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Abstract. Type confusion vulnerabilities occur when a program mis-
interprets an object as an incompatible type. Such errors result in un-
defined behavior and can lead to illegal memory accesses undermining
security. For compatibility reasons, the C++ programming language tol-
erates insecure type conversions, delegating the responsibility for assur-
ing an object’s type to the developer. Sanitizers help developers detect
and patch vulnerabilities during dynamic testing, i.e., before they reach
production environments. However, current type confusion sanitizers ei-
ther incur prohibitive runtime overheads, or fail to check all casts. In
particular, casts from void* have historically been overlooked due to
challenges in recognizing the underlying object’s type, thus leading to
incomplete type coverage.
We introduce Sourcerer, a new sanitizer that correctly and fully traces
and recognizes all type confusions, in particular, casts from unrelated
types and void*. Sourcerer enriches the classes involved in a cast with
runtime type information to perform precise runtime checks. When com-
pared with the state-of-the-art, Sourcerer expands type coverage to all
cast operations, 8,507M additional casts on the SPEC CPU2006 and
CPU2017 benchmarks—a 118% increase—with reasonable average per-
formance overhead of 5.14%. Additionally, we conduct an ablation study
to understand what causes this runtime overhead and showcase a fuzzing
campaign finding six bugs, highlighting the improved bug-finding capa-
bilities when Sourcerer is deployed.
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1 Introduction

C++ offers speed and flexibility at the compromise of not enforcing strong type
and memory safety guarantees. For example, the lack of type safety allows an
object to be converted to any type at zero cost, trading versatility for the risk of
type confusion, which occur when a program misinterprets an object as an incom-
patible type, leading to undefined behavior. Type confusion vulnerabilities have
been consistently exploited in the wild (e.g., CVE-2024-30357 in Foxit, CVE-
2025-24129 in iOS, CVE-2024-9859, or an $11,000 vulnerability #329781390 in
Chromium) and are classified under Common Weakness Enumeration CWE-
704 [22]. Identifying and fixing such violations early in the development cycle is
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key to prevent their active exploitation. To this end, automatic software testing
(fuzzing) is a strong ally in identifying unexpected behavior. However, type con-
fusions are challenging to detect as they may not trigger a crash and the compiled
code no longer has any notion of the C++ types. Even though recognizing type
confusion is complicated, their detection is crucial for overall software security. To
address this, sanitizers are used during automatic software testing to report un-
intended software behavior. For C++, sanitizers exist for many memory-related
vulnerabilities, however, systematically detecting all type confusions remains a
challenge for which no sanitizer has been widely deployed so far.

The underlying difficulty of designing a robust type confusion sanitizer for
C++ stems from the language type conversion mechanisms. These are divided
into three categories: (i) implicit conversion, e.g., bool to int, (ii) user-defined
copy constructors, e.g., To(From&) for classes From and To, or (iii) explicit casting
operators, e.g., reinterpret_cast. While implicit and developer-defined conver-
sions are safe, explicit casts allow for arbitrary conversions, potentially compro-
mising type safety. In practice, aside from dynamic_cast, for which the standard
mandates runtime checks, the other explicit cast operators, static_cast and
reinterpret_cast, rely on developers to guarantee the conversion’s validity.
Due to a lack of security awareness, outdated fear of performance overhead, or
C-style programming, current codebases still contain potential incorrect type
conversions. To validate a type conversion, the relationship between the source
and destination types must be checked at runtime. Static checks cannot be cer-
tain of the source type as C++ allows for type aliasing either through void
pointers used as a generic pointer type or via polymorphism (which allows re-
ferring to derived objects through their parents). While these patterns allow for
flexible code, they hinder the possibility of static validation of type conversions
and increase the type system complexity, therefore putting the program at risk
of type confusion. As C++ does not provide type information at runtime, most
objects remain glorified C-style structs. Only a subset of all objects, those with
virtual functions, are equipped with a runtime type identifier as mandated by
the C++ standard. Indeed, only those objects can benefit from runtime checks
(e.g., dynamic_cast) to guarantee type safety while conversions of other object
types remain prone to type confusion.

Different approaches exist to prevent type confusions. First, migrating to
a type- and memory-safe language like Rust [21] removes many vulnerability
classes, including type confusions. However, rewriting a project is costly and
risks introducing new bugs such as logic ones. While safe languages is the pre-
ferred solution for new projects, porting old code bases is not always feasible due
to constrained development resources. Switching to a C++ dialect with more
safety guarantees, like the security profiles in the C++ Core Guidelines [26] is
less demanding but still requires a deep understanding of the dialect and sig-
nificant code changes. For example, to prevent type confusions, the C++ Core
Guidelines mandate the removal of all unsafe cast operators [27]. If a rewrite
is out-of-scope, the alternative is to detect and/or prevent type confusions at
runtime. Throughout the years, many type confusion sanitizers [10, 14] tried to
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trace and check object lifetimes. However, they incur high runtime costs and are
prone to false positives [23]. LLVM Control Flow Integrity (CFI) [28] takes an-
other approach by relying on Runtime Type Information (RTTI), which incurs
a low runtime overhead but offers an incomplete detection as it is restricted to
polymorphic objects. type++ [1], a C++ dialect, extends LLVM-CFI’s detection
to all derived casts with only small modifications of the codebase. After deep
inspection, however, we observe that type++ only partially supports unions due
to design limitations in the RTTI initialization. Thus, existing tools lack a viable
method to detect all cast operations. Most importantly, current sanitizers are
limited to derived casts, e.g., between a parent and a child, while leaving the
majority of unrelated casts, if not all, unverified (e.g., from void*). For example,
type++ leaves 7,151M casts unprotected—(45.67% of all unrelated casts across
both SPEC CPU2006 and CPU2017). In contrast, EffectiveSan [7] addresses all
cast operations by encoding type information as low-fat pointers but requires
heavy-weight modifications of all allocators and checks the type at each pointer
dereference (which, compared to casts, is a very frequent operation), causing an
unnecessarily high runtime overhead of 49%. Reliably detecting all type confu-
sions with a low runtime cost remains, therefore, an open challenge.

In this paper, we propose Sourcerer, a novel sanitizer capable of detecting
all type confusions by enforcing a runtime type check at every explicit cast
operation. The novelty of Sourcerer lies in embedding inline Runtime Type In-
formation (RTTI) into all object types involved in unrelated casts, overcoming
the restriction to derived casts that limits state-of-the-art solutions, e.g., type++
and LLVM-CFI. To achieve this goal, Sourcerer introduces RTTIInit, a new C++
object initializer responsible solely of setting inline RTTI. With the introduction
of RTTIInit, Sourcerer alleviates porting issues and overcomes the limitations
of previous dialects, which forcibly injected default constructors and conflicted
with the C++ standard. Furthermore, the introduction of RTTIInit solves the
type initialization at union activation, another unsupported feature in existing
dialects. As a result, Sourcerer performs runtime type validation for each cast
from a non-generic types (i.e., developer-defined types) and generic pointers (i.e.,
void* or integral types), finally unlocking full type testing in C++ programs.

Sourcerer’s pipeline consists of two stages. First, a static analysis identifies
all classes involved in cast operations and helps the developer to adhere to the
dialect. Then, our compiler generates an executable with the initializer respon-
sible for setting the inline type information and the necessary type checks. We
evaluate Sourcerer on the SPEC CPU2006 [11] and SPEC CPU2017 [3] bench-
marks3 and conduct a fuzzing case study on a leading C++ project, OpenCV [2],
showcasing the ability to use Sourcerer to find illegal unrelated casts. Overall,
Sourcerer detects all cast operations in the SPEC CPU benchmarks and incurs,
on average, only a 5.14% performance overhead. Supporting objects involved in
unrelated casts requires additional code changes. We deem the necessary adap-
tation of 453 out of 2,040K LoC reasonable with respect to the 4.95× more
classes instrumented compared to the instrumentation of only derived casts. In

3 When using SPEC CPU, we refer to the SPEC CPU2006 and CPU2017 benchmarks.
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our evaluation, we conduct an ablation study to understand the root cause of
the observed overhead. Our study concludes that the Application Binary Inter-
face (ABI) change is the main cause of overhead highlighting the possibility of
drastically improving performances by modernizing specific casts. In terms of
security impact, Sourcerer identifies 152 type confusions in the SPEC CPU2006
and CPU2017 benchmarks. Finally, we conduct a fuzzing campaign in which we
deploy our sanitizer on OpenCV [2], discovering six unrelated type confusion
bugs, all missed by the state-of-the-art competitors.

Overall, the main contributions of Sourcerer can be summarized as follows:
– Quantifying unrelated casts so far hidden from state-of-the-art sanitizers.
– Proposing an extension to the type++ dialect to check all cast operations.
– A new initializer, RTTIInit, that sets object’s type information, increasing

the compatibility with the C++ standard and reducing the runtime cost.
– A thorough evaluation of Sourcerer against the state-of-the-art.
– A case study showcasing how Sourcerer can be used to detect vulnerabilities

in real-world software through fuzzing campaigns on well-tested software.
We release the source code of Sourcerer and the documentation to replicate

our experiments as open-source at github.com/HexHive/Sourcerer.

2 Background

In this section, we introduce the key concepts behind Sourcerer’s approach, fo-
cusing on how C++ handles type conversion and distinguishes unrelated from
derived casts. Additionally, we introduce the concept of type confusion vulnera-
bilities (CWE-704 [22]).

2.1 C++ casting

Casting—adjusting the type of objects—allows for flexible and generic code.
While implicit conversions (e.g., conversions defined by the C++ standard like
char to int) or the developer-defined ones are safe, explicit casts pose the risk of
undefined behavior. Specifically, unsafe casts have two origins: derived or down
casts occur when the resulting type inherits from the source class while unrelated
casts encompass conversions between two types not related by inheritance (e.g.,
void or other generic pointer type). The reverse of a derived cast, i.e., from a
base to a derived type, is known as an upcast and is implicit and therefore safe.

Both unrelated and derived casts can be safe. For example, casting from
void* is well-defined if the pointed memory was previously cast from the desired
type (e.g., Line 27 in Listing 1). Similarly, a derived cast is legal if the object is
of the derived type or one of its descendant (e.g., Line 19 in Listing 1). Outside
these cases, the result of the cast is undefined. For example, in Line 24 in List-
ing 1 a Sibling object referenced as a Base is illegally cast through static_cast
to a Drvd pointer. After such a cast, the program might try to access the y at-
tribute of the Drvd object which is out-of-bound as Sibling objects are smaller.
Such illegal casts are referred to as type confusions and might lead to memory

https://github.com/HexHive/Sourcerer
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1 class Unrelated {char w;};
2 class Base {
3 public:
4 int x;
5 virtual ~Base()=default;
6 };
7 class Drvd:public Base{
8 int y[3];
9 };

10 class Sibling:public Base{
11 double z;
12 };

13 int main() {
14 Unrelated* u = new Unrelated();
15 Drvd* d = new Drvd();
16 Sibling* s = new Sibling();
17 // Safe casts: no need for verification //
18 Base* b = static_cast<Base*>(d);
19 Drvd* d2 = dynamic_cast<Drvd*>(b);
20 if(d2 == nullptr) return 1; //if cast fails
21 Base* b2 = static_cast<Base*>(s);
22 void* v = d; // Implicit generic cast
23 // ------------ Derived cast ---------- //
24 d2 = static_cast<Drvd*>(b2); // Illegal
25 d2 = reinterpret_cast<Drvd*>(b);
26 // ----------- Unrelated cast --------- //
27 d2 = static_cast<Drvd*>(v);
28 d2 = reinterpret_cast<Drvd*>(s);// Illegal
29 Unrelated* u2 = (Unrelated*) d; // Illegal
30 return 0;
31 }

Listing 1: Examples of derived (lines 24 & 25) and unrelated casts (lines 27–29).
We omit statistics on safe casts (upcast and dynamic_cast, lines 18 & 19).

corruption. To avoid such errors, C++ developers need to maintain a mental
model of the actual object types. To do a type conversion, the C++ standard
mandates the use of one of the following explicit cast operators if the conversion
is not inherently safe—e.g., neither implicit nor defined by the developer:
– dynamic_cast handles only derived casts. It queries, at runtime, the type

information of the object to verify the conversion’s safety. Therefore, the
source and destination type must be polymorphic to ensure the presence of
RTTI. dynamic_cast is the only safe runtime cast operator in C++.

– static_cast provides only compile-time checks. For derived casts, the com-
piler checks that the source and destination types are part of the same
type hierarchy. Notably, this fails to prevent all illegal derived casts. Finally,
static_cast can convert void pointers to another type, without any checks.
In contrast to dynamic_cast, static_cast lacks type safety guarantees.

– reinterpret_cast allows developers to interpret the bytes of an object as a
new type. This is inherently unsafe and breaks type safety guarantees as no
runtime checks are executed. Typically, this operator is used for unrelated
casts, but it also supports derived cast.

Additionally, const_cast allows changing the qualifiers but not the object’s
type. This might result in undefined behavior but is not linked to type confusions.
Lastly, C++ supports C-style casts which are translated to the above compatible
cast operator with the highest safety guarantees. We will, therefore, not explicitly
consider C-style casts in the rest of the paper.
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2.2 type++ Limitations

Research for detecting type confusions has evolved with diverse mechanisms
being explored. Badoux et al. [1] propose a new C++ dialect mitigating, by
design, type confusions in derived casts. By extending all derived cast objects
with runtime type information (RTTI), type++ can protect each derived cast,
maintaining their type safety throughout the program execution. Adding RTTI
into these objects changes the Application Binary Interface (ABI) resulting in
some (limited) porting effort. To set the RTTI, their implementation artificially
injects default constructors to all classes involved in down-to casts. This solu-
tion conflicts with some C++ idioms like if it is marked as deleted or when
constructor calls are actively avoided (§5.5).

Crucially, type++ stops short of being completely type safe as it only par-
tially protects unrelated casts—slightly less than half in the case of the SPEC
CPU benchmarks. Moreover, instrumenting only a subset of cast classes breaks
the implied compatibility between some classes resulting in unnecessary porting
effort. We hypothesize that the reliance on the constructor to set RTTI is the
root cause of these porting issues.

3 Threat Model

Sourcerer is a sanitizer for detecting all, derived and unrelated, type confusions
in C++. In particular, when a type confusion bug is triggered during testing,
we expect Sourcerer to detect the type safety violation. We assume a correct
implementation of our compiler and the program to be correctly ported to the
type++ dialect. Specifically, Sourcerer is not designed for an adversarial scenario
due to possible false negatives if an attacker can leak and set type information.
We refer to §9 for a thorough discussion. In summary, our threat model aligns
with the ones from previous type confusion sanitizers [14].

4 Challenges

Upon careful evaluation of related works, we identified several unsolved chal-
lenges for type confusion sanitizers. First, the state-of-the-art, e.g., type++ and
HexType, offer incomplete type safety as they miss most unrelated casts. Only
EffectiveSan offers theoretically full type safety but at an unnecessary high run-
time cost, creating the second challenge we aim to address. Lastly, we identified
only partial support for unions in type++ and EffectiveSan while Sourcerer
provides complete support.
– Unrelated casts: To detect all type safety violation, a sanitizer needs to

cover all cast operations, including unrelated casts.
– Performance overhead: For a sanitizer to be widely adopted, it should

have a minimal performance overhead.
– Union support: C++ unions allow different types to refer to the same

memory. This is a problem for type confusion sanitizers as they need to
track the union type in memory.
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1 mov $0x1,%edi
2 call 47340 <malloc@plt>

1 mov $0x10,%edi
2 call 47340 <malloc@plt>
3 call 46f80 <_ZN9RTTIInitUnrelated>
4 ...
5 <_ZN9RTTIInitUnrelated>:
6 lea 0x1ad9(%rip),%rax #vtable address
7 mov %rax,(%rdi)
8 ret

Listing 2: Assembly code of the malloc-ation of an Unrelated object from List-
ing 1 without and with RTTIInit.

5 Sourcerer’s Design

In this section, we introduce the core concepts allowing Sourcerer to address these
challenges. First, we lay out which classes need type information to truly check
all casts. Then, we describe RTTIInit, an optimized inline type information
initializer reducing type++ dialect divergence and lowering the performance
overhead by 3× in comparison with the other complete type confusion sanitizer,
EffectiveSan. Additionally, we explain the key properties of RTTIInit allowing
the support of unions. Finally, we list the idioms unsupported by earlier work
that Sourcerer handles, like templates for EffectiveSan.

5.1 Classes to Instrument

Sourcerer’s core contribution is to check all casts. Specifically, Sourcerer instru-
ments all the classes involved in any derived or unrelated casts, thus extending
Property 2 laid out in the type++ paper [1]. Formally and in line with the prop-
erties defined in the type++ paper, we refer to this specialization as Explicit
Runtime Types For All Casts:

Property 1 (Explicit Runtime Types For All Casts.) Given all classes
CS of a program P, Sourcerer associates a unique type T to each class A ∈ CS
if A is either the destination or the type of the source object of an explicit cast.

This new property allows for the verification of all type casts while keeping
the number of classes to instrument at a minimum. Due to the ubiquity of casts
from void*, the sanitizer needs to instrument an increased number of classes—
1,043 additional ones in the SPEC CPU benchmarks, a 5× increase compared to
previous works [1] targeting only derived casts. The key insight to implement this
property lays in RTTIInit, that allows transparent type information initialization
in objects without interfering with the C++ constructors.

5.2 RTTIInit

The ability to type check an object at runtime depends on the presence of type
information. Typically, approaches using external metadata to track object types
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1 using namespace std;
2 union Union {
3 int i;
4 char c[2];
5 };
6 struct X { Union u;};
7 union BiggerUnion {
8 X x;
9 OtherClass c;

10 };

12 int main() {
13 BiggerUnion bu; // No member active
14 bu.x.u.i = 65; // bu.x and bu.x.u.i active
15 // u should only be accessed as integer.
16 cout << bu.x.u.c[0] <<endl; // UB
17 bu.x.u.c[0] = 0x42; // u is active as char[]
18 bu.x.u.c[1] = 0x41;
19 bu.c = OtherClass(); // Direct assignment
20 return 0;
21 }

Listing 3: Abbreviated snippet showing valid and invalid union member accesses.
The assignment at line 14 activates bu.x and u.i. Access to u through a non-
active member leads to undefined behavior (e.g., line 16) [5]. Sourcerer’s RTTI-
Init is called at each access while type++ misses instrumenting line 17 as calling
the constructor would overwrite bu.x and u.c.

struggle to follow all object lifetime events (e.g., copy). Inline metadata, as pi-
oneered by LLVM-CFI and type++, is more robust as the type information is
stored in the object and not disjoint from the object such as for TypeSan [10]
and HexType [14]. The type information will be carried in the different lifetime
events. Therefore, only the object creation requires careful handling to ensure
the type information is correctly initialized. Typically in C++, object creation
happens through new or direct assignment, which both call the object construc-
tor which also sets RTTI when required. The type++ implementation followed
this approach, by forcing constructor calls for object creation not relying on any
initialization but only allocation, e.g., malloc. This approach breaks different
idioms in the C++ standard like explicitly deleted constructors or const ob-
jects where initialization should occur only once. To avoid these issues, Sourcerer
introduces a new initializer, RTTIInit, uniquely focused on setting RTTI as ex-
emplified in Listing 2. By interacting only with the RTTI field, Sourcerer avoids
incompatibilities with const qualifiers and minimizes the performance cost of
setting the RTTI. Additionally, RTTIInit does not interfere with the remaining
object content, allowing for complete support of unions as detailed in §5.3. Lastly,
our initializer, as a new language feature, does not conflict with existing con-
structors or the lack thereof which was a limitation of type++ that complicated
its deployment.

5.3 Support for Unions

Unions, in C++, use the same memory to store objects of different types, al-
lowing, however, only a single type to be active at a time. The union switches
type when a member is activated, either through a direct assignment (Line 19
in Listing 3) or by setting a field of a union member. As the core property of
Sourcerer is to maintain inline type information throughout the program exe-
cution, Sourcerer needs to ensure that, upon activation, the type information
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1 template <class _Tp>
2 struct __list_node : public __list_node_base<_Tp> {
3 // Starting the lifetime of nodes without initializing in order to be

allocator-aware.↪→

4 private:
5 _ALIGNAS_TYPE(_Tp) char buf[sizeof(_Tp)];
6

7 public:
8 _Tp& __get_value() {
9 return *__launder(reinterpret_cast<_Tp*>(&buf));

10 }

Listing 4: Challenging idioms in the libc++ 19.0.0 list implementation. A node
is allocated through a char array later cast to the desired type. The constructor
is later called via construct_at. type++ calls the constructor at line 5 thereby
unfortunately disabling the constructor homing optimization [17]. Sourcerer, on
the other hand, can either allow-list the cast at line 9 or call the RTTI initializer
at line 5 without breaking the optimization.

is correctly updated in memory. Direct assignments do not require further han-
dling as the incoming object’s RTTI is already set. As a field assignment can
occur when the object is already activated, calling a constructor would overwrite
the stored object content (e.g., Line 17 in Listing 3). Sourcerer, however, calls
RTTIInit at each field assignment, which sets the RTTI without modifying the
remaining object content.

5.4 Dialect Simplification

Sourcerer relaxes two dialect requirements introduced by type++. First, the
type++ compiler requires a default constructor to be defined for each instru-
mented class and has to relax the deleted attribute in case the default con-
structor is defined as such. Sourcerer’s instrumentation, on the other hand, does
not use constructors and retains the intention of the developer. Sourcerer, addi-
tionally, remove type++ changes for const variables initialization. Relying on a
constructor to set RTTI imposes a second initialization step, breaking the sin-
gle initialization requirement of const variables. Conversely, as RTTIInit is not
counted as an actual initialization step, it averts any limitation for const.

5.5 Unsupported Idioms in Earlier Work

While deploying Sourcerer, we encountered a C++ idiom that type++ could
not support. Specifically, libc++, the LLVM C++ standard library, explicitly
avoids calling the object constructor when allocating a tree node to allow for
constructor homing [17], an optimization reducing the amount of emitted debug
information. Instead, they allocate a char array and then cast it to the desired
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type as shown in Listing 4. type++ either breaks the optimization or cannot set
the RTTI, disregarding type safety. Sourcerer, on the other hand, can instrument
this peculiar allocation pattern without breaking the optimization.

When evaluating EffectiveSan, we identified two unsupported idioms. First,
Custom Memory Allocators (CMA) need to be replaced, incurring many LoC
modifications. In comparison, Sourcerer only requires a list of CMAs and handles
their instrumentation automatically. Secondly, similarly to the type++ authors,
we encountered a false positive due to incomplete handling of C++ templates,
an issue not faced by Sourcerer.

6 Implementation

Sourcerer needs to add inline metadata to the necessary classes and instrumen-
tation to verify for all casts. We implement the Sourcerer prototype on top of
the modular compiler toolchain, LLVM 19.0.0 [16]. Specifically, we port the class
collection, custom allocator logic, as well as the warning analysis from type++
to LLVM 19.0.0. For RTTIInit, we copy the logic of the default constructor,
but trim it down to set only type information i.e., the vtable and the RTTI.
The resulting ABI change is similar to the one in type++—any function inter-
acting directly with the object size might be problematic. For verification, we
rely on LLVM optimized type checks. Moreover, compared to type++, we add
support for multiple allocator edge cases such as zero-size allocation and frees
through realloc. Overall, our implementation totals 9K LoC and consists of two
compilation passes, first to gather the types and then to instrument them. We
open-source Sourcerer and the evaluation at github.com/HexHive/Sourcerer.

7 Evaluation

Sourcerer’s evaluation targets the following research questions:
–RQ1: What extra efforts are required to check all unrelated casts?
–RQ2: What is Sourcerer runtime overhead compared to the state-of-the-art?
–RQ3: Which source causes the performance overhead introduced by Sourcerer?
–RQ4: How effective is Sourcerer at detecting type confusion vulnerabilities?
–RQ5: How does Sourcerer perform in a real-world bug-hunting scenario?

Experimental setup. Our evaluation runs in Ubuntu 20.04 Docker con-
tainers on a server with two Xeon E5-2680v4 @ 2.4GHz and 256GB of RAM.

Evaluation targets. Sourcerer’s evaluation is twofold: first, we compare it
to the state-of-the-art, then we demonstrate Sourcerer effectiveness on current
large-scale projects. As such, we evaluate Sourcerer on the SPEC CPU2006 [11]
and SPEC CPU2017 [3] benchmarks as they are the common benchmarks across
the state-of-the-art. For both, we select all the C++ programs and compile them
with -O2 optimization level. Overall, we evaluate Sourcerer on 2,040K LoC lines
of code across the 16 programs of the SPEC CPU suites. Additionally, we conduct
a fuzzing campaign against OpenCV [2] (commit 796adf), the state-of-the-art

https://www.github.com/HexHive/Sourcerer
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computer vision library, showcasing the ability to use Sourcerer to find illegal
unrelated casts. We choose OpenCV as it is a large, 1.3M LoC, and popular
C++ project with a fuzzing setup readily available from OSS-Fuzz [25].

State-of-the-art competitors. We compare Sourcerer against a represen-
tative set of the state-of-the-art type confusion sanitizers. Specifically, we choose
type++ [1] as it is the most recent type confusion protection and the cast checker
of LLVM-CFI [28] due to its use in industry. Finally, we report numbers from
EffectiveSan [7] as it is the only other tool claiming to protect unrelated and
derived casts. Despite our efforts, we were unable to run EffectiveSan as the cast
checking configuration is neither present in the source code nor in the documen-
tation. Lastly, EffectiveSan checks types at pointer access, and, therefore, does
not report the number of cast operations protected. This discrepancy makes a
quantitative security comparison of Sourcerer and EffectiveSan meaningless.

For each tool, we report the performance overhead, averaged across five runs,
and compare it to the corresponding LLVM vanilla version—13.0.1 for type++,
and 19.0.0 for LLVM-CFI and Sourcerer. To assess the effectiveness of Sourcerer,
we report the number of runtime cast operations checked, similarly to type++.
Every configuration is run with Link-Time Optimization (LTO) enabled as re-
quired by LLVM-CFI cast checking.

7.1 Porting Effort

Sourcerer follows the type++ dialect specification, and, therefore, requires simi-
lar porting efforts to translate C++ code into its dialect. Starting from type++’s
open-source patches, we address the additional warnings caused by the classes
involved in unrelated casts. As a first metric, we report the number of extra
classes that need to be instrumented to check unrelated casts. For these extra
classes, we break down the kind of unrelated cast causing their instrumenta-
tion in the column Unrelated in Table 1. On average, Sourcerer instruments and
monitors 4.95× more classes than type++ as our checks stretch beyond derived
casts. Some programs like POV-Ray have few classes, e.g., 12, involved in derived
casts but extensively use unrelated casts with 161 classes cast. SoPlex experi-
ences a less dramatic increase, e.g., 3× more classes, with most classes cast as
part of libc++ data structures headers (e.g., vector). This reduces the overall
effort as porting the library is amortized across the different programs. In Ta-
ble 1, we report the classes requiring explicit instrumentation. The total number
of types instrumented is a superset as some classes inherit the instrumentation
and templates are counted once and not per specialization.

The actual porting effort caused by the new classes is small. For the SPEC-
CPU benchmarks, we only modify 120 LoC on top of the type++ patches, for
a total of 453 LoC patched. The new changes are relatively minor, for example,
an initialization procedure (e.g., placement_new) in NAMD 2017. Around 20%
of the LoC changed are fixes for type confusions. They are necessary because
the ABI changes do not always allow Sourcerer to recover from the subsequent
memory corruption. For example, in Povray 2017, a parent object is created by
malloc-ing enough memory but storing the returned pointer in a variable of a
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Table 1: Breakdown of the number of classes instrumented by Sourcerer as well
as the number of RTTI initialization. Total shows the number of classes that
Sourcerer instruments which is broken down into the cause of the instrumenta-
tion. Derived indicates classes involved in derived cast and, therefore, already
instrumented by type++. Then, we report the additional classes involved in
unrelated casts either from a specific type (i.e., class) or from generic pointers
(e.g., void*). The last two columns indicate the number of instrumented objects
and the percentage which are initialized through RTTIInit.

Program LoC
Instrumented classes # RTTI

Init.
% Through
RTTIInitTotal Derived Unrelated

class void*

SP
E

C
C

P
U

20
06

NAMD 4K 27 9 4 14 460K 100.0
deal.II 95K 63 12 4 47 15,875M 98.32
SoPlex 28K 39 13 6 20 726M 5.91
POV-Ray 79K 161 12 23 126 6,243M 99.97
OMNeT++ 27K 53 13 4 36 2M 65.82
Astar 4K 31 9 4 18 6,024M 91.97
Xalan-C++ 264K 149 46 5 98 1,407M 99.86

SP
E

C
C

P
U

20
17

cactuBSSN 63K 31 11 5 15 334K 81.19
NAMD 6K 26 9 4 13 0 -
Parest 359K 120 26 4 90 20,384M 98.53
POV-Ray 80K 161 12 23 126 25,179M 100.0
Blender 616K 57 12 20 25 70M 74.3
OMNeT++ 86K 125 14 5 106 3M 38.93
Xalan-C++ 291K 203 46 7 150 35,276M 99.61
Deep Sjeng 7K 27 9 4 14 15M 0.0
Leela 31K 34 11 4 19 4,491M 99.53

Total 2,040K 1307 264 126 917 - -

larger child type as exemplified in Listing 5. As Sourcerer identifies the returned
memory as a child object, it calls RTTIInit which set information out of the
allocated bounds, leading to memory corruption. The biggest changes were in
Blender, which interacts heavily with C code resulting in two challenges. First,
as some structs are defined in headers included in both C and C++ code, we had
to mimic the presence of RTTI information in the C code to ensure a compatible
ABI. The second issue arises when, in C code, an instrumented C++ object is
cast to a pure C struct. As Sourcerer only instruments C++ code, the cast is not
checked nor does the destination type expect the RTTI field. We modified the C
struct to be aware of the presence of type information. Moreover, instrumenting
more classes showed some unexpected benefits as we could remove a patch from
type++ for SoPlex as layout similarity is restored between two types involved
in an unrelated type confusion.
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Table 2: Performance and security evaluation of Sourcerer compared to the state-
of-the-art. Under “% ” we report the performance overhead compared to the tool’s
baseline. Then, in the Casts column, we report how many unrelated casts were
checked at runtime. The two ∆ columns show the extra operations verified by
Sourcerer on top of the competitors. The last two columns report the average
and peak memory overhead of Sourcerer in terms of the working set size.

Program LLVM-CFI type++ Sourcerer ∆ Casts Memory
% Casts % Casts % Casts LLVM-CFI type++ Avg. Max.

SP
E

C
C

P
U

20
06

NAMD 0.41 1 0.27 0 0.53 1 0 1 0.45 0.45
deal.II -1.15 649K 1.95 122M 4.33 128M 127M 5M -2.17 1.95
SoPlex -0.01 206K 0.22 27M 12.64 30M 30M 4M 66.79 66.83
POV-Ray 0.92 1M 1.60 1,342M 7.93 1,345M 1,344M 4M 10.39 10.39
OMNeT++ 3.42 3 0.67 270K 3.04 284M 284M 283M 1.43 1.43
Astar 0.85 0 0.90 0 16.99 4M 4M 4M 104.89 82.03
Xalan-C++ 0.63 5K -0.54 5K -1.29 161K 156K 156K 9.28 2.85

SP
E

C
C

P
U

20
17

cactuBSSN 0.47 0 -0.71 100 -0.21 21K 21K 21K 0.30 0.08
NAMD 0.52 5 -0.68 0 0.71 0 -5 0 0.23 0.22
Parest 0.36 24K 0.07 85M 2.46 106M 106M 21M 2.11 1.99
POV-Ray 0.08 39K 1.73 5,370M 9.59 5,381M 5,381M 11M 10.98 10.96
Blender 0.69 0 2.92 7M 9.62 7,643M 7,643M 7,636M 2.78 3.01
OMNeT++ 1.31 6M 0.34 6M 4.11 501M 495M 495M 2.21 2.12
Xalan-C++ -0.10 4K -0.24 198M 15.38 243M 243M 45M 4.94 4.43
Deep Sjeng -0.14 0 -1.09 0 0.45 1 1 1 16.37 16.37
Leela -0.53 0 -0.27 1K -0.19 416K 416K 414K 15.69 5.69

Avg./Total 0.26 8M 0.43 7,158M 5.14 15,666M 15,658M 8,507M - -

EffectiveSan preserves the C++ ABI but struggles with custom allocators.
In their artifact, the changes necessary for SPEC CPU2006 totaled a non-trivial
297 LoC. In contrast, Sourcerer needs to modify 453 LoC while incurring, in the
worst case, only a third of EffectiveSan’s average runtime overhead.

Overall, we conclude that the porting efforts for Sourcerer are reasonable and
in line with the efforts necessary for similar tools.

7.2 Performance Overhead

Since speed is key for automatic testing, sanitizers should incur a limited per-
formance overhead (§4). Below, we quantify the performance cost of deploying
Sourcerer on the SPEC CPU benchmarks and compare it to the state-of-the-art.

Table 2 details the performance overhead of the different tools in the columns
marked “%”. Each value is the average performance overhead compared to a bi-
nary compiled with vanilla Clang—version 13.0.1 for type++, 19.0.0 for both
LLVM-CFI and Sourcerer. We observe a negligible standard deviation across
the five runs. As expected, the additional classes instrumented increase the
overhead of Sourcerer compared to LLVM-CFI and type++. While LLVM-CFI
and type++ are mitigations, Sourcerer’s higher overhead is outstanding for a
sanitizer deployed in a testing environment. For example, UBSan [4] manifests
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slowdowns of up to ∼1.7x. More precisely, Sourcerer incurs a 5.14% performance
penalty but covers all casts in a program. When looking only at SPEC CPU2006,
the target set of EffectiveSan, Sourcerer overhead is limited to 6.47% compared
to the 49% overhead reported by EffectiveSan’s authors. Consequently, Sourcerer
reduces the runtime overhead for a complete sanitizer by a factor of seven. In
fact, Sourcerer shows a similar overhead to HexType [14] but additionally checks
unrelated casts and avoids false positives by design.

Looking at individual programs, we observe that the overhead is not uniform.
As shown in Table 2, programs such as cactuBSSN, NAMD and Deep Sjeng
experience virtually no overhead but also check the fewest casts. On the other
hand, SoPlex and Xalan-C++ 2017 suffer from an overhead of around 15% due,
in part, to caching being undermined by bigger objects on hot paths. To conclude,
a complete type confusion sanitizer is practical if the checks occurs at cast time
and not at the frequent dereference sites, as implemented in EffectiveSan.

7.3 Source of the Performance Overhead

In this section, we study the performance cost of Sourcerer instrumentation. In
particular, we conduct an ablation study on the three following elements: the
type checks, the RTTI initializer, and the ABI changes. First, we disable the
type checks but leave the instrumentation intact. Then, we also remove the call
to RTTIInit, leaving only the changes to the ABI in place. Each experiment is
compared to the same vanilla Clang baseline. We present the results in Table 3.

Comparing the columns Full and W/o type checks shows that the verification
cost can be important, e.g., Blender. Upon closer inspection, Blender exhibits
a high ratio of failing type checks which is a slow path. Indeed, in a testing
environment, we expect the program to be terminated upon encountering a type
confusion while in this evaluation we continue to assess the program performance.
Fixing these type confusions would reduce the cost of the checks to a similar level
as in Xalan-C++ 2006 which proceeds to more, but successful, type checks.
Overall, the numerous optimizations implemented in LLVM type checks [20]
allow for this limited performance cost.

Inspecting the column ABI change only, we observe that altering the object
size negatively affects the caching behavior. Indeed, in Astar, we observe that
the class pointt is instrumented by Sourcerer. As a single byte object, adding
RTTI double its size, negatively impacting caching in the tight loops of the
flexarray::add function. Reducing this overhead could be achieved by remov-
ing all casts of pointt, and, therefore, Sourcerer instrumentation. This would
return Astar to the original caching performance and a minimal overhead. A
similar issue is observed in SoPlex. The cost of the ABI change varies a lot
across programs and use-cases. Compared to type++, this effect is magnified in
Sourcerer by the additional classes instrumented.

Lastly, Table 3 allows us to estimate the overhead of Sourcerer’s RTTIInit
as it is the only change between the columns W/o type checks and ABI change
only. Disabling RTTIInit does not lead to a significant change in performance,
highlighting the effectiveness of Sourcerer’s RTTI initialization design.



Sourcerer: channeling the void 15

1 class X {}; // Instrumented
2

3 class A {
4 int x; // A is instrumented
5 };
6

7 class B : public A {
8 int y;
9 X x; // Need to set x RTTI

10 };
11

12 int main() {
13 A* a;
14 a=(B*)(malloc(sizeof(A)));
15 free(obj);
16 return 0;
17 }

Listing 5: Simplified excerpt of
a type confusion in POV-Ray
2017. Sourcerer calls RTTIInit
at line 14 right after the call to
malloc. Sourcerer assumes, from
the cast, that the underlying ob-
ject is of type B while the allo-
cated size is only sufficient for an
A object. The call to A’s RTTI-
Init will try to set x’s RTTI in-
formation (line 9), resulting in an
out-of-bounds write.

Table 3: Ablation study of Sourcerer per-
formance overhead. The column Full lists
the overhead of Sourcerer compared to the
baseline. The third column shows the over-
head once the type checks are disabled.
For the last column, we additionally disable
calls to RTTIInit, highlighting the cost of
the ABI change. Comparing Full and W/o
type checks shows the overhead of the cast
validation. Finally, comparing the last two
columns allows for an estimation of the over-
head induced by RTTIInit.

Program Full W/o type ABI change
check only

SP
E

C
C

P
U

20
06

NAMD 0.09 0.15 -0.15
deal.II 3.89 5.36 3.53
SoPlex 12.88 12.87 8.80
POV-Ray 8.58 5.20 5.41
OMNeT++ 6.28 1.37 0.05
Astar 16.51 16.86 15.53
Xalan-C++ -1.83 1.42 0.48

SP
E

C
C

P
U

20
17

cactuBSSN 0.18 -1.01 -0.30
NAMD -0.15 -0.06 0.75
Parest 1.77 2.32 2.07
POV-Ray 9.73 5.68 5.95
Blender 9.16 1.00 1.26
OMNeT++ 5.96 2.29 2.90
Xalan-C++ 14.64 13.97 15.34
Deep Sjeng 0.15 0.06 0.16
Leela -0.50 -0.82 -0.51

Overall, this study highlights the cost of the ABI change, which is strongly
dependent on the program and its use-cases. Nonetheless, the average overhead of
Sourcerer is lower than other sanitizers while detecting all type safety violations.

7.4 Security Effectiveness

Sourcerer is a sanitizer deigned to detect all type confusions. In this section, we
compare the number of cast checks against similar tools and describe the type
confusions that Sourcerer identified which were missed by previous works. From
a theoretical point of view, both EffectiveSan and Sourcerer provide complete
coverage of all cast operations. We do not provide statistics about EffectiveSan
checks as they do not happen at cast time but at every object dereference. How-
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ever, similarly to the type++ authors, we observed false positives in EffectiveSan
due to incompatibilities with templates.

Table 2 reports the number of casts checked by LLVM-CFI, type++, and
Sourcerer. For each program, we list the number of unrelated casts verified during
the benchmark execution. The difference between Sourcerer and both HexType
and LLVM-CFI is listed in the two columns headed by ∆ Casts, respectively.
LLVM-CFI checks a mere 8M unrelated casts, less than 1% of all unrelated cast
operations, while type++ already verifies slightly less than 50% due to classes
being involved in both derived and unrelated casts. Sourcerer covers the remain-
ing 50% of casts, reaching all 15.7B unrelated casts, highlighting the wide attack
surface left unchecked by previous research. The increase in verified casts is
dominated by Blender, but almost all programs benefit from the additional type
confusion detection capabilities offered by Sourcerer. NAMD 2017 is a special
case where type++ and Sourcerer report fewer casts due the changes necessary
for the dialect which removed the only cast triggered in the execution.

In regards with the security impact, Sourcerer discovered 152 type confu-
sions in the SPEC CPU benchmarks—30 more than the state-of-the-art. Most
of these type confusions expect classes to have identical layouts. Despite the lack
of guarantee from the C++ standard, C++ compilers rarely optimize object lay-
outs thus, reducing the risk associated with these type confusions. Nonetheless,
relying on such undefined behaviors is unsafe despite its widespread use.

7.5 Sourcerer as a Sanitizer for Fuzzing Campaigns

In this section, we showcase the effectiveness of Sourcerer as a sanitizer by using
our prototype in combination with AFL++ [9]. We conduct the first fuzzing
campaigns targeting specifically type confusions and compare its performance
with a state-of-the-art memory sanitizer, AddressSanitizer (ASan) [24].

As target, we select OpenCV [2], the leading computer vision library, due
to its ubiquity and the availability of fuzzing drivers as part of the OSS-Fuzz
project [25]. We unleash AFL++, a state-of-the-art fuzzer, on the seven drivers
and conduct five 24-hour fuzzing campaigns for both ASan and Sourcerer. We
replay the inputs on a binary instrumented with SanCov [19] to have collision-
free coverage and avoid different numbers of edges due to the instrumentation.

Thanks to Sourcerer’s increased compatibility with the C++ standard, few
changes are necessary to support the 1.34M C++ LoC of OpenCV. A peculiar is-
sue is how the characteristics of matrices elements (e.g., depth, size, and number
of channels) are stored and later used to compute the offset between elements,
shunning offsetof. As Sourcerer modifies this offset, matrices traversal results
in RTTI being interpreted as matrix elements. Indeed, the type++ dialect is
incompatible with hard-coded object sizes. More importantly, this is also less
portable and needs support through #ifdef and header files. We leave out this
code modernization as it involves modifications of the core components of the
library. Instead, we use Sourcerer flexibility to disable the instrumentation of the
five matrix element types—out of 668 classes involved in casts—trading a slight
reduction of the findable type confusions for easier deployment of Sourcerer.
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Fig. 1: Fuzzing campaign results. The left figures show the branch coverage
throughout the 24h fuzzing campaign. On the right, Sourcerer allows for more
executions due to reduced overhead compared to ASan.

Figure 1 shows the performance of the three fuzz drivers. In shaded colors
are the minimum and maximum values achieved across the five repetitions. The
left graphs highlight that Sourcerer achieves a similar branch coverage to ASan,
despite being hindered by type confusion crashes. On the right, the total number
of executions of the fuzz drivers shows that Sourcerer instrumentation is more
lightweight than ASan, allowing to test more inputs.

In terms of crashes, the two drivers, imread_fuzzer and core_fuzzer, high-
lighted in Figure 1, triggered three type confusion bugs. The crashes are caused
by similar unrelated casts to a PaletteEntry object at three different code lo-
cations. Our testing found three additional type confusions in code assuming
indistinguishability between an array of type, e.g., float, and a Vec<type>
objects, representing a vector. However, as the array is oblivious to the Vec
RTTI field, the reinterpret_cast results in shifted values and incorrect RTTI.
Sourcerer’s instrumentation makes this type confusion apparent but blocks the
program execution as the object is corrupted, hindering fuzzing progress. To
highlight the capabilities of Sourcerer, we investigate if type++ can identify the
errors. Since type++ does not instrument PaletteEntry and Vec, type++ was
unable to detect these errors, further showcasing the effectiveness of Sourcerer.

Previous type confusion sanitizers never conducted fuzzing campaigns likely
due to false positives (e.g., HexType) or the expensive porting effort (e.g., CMAs
in EffectiveSan). Sourcerer, therefore, is the first to demonstrate the feasibility
and effectiveness of fuzzing campaigns with a complete type confusion sanitizer.
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8 Related Works

In the next paragraphs, we discuss relevant works for type confusion sanitizers.
Type confusion defenses. TypeSan [10] and HexType [14] check derived cast
by tracking object types throughout their lifetime in an external data structure.
The complexity of C++ lifetimes leads to prohibitive cost and a high rate of false
positives [23]. EffectiveSan [7] encodes, through fat pointers, the type and bounds
of an object. At each pointer dereference, they perform a bound check and a type
check causing a high runtime cost. Multiple dialects exist for C++ to prevent
by design certain classes of vulnerabilities. Ironclad C++ [6] banned unions and
added type information to every object requiring large changes to the source
code. More recently, type++ [1] proposed limited code changes to add RTTI
to each object involved in a derived cast. Finally, Uncontained [15] identifies
derived type confusions in C containers, particularly in the Linux kernel.
Type check pruning. To avoid type confusions, developers implement their
own type identifiers and checks. Recent works investigated disabling such checks
when a sanitizer is deployed. In particular, Zhai & al. [29] automatically remove
type checks redundant with HexType to improve performance. Orthogonally,
HTADE [8] removes derived casts that are never dereferenced.

9 Discussion

In the following, we detail Sourcerer’s limitations and possible extensions.
Custom allocator identification. Similarly to previous tools, Sourcerer tracks
object lifetime and, therefore, their allocation. While new and direct initialization
sets RTTI automatically, C style allocations (e.g., malloc, calloc, and realloc)
require to explicitly initialize the RTTI through RTTIInit. Additionally, Custom
Memory Allocators (CMA) wrap the standard allocation functions to provide
extra features like memory pool or allocation metadata (e.g., ASan). To initialize
RTTI, Sourcerer as other sanitizers, must be aware of these allocators and is,
therefore, configurable through an allow-list. Orthogonally, CMAsan [12] recently
automated CMAs identification in C++ projects.
Identification of Allocation Type. To correctly set type information after
an explicit allocation, Sourcerer needs to know the allocated type. Assuming the
presence of a cast to the desired type right after returning from the allocation
has proven sufficient in our evaluation. A sounder static analysis would be able
to follow allocation until their first actual assignment.
Reliance on Link-time optimization. Sourcerer relies on the type checks im-
plemented by LLVM-CFI which leverages the LLVM type.test function [20].
To allow optimized checks, it leverages Link-Time Optimization (LTO) to op-
timize inheritance hierarchies. During libc++ instrumentation, we discovered
that some casts were unchecked by LLVM-CFI as their LTO-visibility attribute
is set to expose symbols to external compilation units, preventing LLVM from
emitting type checks. Clang provides an option, -fsanitize-cfi-cross-dso, to
check externally visible objects across Dynamic Shared Objects (DSO), at the
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cost of lower performance and extra compilation requirements (e.g., position-
independent code) [18]. We leave evaluating this option as future work.
Future Work. Accessing a union through a non-active member is undefined
in C++ [13]. Practically, the illegal access is identical to a reinterpret_cast.
To solve this issue, Ironclad C++ [6] banned unions in their dialect. Adding
type information to the types used in unions would allow Sourcerer to check the
validity of union access at the cost of additional porting effort and performance
overhead. We leave verifying union access correctness as future work.

Sourcerer is a sanitizer and, therefore, is not suited for an adversarial sce-
nario. Multiple improvements are necessary to mitigate type confusions. First, all
source objects need to be typed, as otherwise, an attacker controlling the object
content could forge RTTI values, resulting in false negatives. As casts to integral
types are widespread (e.g., a pointer passed as a void* argument), it would re-
sult in more instrumentation. Static analysis might reduce the number of classes
to instrument by inferring if a void pointer is ever cast in its scope. Adoption
would also require Sourcerer’s performance overhead to be reduced through, for
example, type check pruning [29] or type check removal [8] (§8). Code modern-
ization, e.g., removing casts on hot paths or the source of instrumentation of
classes heavily cached, has the highest improvement potential §7.3.

10 Conclusion

We introduce Sourcerer, a novel type confusion sanitizer that checks all casts
at runtime. By combining inlined type information with our optimized RTTI
initializer RTTIInit, Sourcerer checks all casts explicitly while reducing the di-
vergence of the type++ dialect with the C++ standard. Additionally, RTTIInit
supports unions and other idioms which were missing from existing tools.

We evaluate Sourcerer on the SPEC CPU benchmarks. Our tool checks twice
as many unrelated casts compared to type++. On average, Sourcerer incurs
5.14% overhead, six times lower than the other complete type confusion sanitizer,
EffectiveSan. Our ablation study identifies the cause of the overhead to be the
required ABI changes. Lastly, during our fuzzing case study targeting specifically
type confusions, we identify six new type confusion bugs and many code locations
that would benefit from code modernization efforts.
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