the stack is filled with machine-code
 Stack grows downwards and (eventually) overwrites RIP

with pointer back into the buffer

 Constraints
 Executable stack
 Missing/faulty bound check
 RIP must not be verified/checked

 See: Smashing the Stack for Fun & Profit (Aleph1, Phrack #49)

16Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

17 12/28/10

Code injection: stack-based

int foobar(char* cmp) {

// assert(strlen(cmp)) < MAX_LEN

char tmp[MAX_LEN];

strcpy(tmp, cmp);

return strcmp(tmp, "foobar");

}

le
n

g
th

 o
f

u
se

r
in

p
u

t

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame
0xff

0xf0

0xe0

No bound checks
when data is
copied!

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame

exploit & nop slide

0xe0

0xf0

return address
don't care

17Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

18 12/28/10

Code injection: heap-based

 Exploits a missing or incomplete bound check on
heap-based buffers
 Very similar to stack-based overflows

 Exploit uses two steps:
 Buffer on the heap is filled with machine-code
 Function pointer, vtable-entry, (GLIBC) destructor, or

memory management data-structure altered to redirect
control flow

 Constraints
 Executable heap
 Missing/faulty bound check
 Successful redirection of the control flow

18Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

19 12/28/10

Code injection: heap-based

typedef struct {

char buf[MAX_LEN];

int (*cmp)(char*,char*);

} vstruct;

int is_foobar_heap(vstruct* s, char* cmp) {

strcpy(s->buf, cmp);

return s->cmp(s->buf, "foobar");

}
le

n
g

th
 o

f
u

se
r

in
p

u
t

buf

cmp*0xbf

0xb0

No bound checks
when data is
copied!

buf

cmp*

exploit & nop slide

0xb0

cmp*0xbf

19Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

20 12/28/10

Code injection: a tool writers perspect.

 The BT would stop the program when the control
flow transfer is detected
 Before the shellcode is even translated
 Two exceptions would be triggered

 Code is (about to be) executed in a non-executable area
 Function call to an unexported/unknown symbol (heap-based)
 RIP mismatch (stack-based)

 Use BT to analyze exploits/shellcode
 Catch new exploits and security holes
 Use debugging info in application to fix bugs
 Use BT to audit your own software / test your exploits

20Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

21 12/28/10

Return-oriented programming

 Exploit already existing code sequences
 Prepare the stack so that tails of library functions are

executed one after another

 Stack-based overflow is used to prepare multiple
stack invocation frames
 Control flow redirected to tails of library functions
 Tails can be used to execute arbitrary code

 Constraints
 Missing bound check for the initial stack-based overflow
 RIP must not be checked

 See: Return-Oriented Programming (Shacham, Black Hat'08)

21Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

22 12/28/10

Return-oriented programming

int foobar(char* cmp) {

// assert(strlen(cmp)) < MAX_LEN

char tmp[MAX_LEN];

strcpy(tmp, cmp);

return strcmp(tmp, "foobar");

}

No bound checks
when data is
copied!

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame
0xff

0xf0

0xe0

le
n

g
th

 o
f

u
se

r
in

p
u

t

saved base pointer
return address

tmp

1st argument: cmp*

next stack frame
0xff

points to &system()

don't care

don't care

1st argument to system()
ebp after system call

0xf0

0xe0

22Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

23 12/28/10

ROP: a tool writers perspective

 The BT would stop the program when the control
flow transfer is detected
 Before the function tail or libC function is translated
 The execve system call would be stopped as well

 Real attacks would chain multiple libC calls
 Can be used to inject code into the address space in a legal

manner (use mprotect to update permissions)

23Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

24 12/28/10

Format string attack

 Exploit the parsing possibilities of the printf-family
 If a user-controlled string is passed to a printf function

 A combination of %x and %n in strings that are
passed to printf unfiltered result in random
memory reads and random memory writes
 Careful preparation of the input is needed

 The format string must be allowed to contain %n
and, e.g., %x to write to memory
 Random writes can be used to redirect the control flow by

overwriting, e.g., the RIP, destructors, or the vtable

24Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

25 12/28/10

Format string attack

 printf examples:
 printf("val: %d, ptr: %p, str: %s\n", a, &a, str);

 // value: 12, ptr: 0x7fffffffe27c, str: foobar

 Interesting printf features
 %NN$x – use the NN-th parameter (out of order access)
 %MMx – print the parameter using MM bytes
 %NN$MMx – print the NN-th parameter using MM bytes
 %hn – write the amount of printed characters to the

 given parameter
 %KK$hn – write the amount of chars to KK-th parameter

 General idea:
 Combine these features for random writes to memory

25Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

26 12/28/10

Format string attack

void foo(char* cmp) {

char text[1024];

strcpy(text, cmp);

printf(text); // correct: printf("%s", text);

}

 Use references to our string to retrieve pointers
 \x7c\xd3\xff\xff\x7e\xd3\xff\xff%12$2043x.%12$hn%11$32102x%11$hn

 Writes 0x0804 to 0xffffd37e and 0x856a to 0xffffd37c
 First 8 bytes of the string contain 2 pointers to half words
 %12$2043x prints 2043 bytes (increases the # of printed bytes)
 %12$hn writes a half word with the # of printed bytes to the first address
 %11$32102x writes 32102 more bytes

 %11$hn writes the second half word to memory
 This redirects the return instruction pointer to our special function

26Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

27 12/28/10

Format string: a tool writers perspect.

 BT stops the program when the control flow is
redirected
 Change of RIP to new function
 System call guard checks arguments of system calls
 Policy violations are detected and the program is stopped

 Random writes to memory only detectable with full
memory tracking

27Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

28 12/28/10

Arithmetic overflow

 Exploit overflows in data types
 Sometimes the bounds are checked before an arithmetic

operation

 Data types are of a specific length, arithmetic
operations can cause overflows or underflows
 Dangerous (unchecked) values passed to functions

 Constraints
 Lax or implicit type conversions
 Sign errors, rounding errors, type overflows, and wrong

pointer arithmetic

28Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

29 12/28/10

Arithmetic overflow

 Seems correct on first look
 But pass 0x40000000 as len parameter

 sizeof(int)=4

 0x40'00'00'00*4 = 0x1'00'00'00'00 = 0x00'00'00'00

 xmalloc() suceeds
 Following loop overwrites (large) parts of memory

 /* found in: OpenSSH 3.3 */

 nresp = packet_get_int();

 if (nresp > 0) {

 response = xmalloc(nresp*sizeof(char*));

 for (i = 0; i < nresp; i++)

 response[i] = packet_get_string(NULL);

 }

29Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

30 12/28/10

Arith. ovfl: a tool writers perspective

 Often used to overwrite memory and prepare
secondary attack
 Or can be used to inject code (similar to buffer overflow)

 BT detects the control flow transfer to illegal code
 System call authorization protects from system call only

attacks

 Food for thought: Use BT to analyze EFLAGS

30Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

31 12/28/10

Data attack

 Exploits a missing or faulty bound check
 Writes data to an user-controlled address
 Almost as much fun as format-string exploits

 Results in a random write to memory
 Position and value often only partially checked

 Use, e.g., integer overflow or combine with other attack

void foo(int pos, int value, int* data) {

data[pos] = value;

}

31Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

32 12/28/10

Data attack: a tool writers perspective

 Random (4b) write to memory
 Relative to position of data array (static?)
 Constraint: pos and value are user controlled

 Hard to detect, BT stops illegal control flow
transfers or illegal system calls

void foo(int pos, int value, int* data) {

data[pos] = value;

} movl 0x8(%ebp),%eax ; pos

shll $0x2,%eax ; pos * 4

addl 0x10(%ebp),%eax ; data + pos*4

movl 0xc(%ebp),%edx ; value

movl %edx,(%eax) ; data[pos]=val.

32Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

33 12/28/10

Mixing x86_64 and i386 code

 Modern kernels support both x86_64 and i386 code
in parallel
 Code can even be mixed in one program

 System call authorization tools and static verifiers
work on the assumption that only one form of
machine code is used
 System calls have different numbers in 32bit and 64bit

mode
 Checkers can be tricked to allow dangerous system calls

 Only a dynamic runtime security system that is
64bit aware can guard against these threats

 See: Bypassing syscall filtering technologies (Chris Evans)

33Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

34 12/28/10

Mixing code: a tool writers perspective

 System calls mixup even worse for seccomp-based
sandboxes
 Seccomp allows exit, read, write, sigreturn
 Mixe-up allows stat or chmod

 BT detects long jump that switches between i386
and x86_64 mode
 Syscall tables switched accordingly

34Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

35 12/28/10

Demos

 This is what you've been waiting for

 Which exploit do you want to see?
 Heap-based code injection
 Return-oriented programming
 Format string attack

 Please vote!

35Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

36 12/28/10

Code injection: heap-based (DEMO)

 Open file, read data from file and execute
is_foobar_heap
 Compare function is overwritten depending on file input

 The BT would stop the program when the control
flow transfer to the heap is detected
 Before the shellcode is even translated
 Two exceptions would be triggered

 Code is (about to be) executed in an non-executable area
 Function call to an unexported/unknown symbol

 Without security enabled BT translates and
disassembles exploit code
 See exploit dump

36Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

37 12/28/10

Return-oriented programming (DEMO)

 Simple stack-based overflow used to prepare a
single stack frame
 Call to system with /bin/sh as parameter
 Original program fails after return from system

 The BT would abort the program when the change
of the RIP is detected
 The RIP now points to a non-exported symbol
 The execve system call would be stopped as well

 BT without security translates and executes execve
 Log shows last entry with a system call

37Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

38 12/28/10

Format string attack (DEMO)

 Attack combines two half-word writes
 Only RIP overwritten
 Real exploit would overwrite multiple words to prepare

second stage of attack

 The BT would abort the program when the change
of the RIP is detected
 The RIP now points to a non-exported symbol
 The execve system call would be stopped as well

 BT without security translates and executes execve
 Log shows last entry with a system call

38Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

39 12/28/10

Conclusion

 User-space BT contains security problems
 Security violations detected and program terminated
 User-space, fine-grained, per-process, per-user model of

security

 Virtualization used to analyze threats
 Analyze malicious payload
 Observe control transfers and locations of break-ins

 fastBT supports the full ia32 ISA; x86_64 almost
complete; no kernel modification necessary
 All forms of system calls checked and authorized

 Source & demos: http://nebelwelt.net/fastBT

39Mathias Payer (ETH Zurich): I Control Your Code2010-12-28

http://nebelwelt.net/fastBT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

