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Abstract—Increasing internet connectivity poses an existen-
tial threat for cyber-physical systems. Securing these safety-
critical systems becomes an important challenge. Cyber-
physical systems often comprise several control applications
that are implemented on shared platforms where both high
and low criticality tasks execute together (to reduce cost).
Such resource sharing may lead to complex timing behaviors
and, in turn, counter-intuitive timing anomalies that can
be exploited by adversaries to destabilize a critical control
system, resulting in irreversible consequences. We introduce
the butterfly attack, a new attack scenario against cyber-
physical systems that carefully exploits the sensitivity of
control applications with respect to the implementation on the
underlying execution platforms. We illustrate the possibility
of such attacks using two case-studies from the automotive
and avionic domains.

Index Terms—security attack, real-time scheduling, control
applications, resource sharing, stability analysis, time delay,
latency, jitter.

I. INTRODUCTION

Cyber-physical systems are shifting towards integrated
architectures, as observed, e.g., in the automotive domain
[1]. As a result, the majority of control applications in such
domains are implemented as software tasks on commodity
platforms, sharing the CPU with other tasks. If not carefully
taken into account, this resource sharing leads to complex
timing behaviors, which may jeopardize the stability of the
control applications [2]–[4].

Cyber-physical systems [5] tightly interact with sec-
ondary networks and components, giving an adversary
ample opportunities to provide malicious input, potentially
compromising the safety of the system. Unfortunately,
many such systems comprise crucial physical components,
e.g., adaptive cruise control or engine control in automotive
systems that allow deep intervention in the driving of a

vehicle [6]. Therefore, ignoring the security aspects in
cyber-physical systems will have severe consequences.

By the interconnection of the physical systems to the
cyber (processing) elements, the notion of physical time is
introduced in today’s embedded systems. Temporal attacks
are a new class of attacks where the correct behavior of
the system is targeted through manipulation of its temporal
properties. The very first example could be execution over-
runs of an application that can lead to deadline misses in
other applications. Such deadline misses, in turn, may have
catastrophic consequences in safety-critical applications.
Following best practices, overruns are considered in the
design phase and appropriate measures are planned in such
cases. However, as we discuss later, temporal attacks are
by no means limited to overruns. In fact, there are non-
trivial cases where the safety of a system is jeopardized
if a non-critical task simply stops executing. In control
applications, this may lead to longer jitter in execution
of the critical control task and instability of the physical
plant. Note that although the non-critical application does
not violate its limit on resource usage, the physical plant
associated with the control application is compromised.
Similarly and counter-intuitively, if a task decides to switch
to a lower priority level or longer period, i.e., giving up
certain privileges, the stability of other control applications
can be compromised.

The performance and stability of physical plants are
related to the computational resources provided to their
corresponding control tasks, which are running on the
shared platform [7]–[9]. This has been extensively stud-
ied in the literature related to control under co-designing
scheduling constraints [10]–[42]. Nevertheless, it is widely
believed that giving more resources (e.g., amount of avail-
able processor) to a controller leads to better control quality



and only reducing the amount of resources represents a
threat (monotonicity property). In the Vestal model [43],
widely used for the analysis of (mixed) critical systems,
the implicit assumption is that exceeding a certain worst-
case execution/computation time is the main threat to be
considered. Thus, if a job attempts to consume more time
than allowed in a certain mode (by e.g., attempting to
run for a longer execution time, or more frequently) the
criticality mode of the system changes [44]. If this mode
change is realized, it is assumed that the necessary isola-
tion/protection of high criticality tasks, in the time domain,
has been achieved. Similarly, in the real-time systems area,
it is assumed that providing guarantees for the case of a
given upper bound on execution time and lower bound on
inter-arrival time is sufficient and safe. However, as we
pointed out previously, these assumptions are not sufficient
to avoid security threats in the timing domain.

In this article, we consider a new attack scenario for
cyber-physical systems, in which the adversary can interfere
with an entry task1 running on the shared platform (this
task is not needed to be associated with the targeted critical
application). The attacker, however, does not explicitly in-
terfere with the execution of the targeted applications (e.g.,
by manipulation of registers and pointers, interfering with
sensors or actuators, or similar to a replay/stealthy/denial-
of-service attack). In addition, as a result of the attack,
the entry task does not consume more resources (processor
bandwidth/time) than the allocated ones (e.g., overruns are
categorized as denial-of-service attack). The attacker will
indirectly manipulate the usage of the provided resources
(by providing certain inputs to a certain entry task running
on the platform) in such a way that the stability of the
plants associated with other (targeted) tasks is jeopardized.
The attack scenario is illustrated in Figure 1.

Observe that, as opposed to most common attack models,
here, the adversary does not actively interfere with the cor-
rect execution of the targeted critical tasks/applications. The
attacker will manipulate the execution of another possibly
low criticality entry task (not the targeted application), by
providing certain legitimate inputs to it. As a result of this
manipulation, the entry task will consume less (not more)
resources (time) than possibly allowed.

Among temporal attacks, the attack scenario presented
in this article exploits the observation that complex cyber-
physical systems are so entangled that manipulating one
entity of the system can tamper with the functionality of
other entities, hence suggesting chaotic behaviors and the
name Butterfly effect and attack.

The rest of the paper is organized as follows. Section II
introduces the necessary background for this paper. Sec-
tion III describes our assumption on the environment and
capabilities of the adversary. In Section IV, the Butterfly
attack is defined and two of its main characteristics are il-

1The lower criticality less protected task that interacts with the out-
side world. The adversary indirectly attacks the targeted critical control
application through this entry task.

shared processor

entry task targeted task
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Fig. 1: Illustration of the attack scenario. As a result of
intervention (e.g., jamming GPS signals) the entry task
consumes less resources and this might lead to instability
of the targeted task.

lustrated. An example is provided in Section V to elaborate
on the Butterfly attack. Section VI and Section VII illustrate
two real-world case studies where the Butterfly results in
unintended potentially devastating behavior. The mitigation
and detection solutions are discussed in Section VIII.
Finally, the related work is discussed in Section IX and
Section X concludes the paper.

II. BACKGROUND

In this paper, we assume a uniprocessor platform Γ which
is shared among a set of control applications Λ. Each
control application includes a control task and a physical
plant. The set of all control tasks and all physical plants is
denoted by T and P, respectively.

A. Task Model

On the shared processor platform Γ, a task related to
control application Λi ∈ Λ is denoted by τi ∈ T. Tasks
have different criticality levels. The criticality level of task
τi is denoted by χ(τi). Tasks are periodic and real-time and
can be preempted. The computation time (execution time),
sampling period, and priority of task τi ∈ T are denoted by
ci, hi, and ρi, respectively. Each instance of a task (a job)
might have different computation time depending on the
input. The computation time ci is bounded from below by
cbi and from above by cwi . The set of higher priority tasks
for task τi ∈ T is denoted by hp (τi) ⊆ T. Task τi ∈ T has
a higher priority than task τj ∈ T if ρi > ρj .

We assume the tasks are independent, deadlines are
implicit, and fixed-priority preemptive scheduling is ap-
plied. While we assume fixed-priority scheduling for the
discussion in this section, the Butterfly attack is equally
applicable in the case of other scheduling policies.

B. Plant Model

We model plant Pi ∈ P, related to control application
Λi ∈ Λ, and controlled by control task τi ∈ T, by a
continuous-time system of differential equations [7],

ẋi = Aixi + Biui, (1)
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Fig. 2: Graphical interpretation of the latency (L) and
response-time jitter (J). Rw and Rb denote the worst-case
and best-case response time and h is the period of the
controller.

where xi and ui are the plant state and the control signal,
respectively. The sampling is done periodically, and the
control signal is updated with some delay which depends
on real-time task scheduling.

In this shared processor model, tasks need to be sched-
uled in a way that they meet their deadlines and the physical
plant is kept stable.

C. Stability Analysis

Stability of a control plant is defined mathematically
based on the plant model [7]. In order to measure the
stability of a controller associated with plant Pi, we use
a standard quadratic cost [7]:

lim
T→∞

1

T
E

{∫ T

0

[
xi
ui

]T
Qi

[
xi
ui

]
dt

}
. (2)

The weight matrix Qi is given by the designer, and is a
positive semi-definite matrix with weights that determine
how important each of the states or control inputs are in
the final control cost, relative to others (E {·} denotes the
expected value of a stochastic variable). An infinite value of
the above control cost indicates that the control application
is not stable [45]. For example, a quadcopter is stable if it
is kept in a specific angle (equilibrium). If the angle of the
quadcopter diverges from the equilibrium and the control
cost for the controller to return it back is infinity, then the
quadcopter is unstable.

The stability of control applications depends on the char-
acteristics of the delays introduced in the control feedback
loop. Consequently, latency and jitter are two important
metrics when analyzing the stability of a periodic control
application. Increased latency and jitter in providing the
output of a control application will lead to poor control
performance (increase in control cost) and can even jeop-
ardize the stability of the physical plant. When control
tasks are running on a shared platform, the tasks may
encounter varying delays in providing the output to the
actuator in different iterations. Therefore, the physical plant,
which is actuated after the controller task finishes executing,
would experience unexpected varying delays. Hence, it
is important to consider the latency and jitter introduced
during the implementation of cyber-physical systems in
order to be able to guarantee the stability of the physical
plant. Considering a control application Λi, the latency Li
is defined as the constant part of the delay experienced
by the actuator and the worst-case jitter Ji is defined as

the variation in the delay. The two metrics are defined as
follows (see Figure 2),

Li = Rb
i ,

Ji = Rw
i −Rb

i ,
(3)

where Rw
i and Rb

i denote the worst-case and best-case delay
(response time) experienced by the actuator.

In the following, we elaborate the dependency between
the latency and jitter experienced by the control application
and its stability. We use the Jitter Margin tool [8] to capture
this dependency. For a given plant model and latency, the
Jitter Margin toolbox computes the jitter margin (similar
to the phase margin and gain margin concepts of control
theory). That is, the Jitter Margin toolbox provides the
stability curve that determines the maximum tolerable jitter
Ji, based on the experienced latency Li.

The solid curve in Figure 3 is an example of the stability
curves generated by the Jitter Margin toolbox, where the
area below the curve is the stable area. This solid curve
is generated for a DC servo process with transfer function
1000
s2+s and a discrete-time Linear-Quadratic-Gaussian (LQG)
controller, with a sampling period of 6 ms.

The stability curve can safely be approximated by a linear
function of the latency and worst-case jitter [9], see dashed
line in Figure 3. The stability condition, hence, can be
formulated as,

Li + αi · Ji ≤ βi, (4)

where αi ≥ 1 and βi ≥ 0 are constant coefficients.2

D. Worst-Case and Best-Case Response Time

In this section, we give a brief overview on computing
the worst-case, and best-case response time. Considering
the system model mentioned in Section II-A the exact
worst-case response time of a task τi can be computed by
the following equation [46],

Rw
i = cwi +

∑
τj∈hp(τi)

⌈
Rw
i

hj

⌉
cwj . (5)

Similarly, the exact best-case response time of a task τi is
given by the following equation [47],

Rb
i = cbi +

∑
τj∈hp(τi)

⌈
Rb
i

hj

⌉
cbj . (6)

The above equations are used to calculate the worst-
case jitter (see Equation 3) and analyze the stability of the
control applications (Equation 4) in a provided schedule.
Therefore, by combining Equations 3, 4, 5, and 6, the

2We consider the simple linear stability condition for simplifying
the discussion in the rest of the paper. In practice, a piecewise linear
approximation can be used in order to achieve better accuracy. However,
the Butterfly attack is even applicable in the cases that the stability curve
cannot be approximated by a piecewise linear function.
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Fig. 3: The stability curve generated by Jitter Margin and
the linear lower bound (the area below the curve is the
stable area). The curve is generated for a DC servo process
with transfer function 1000

s2+s and a discrete-time Linear-
Quadratic-Gaussian (LQG) controller, with a sampling pe-
riod of 6 ms.

stability condition for a task τi can be written as follows,

(1− αi) ·
(
cbi +

∑
τj∈hp(τi)

⌈
Rb
i

hj

⌉
cbj

)
+

αi ·
(
cwi +

∑
τj∈hp(τi)

⌈
Rw
i

hj

⌉
cwj

)
≤βi.

(7)

Accordingly, the stability of task τi depends on computation
time, period, and priority of its own and other tasks with
higher priority than task τi. This dependence will be
exploited in the next section to describe a new attack on
real-time control systems.

III. THREAT MODEL

We consider the following environment in the context of
a Butterfly attack:

• A processing platform Γ shared among a set of tasks
T;

• An arbitration mechanism based on which the tasks in
task set T are scheduled at runtime;

• A safety-critical and real-time controller task τi ∈ T
that is responsible for stabilizing a physical plant Pi.

We assume the following adversary in this article:

• The adversary may indirectly change the timing be-
havior of non-critical task τj ∈ T (entry task) that
shares the platform with the safety-critical controller
task τi ∈ T (targeted task).

• The adversary is aware of the non-critical (less pro-
tected) task τj (entry task) running on the shared plat-
form with the safety-critical control task τi (targeted
task).

The attack scenario presented here is considered to be
indirect in the following sense:
• First, the adversary does not need to directly manip-

ulate the shared platform, the scheduling mechanism,
or the tasks in the task set T running on the shared
platform, neither the critical tasks, nor the non-critical
tasks.

• At the same time, the adversary only indirectly inter-
feres with the execution of non-critical tasks. That is,
the adversary uses simple techniques (e.g., jamming
the input signal, providing certain inputs to the task,
or delay/advance the incoming messages) to indirectly
reduce the execution time, delay, or prevent the execu-
tion of a non-critical task τj . This is possible because
the execution time (as well as the execution period) of
a task depends on the values of its inputs as well as
the order and timing of its inputs.

We assume that the controller task τi is protected from
attacks and the scheduler allocates sufficient amount of re-
sources to it. The goal of the adversary is to destabilize the
physical plant Pi, by indirectly manipulating the temporal
proprieties of the safety-critical task τi, via lower criticality
less protected task τj . The interference with task τj may
also be indirect, e.g., jamming the input (e.g., GPS) signal,
providing certain inputs to the task, or delay/advance the
incoming messages to manipulate its temporal properties.
Such interference techniques are well studied and have been
performed in various real life contexts [48]–[54].

IV. BUTTERFLY ATTACK

In this section, we define the notion of the Butterfly
attack. The Butterfly attack demonstrates that, contrary to
popular belief [43], allocating more resources to the task
under analysis, may jeopardize the stability of control ap-
plications and can be exploited by the adversaries. In short:
over provisioning does not guarantee non interference.

The Butterfly attack renders a task unstable by indirectly
manipulating the time delay it experiences. As we discussed
in Section II-C, for a specific latency, a control application
is resilient up to a certain amount of jitter. If an attacker
changes the timing parameters of one or several tasks (entry
tasks) such that it causes an increase in the jitter of the task
under attack (targeted task), then the control application
associated to the targeted task may become unstable. From
Equation 7, we can see that jitter and, hence, stability
is related to best-case and worst-case computation time,
periods, and priorities of all the tasks running on the shared
platform. Therefore, changing any of these parameters can
increase jitter and lead to instability of control applications.

Let us assume that a set of control applications Λ share a
resource, e.g., processing or communication infrastructure.
That is, the set of tasks T run on this shared platform.

Definition 1: Temporal properties of control application
Λk ∈ Λ capture the delay patterns experienced by task
τk, which influence the control performance and stability
of Λk. The temporal properties of task τk depend on the



computation time (execution time), period, priority, release
time, and offset of task τk, as well as those of other tasks
competing on the same platform for shared resources.

We consider tasks τi ∈ T and τj ∈ T. We assume
task τj is less critical (hence less protected) than τi i.e.,
χ(τj) ≤ χ(τi). The Butterfly attack on control application
Λi is defined as follows.

Definition 2: Indirect manipulation of temporal proper-
ties of a less critical task τj to modify the schedule of a
more critical task τi such that the application Λi (τi relates
to application Λi) is out of its expected behaviour is referred
to as Butterfly attack.

Such temporal manipulations may be adopted by adver-
saries to deteriorate the performance of control applications
or even destabilize the physical plant Pi controlled by task
τi.

The Butterfly attack exploits two important characteris-
tics of the control tasks that are utilizing a shared platform.
These two characteristics make the Butterfly attack unde-
tectable and effective in many real-life control applications
(see Section VI and Section VII):

1) Inter-dependency: The computation time, priority
and period of tasks are considered independent. Nev-
ertheless, since the tasks run on a shared platform,
the temporal properties and, in turn, stability of the
tasks depend on each other. In fact, changing the
parameters (computation time, period, priority) of
one task may alter the temporal properties of other
tasks. Therefore, an attacker might interfere with the
parameters of one (less critical/protected) task, in
order to manipulate the temporal properties of another
(more critical/protected) task and make it unstable.

2) Non-monotonicity: Temporal properties (and hence
stability) of a physical plant is related to the resources
provided to its control task. Decreasing the amount
of resources for a task will decrease the performance
of the controller and may jeopardize the stability of
its physical plant. However, the relation between the
real-time parameters and temporal properties of tasks
is not necessarily monotonic. Specifically, it can be
shown that (see Section V) increasing resources (e.g.,
processor share) available to a task may increase
the jitter and, hence, reduce the performance of the
controller or even jeopardize the stability of the phys-
ical plant. Therefore, counter-intuitively, an attacker
can destabilize a task by increasing the available
resources to that task.

Note that because of the two aforementioned charac-
teristics of the Butterfly attack, it is not trivial to detect
and mitigate it. The system designers try to keep a critical
task stable by protecting only that task from attackers
and making sure that the task has sufficient resources to
be executed [43]. The Butterfly attack demonstrates that
this is not enough. First of all, the attacker renders a
control application unstable without interfering the timing
parameters of the task under attack but other non-critical

(potentially less protected) tasks. Second, the attacker does
not necessarily need to reduce the amount of resources
allocated for a task in order to make it unstable but it can
make a task unstable by increasing the resources available
to the task under attack (by, e.g., decreasing the amount of
resources reserved to other tasks).

In the next sections, we will demonstrate how the But-
terfly attack can be applied, based on the inter-dependency
and non-monotonicity present in complex real-time control
and cyber-physical systems.

V. ATTACK EXAMPLE

In the previous sections, we showed that the stability
of control applications depends on the temporal properties
experienced, particularly in terms of the amount of jitter.
In this section, we use an example to demonstrate that,
intuitively allocating a larger processor share to a task, does
not necessarily lead to better stability results, but on the
contrary, can deteriorate their performance, due to the inter-
dependency and non-monotonicity of jitter.

Let us focus on an example, where we assume an implicit
deadline (deadline equal to the period) and a constant
computation time for each task τi (ci = cwi = cbi ). Then,
each task τi can be modeled by the tuple (ρi, ci, hi) of
priority, computation time, and period, respectively. The
sampling period hi and the priority are parameters set at
design time. The computation time can be obtained using
execution/computation time analysis tools, such as the aiT
tool [55], [56], that take into consideration also the specific
properties of the hardware implementation platforms.

In our example, the original task set has two tasks
T = {τ1, τ2}, where τ1 = (H, 10, 15), τ2 = (L, 5, 30).
Figure 4(a) shows the original task set and the corre-
sponding schedule. Priorities are assigned according to Rate
Monotonic (RM) scheduling. The upward arrows show the
release of each job.

We assume that task τ2 is the control task of interest
(targeted task). According to Figure 4(a), for this task set,
the worst-case response time is Rw

2 = 15 time units and the
best-case response time is also Rb

2 = 15 time units. This
means that the response-time jitter is J2 = Rw

2 − Rb
2 =

15− 15 = 0 time units.
Let us increase the sampling period of the higher priority

task τ1 to h1 = 60 time units. As it is shown in Figure 4(b),
compared to the original task set, the worst-case response
time is the same as before, i.e., Rw

2 = 15 time units, but
the best-case response time decreases by 10 time units to
Rb

2 = 5 time units. This leads to an increase in jitter, i.e.,
J2 = Rw

2 −Rb
2 = 15− 5 = 10 time units.

This means that increasing the sampling period of the
higher priority tasks can lead to an increase in the jitter that
the task under analysis experiences. This indicates the inter-
dependency and non-monotonicity of jitter with respect to
the sampling period of the higher priority tasks. Finally, this
example is also valid for a non-preemptive communication
infrastructure, e.g., CAN bus.
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Fig. 4: Schedule of two tasks using a shared platform. The green task has a higher priority and the properties of the
tasks are τ1 = (H, 10, 15), τ2 = (L, 5, 30).

To conclude this section, counter-intuitively, decreasing
the high-priority interference does not necessarily lead to
better response-time jitter values for the task under analysis.
Therefore, the inter-dependency and non-monotonicity of
jitter may lead to instability of the plant associated with
the task under analysis, if not properly taken into account,
and can be exploited by the adversaries to carry out attacks.

VI. CASE STUDY 1: AUTOMOTIVE

Attacks against modern automobiles have gained a lot of
attention [57], [58], mainly due to the critical nature of such
systems. Recently, Miller and Valasek [58] demonstrated a
remote attack against commercial automobiles [51]. The
goal of this attack is to remotely control critical tasks, e.g.,
control steering wheel, engine, transmission, and braking
system, which communicate over the CAN bus. This attack
exploits vulnerabilities in the entertainment system of a
car through a Wi-Fi connection. However, the multimedia
system is not connected to the CAN bus directly. The
isolation, or so-called air-gap, between the entertainment
and critical functionality in vehicles is envisioned to reduce
the attack possibilities. Nevertheless, while the multimedia
system cannot directly connect to the CAN bus, it can still
communicate with another component which is connected
to CAN bus, i.e., the V850 controller. The attackers could
discover an opportunity to change the firmware of the V850
controller [59] and take control over it. The V850 processor
is responsible for interacting with the CAN buses. Once the
attacker has access to the V850 controller, it is possible to
temporarily stop a message by forcing a collision between
the target Electronic Control Unit (ECU) and the attacker-
controlled ECU.

The Miller and Valasek [58] attack shows that, in
practice, it is possible to take-over CAN communication
channels inside a car remotely. Manipulating the critical
messages and applications directly can be easily/quickly
identified and be counteracted by the existing intrusion
detection/mitigation mechanisms [60]–[63]. However, con-
trol applications are often (to a certain extent) robust to
disturbance, i.e., can tolerate a few packet manipulation
and packet drops [64]. As a result, the intrusion detection
mechanisms might successfully switch to mitigation mech-
anisms to ensure stability of the control applications.

In the Butterfly attack, however, we assume that an
adversary is more restricted and, at the same time, more
stealthy. We assume that the adversary can only temporarily
prevent some non-critical CAN messages from using the
CAN bus. The Butterfly attack provides the opportunity to
target high-critical applications, through manipulating low-
critical applications, which often represent less sensitive
cases for intrusion detection mechanisms. The attack shows
that an adversary may delay messages of a non-critical
and less sensitive application, that leads to increase in
period of its task, to increase the jitter experienced by a
high-criticality task and application (similar to Section V).
As a result of such an attack, the high-criticality control
application may become unstable due to this increase in
jitter, as discussed in Section II-C.

In the following, we show the effectiveness of the
Butterfly attack by launching it on a DC motor control
application functioning inside an electric vehicle. Our case
study considers a subsystem consisting of a highly critical
application that controls a DC motor in a battery electric
vehicle. On the same ECU hosting the DC motor control
application also runs propulsion control software, cruise
control, and a high-precision vehicle positioning algorithm.
These control applications all receive inputs from multiple
sensors and ECUs communicating over a shared CAN bus.
These include GPS position from a telematics ECU, wheel
speed sensors, and an inertial measurement unit for pitch,
roll, and yaw rate. Hosting a large variety of functions on
a single ECU is a current trend in automotive industry,
often referred to as ECU consolidation or up-integration
[65], [66]. While cruise control and vehicle positioning are
important functions, these are less critical than the control
of the DC motor in a vehicle. We, thus, consider that the
CAN messages of the DC motor control are protected, and
the adversary is only able to block CAN messages used by
the less critical tasks.

Let us consider a DC motor setting proposed in [67].
The mathematical model of the plant is provided as in the
following differential equation,

ẋ = Ax + Bu, (8)

where x and u are the state of the DC motor (rotational
speed of the rotor and the armature current) and input signal
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Fig. 5: The stability curve generated by Jitter Margin (the
area below the curve is the stable area). The shaded green
region is the area in which the plant is guaranteed to be
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shows a stable point and the red plus (latency L = 5 and
jitter J = 10) shows an unstable point.

(armature voltage). The matrices A and B are extracted
based on the physics of the DC motor as follows,

A =

[
−11 0

1 0

]
, B =

[
32
0

]
. (9)

Considering this model and using the jitter margin toolbox,
the stability curve is depicted in Figure 5 and therefore the
stability condition for the plant is as follows,

L+ 1.13 · J ≤ 15.06. (10)

We assume that the sensor is periodically sending mes-
sages over CAN to the DC motor controller. The controller
task is receiving its input from the CAN bus and a job is
activated after receiving the input. The CAN bus is shared
among several other control applications, i.e., propulsion
control software, cruise control, and a high-precision vehi-
cle positioning algorithm. Let us focus only on the high-
precision vehicle positioning and DC motor controller tasks
using the CAN bus to communicate. The two applications
have the following parameters,

τ1 : ρ1 = H, c1 = 10, h1 = 15,

τ2 : ρ2 = L, c2 = 5, h2 = 30,
(11)

where task τ2 is the task that is running the DC motor
controller to control the rotational speed of its rotor and is
the target task for the adversary, while task τ1 is the high-
precision vehicle positioning task with a lower criticality.
CAN messages are scheduled using the non-preemptive
fixed-priority scheduling algorithm. Priorities are assigned
according to RM scheduling.

For simulating the shared platform, we use the True-
time toolbox [68] to provide the scheduling of the tasks.

TrueTime is a MATLAB/Simulink-based simulator for real-
time control systems, which facilitates co-simulation of
controller task execution in real-time kernels. If the fixed-
priority scheduling policy is adopted, then the tasks execute
according to the schedule represented in Figure 4(a). As a
result, the latency and jitter for the DC motor controller task
would be 15ms and 0ms, respectively. This latency and jitter
is shown by a blue star in Figure 5 and the point lays in the
stable area. Moreover, according to the stability condition in
Equation 10, the DC motor is guaranteed to be stable with
this schedule and this is also observed in our experiment. In
our experiment, using our control–scheduling co-simulation
framework, we change the desired rotor speed at time 1s
and the rotor speed converges to the desired speed after
some oscillation (see Figure 6(a)) and the control cost is
kept finite (see Figure 6(b)), hence the system remains
stable.

In order to perform the Butterfly attack, we run the same
simulation and change the desired rotor speed at time 1s.
However, this time, the adversary increases the period of the
messages for task τ1, i.e., high-precision vehicle positioning
task, from 15ms to 60ms (e.g., by temporarily interrupting
CAN messages from the GPS sensor). Note that, by increas-
ing the period of the messages triggering τ1, we increase
the activation period of the task and, thus, increase the
available processor share for the DC motor task. Intuitively,
this should lead to better control performance in the DC
motor. However, Figure 4(b) shows that the latency and
jitter of τ2 is 5ms and 10ms, respectively. This latency and
jitter is shown by a red plus in Figure 5 and the point lays in
the unstable area. Moreover, according to Equation 10, the
DC motor is not guaranteed to be stable with this latency
and jitter,

L+ 1.13 · J � 15.06. (12)

This is also confirmed in our control–scheduling co-
simulation framework. Figure 7(a) shows that the controller
is not able to converge the rotor speed into the desired speed
and the control cost goes to infinity (see Figure 7(b)), which
indicates that the plant becomes unstable.

VII. CASE STUDY 2: UNMANNED AERIAL VEHICLES
(UAV)

Unmanned Aerial Vehicles (UAVs) have an autopilot
software that is a real-time system and requires rapid
response to changing sensor data to keep the UAV under
control. In this attack scenario, we consider ArduPilot [69],
which is an open source autopilot software. Many UAV
companies (e.g., 3DR, jDrones, PrecisionHawk, AgEagle,
and Kespry) are deploying ArduPilot on their devices and
large corporations (e.g., NASA, Intel, and Insitu/Boeing)
use it for test and development.

ArduCopter (a version of ArduPilot customized to
copters) has 19 main real-time tasks with deadline con-
straints. These tasks run under the context of a flight
controller process (main_loop) and are scheduled us-
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Fig. 6: Stable DC motor without adversary.
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Fig. 7: Unstable DC motor in the presence of adversary.

ing a real-time scheduling system. Each real-time task
handles a specific flight control operation and executes
a loop that has two real-time constraints: a period and
a deadline. In this case-study, we consider two of the
tasks running in the controller process, i.e., update_GPS
and run_nav_updates. The update_GPS task reads
the GPS signal from all GPS instances of the system.
The run_nav_updates is a critical task that runs the
autopilot task and actuates commands to the servos to
control the UAV. Here, we consider the scenario where the
adversary manipulates the timing of a less critical task like
update_GPS, which will lead to an increase in jitter for
the run_nav_updates task.

The update_GPS function (see Source Code 1) starts
with a condition that if not satisfied, the main part of the
code will not be executed. The condition checks if there is
a new message received and if the status of the received
signal satisfies previous assumptions. Therefore, if the
attacker jams the GPS signal, then the entire update_GPS
task will have a much smaller and negligible (close to 0)

execution/computation time.

Source Code 1: update_GPS

static uint32_t last_gps_msg_ms;
static uint8_t ground_start_count = 5;
if (gps.last_message_time_ms() !=

last_gps_msg_ms &&
gps.status() >=
AP_GPS::GPS_OK_FIX_3D) {
last_gps_msg_ms =
gps.last_message_time_ms();
...

Reducing the computation time of the update_GPS
task can cause intolerable jitter for other tasks running
on the same microprocessor (e.g., run_nav_updates).
Note that in this scenario the attacker only decreases the
computation time of update_GPS, which intuitively is
harmless for other tasks and, therefore, is not prevented by
the scheduler, but it will create large jitters for other tasks
and may lead to instability of the UAV.
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Fig. 8: Stable quadcopter without adversary.
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Fig. 9: Unstable quadcopter in the presence of adversary.

We consider a Butterfly attack scenario on a quadcopter
running the flight control software and show experimentally
how the attack would render the quadcopter unstable. We
assume that the flight control software is running on the
quadcopter’s processor. Therefore, all the real-time tasks
are scheduled on the shared processor. We focus only on
the two update_GPS and run_nav_updates tasks
running on the processor. The tasks have the following
parameters,

τ1 : ρ1 = H, c1 = 4, h1 = 5,

τ2 : ρ2 = L, c2 = 1, h2 = 10,
(13)

where task τ2 is the task that is running the controller
(run_nav_updates) to stabilize the quadcopter in the
desired position and task τ1 is the update_GPS task.
Priorities are assigned according to RM scheduling.

We use the model provided in [70] to simulate the
quadcopter in Simulink MATLAB. The model is linearized

and can be written in state-space form as follows,

ẋ = Ax + Bu, (14)

where x is the state of the quadcopter and shows its position
and angle, and u is the input signal to the quadcopter. The
matrices A and B are calculated using the dynamic model
of the quadcopter and depend on its physical properties,
e.g., inertia moments in each axis, rotor inertia, propeller
distance from center, and overall mass. The input signal
is a vector of four elements (one for each rotor) and is
calculated based on the current state of the quadcopter, such
that the quadcopter is positioned in a desired coordinate and
angle. The controller task receives the current and desired
state of the quadcopter in each period and provides input
signals to position the quadcopter in the desired coordinate.

If fixed-priority RM scheduling is applied, considering
tasks described in Equation 13, the run_nav_updates
task experiences a latency and jitter equal to 5ms and
0ms, respectively. With these values of latency and jitter,
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Fig. 10: Position of quadcopter during transition.
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Fig. 11: Position of quadcopter in the presence of adversary.

the quadcopter is stable. In our control–scheduling co-
simulation framework, at time 1s we set the desired states
(the horizontal angles) of the quadcopter. The controller
manages to converge to the desired state after 6s (see Fig-
ure 8(a)) and the control cost is kept finite (see Figure 8(b)),
which indicates the stability of the system.

To perform the Butterfly attack, we run the same simula-
tion and change the desired state of the quadcopter at time
1s, in our control–scheduling co-simulation framework.
However, this time, the attacker increases the period of the
update_GPS (τ1) from 5ms to 20ms. This is performed
by jamming the GPS signal such that three out of four
messages are not received. Note that, by increasing the
period of τ1, actually the available processor share for
τ2 is increased by reducing the interference it suffers.
Intuitively, this should lead to better control performance
of run_nav_updates (τ2). Nevertheless, in the new schedule
for τ1 and τ2 the latency of τ2 decreases to 1ms but the
jitter increases to 4ms. The quadcopter is not stable with
this latency and jitter. After changing the desired state, the
controller is unable to converge the state of the quadcopter
into the desired state (see Figure 9(a)) and the control cost
tends to infinity after 1s (see Figure 9(b)), which indicates
the instability of the system.

The above example shows how Butterfly attack can
destabilize a UAV. In the following, we show that, using

this attack, the adversary is also able to hijack the UAV
and move it to a different location. In the quadcopter
model, the autopilot software changes the desired angles
of the quadcopter to move it toward a desired location. We
experimentally show that if the adversary interferes during
this transition process and introduces a specific amount
of jitter, then she is able to change the location of the
quadcopter.

We again focus on two tasks running on the processor,
as stated in Equation 13. Let us assume that the autopilot
software changes the desired angle of the quadcopter at
time 1s. As a result, the quadcopter will end up in position
(X = 17, Y = 17, Z = 5.5) at time 4s. Figure 10 shows
the location of the quadcopter during this transition when
there is no attack and the quadcopter reaches the desired
location at time 4s. Figure 12 shows the path (blue line)
the queadcopter follows to reach the destination.

In order to apply Butterfly attack, we simulate an
adversary that periodically increases the period of the
update_GPS task from 5 to 20 and decreases it back to 5
(e.g., by jamming 3 in every 4 GPS messages). This process
is repeated for 50 times during the transition. Subsequently,
the quadcopter does not become unstable, but it goes along
an unexpected path (red line in Figure 12) and at some
point during the attack it enters an unsafe zone, which is
far from the point that the quadcopter is supposed to be,
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Fig. 12: Two-dimensional position of the quadcopter be-
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red line shows its path when an attack is undergoing. The
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the quadcopter after 4s, when it is under attack.

where the quadcopter can be hijacked. After the attack,
the quadcopter again starts to converge to the desired
location that the autopilot software specified. Figure 11
shows the location of the quadcopter during the transition
time. Note that the adversary has some control over the
location of the quadcopter during this attack. Therefore,
the adversary can direct the quadcopter into a desired zone
by imposing certain amount of jitter. Figure 12 shows the
two-dimensional position of the quadcopter over time, with
and without the Butterfly attack.

VIII. DISCUSSION

In this section, we discuss several possible mitigation,
detection, and defense mechanisms against the Butterfly
attack. To detect and mitigate the Butterfly attack, it is
possible to synthesize a set of safety constraints during
the design phase. This is similar to monitoring overruns
in current operating systems, but captures more temporal
aspects of the safety-critical applications, including the
delay, latency, and jitter. Then, at runtime, these constraints
will be monitored by an intrusion detection unit to identify
potential threats and initiate the mitigation protocol.

The mitigation protocol may involve executing a dummy
task to compensate for the timing manipulation introduced
into the system by the adversary and, e.g., compensate for
increased period or decreased execution time of a lower
criticality task. In this approach, however, the resources are
not used for running applications. One solution could be to
promote low-priority tasks instead in order to avoid this
phenomenon. Alternatively, the mitigation protocol may
initiate a procedure to switch to more robust controllers,

with of course worse control performance, for the safety-
critical applications. This mitigation protocol requires care-
ful planning of the switching procedure, due to the po-
tentially pathological scenarios with switching control. In
particular, it is well-known that switching between two
stable controllers may still destabilize the control plant [71],
if not done carefully.

Another mitigation technique is to assign priorities with
respect to task criticality. By doing this the adversary is not
able to interfere high-critical tasks by manipulating less-
critical ones. Nonetheless, this apparently simple solution
is very often not applicable: (1) In many cases the system
designer needs to assign higher priority to less-critical tasks
for schedulability reasons so that the less critical tasks can
meet their deadlines. (2) This mitigation technique can only
be applied to systems that use fixed-priority scheduling,
while the Butterfly attack is applicable to other scheduling
algorithms like EDF (Earliest Deadline First).

In the context of control design, the mitigation might
be provided by designing a controller that is robust to
temporal attacks [72], [73]. However, this might result in
more complex and resource consuming controllers with
potentially lower control quality. Essentially, this is because
such controllers are designed for a scenario that does not
correspond to the expected average-case scenario.

The ultimate solution to eliminate the possibility of
such temporal attacks is to ensure temporal isolation us-
ing bandwidth allocation and control servers [20], [74].
The main drawback of control servers is either lack of
any hard guarantees or over-provisioning resource allo-
cation that may leave resources under-utilized, even as
low as 50% of the total capacity. To address this issue,
several online resource allocation mechanisms have been
proposed in the literature [21]. Nevertheless, Miller and
Valasek [58] demonstrate a remote attack against commer-
cial automobiles [51], even when isolation, or so-called air-
gap, between the entertainment and critical functionality
in vehicles, is implemented and envisioned to reduce the
attack possibilities. Therefore, a comprehensive study of
mitigation and defense mechanisms for complex cyber-
physical systems remains the topic of our future work.

IX. RELATED WORK

The implementation of control applications on shared
platforms consists of two main steps: controller synthesis
and control task scheduling. The traditional design flow of
such applications is based on the principle of separation of
concerns. The main drawbacks of this principle are poor
resource utilization and control performance [3]. This is
due to the fact that the effects of the decisions made during
one of the design steps are not considered on the decisions
that are made during the second step, which often leads to
suboptimal solutions.

The timing problems in real-time control systems were
first brought up by Wittenmark et al. [2]. The authors
discuss the issue of time-varying delays introduced during



the implementation phase of such systems, which often lead
to poor control performance and may even jeopardize the
stability of control applications. Since then, several studies
have considered implementation-induced timing issues in
the design of such embedded control and cyber-physical
systems [10]–[42].

Racu and Ernst [75] show that, contrary to what is widely
believed, shorter execution time for one task of a task
chain, mapped on a multicore platform, may lead to a
longer end-to-end delay for the same task chain, in the
context of purely hard real-time systems. Aminifar et al. [9]
demonstrate that intuitively better design parameters, e.g.,
priority, period, and execution time, may lead to instability
of control applications on shared platforms. Nevertheless, to
date, the security exploitation of such anomalous scenarios
has not been discussed in the context of embedded control
and cyber-physical systems.

Due to the tight coupling in control systems between
physical components and cyber unit many attacks have
been reported on the control applications in cyber-physical
systems [76]–[78]. These attacks are usually studied in
two categories [79]–[81]: First, deceptive attacks, where
the adversary interferes in the connection between sensor-
controller-actuator and sends incorrect information [79],
[82]–[85]. Second, denial-of-service attacks, where the ad-
versary prevents sensor, controller, or actuator from re-
ceiving data [86], [87]. However, these studies do not
target manipulation of the temporal properties of control
applications.

Temporal attacks, on the other hand, which can affect
control systems in many cases are not well studied in the
literature. Temporal attacks, if not properly mitigated, can
jeopardize the stability of the control systems by introduc-
ing non-ideal timing scenarios to the control application.
The proposed temporal attacks in the literature can be
classified into two categories. First, the attacks that target
the communication of sensors and/or actuators with the
controller and result in dropping messages that are being
transferred [73], [88], [89]. Second, time delay attacks,
that tamper the temporal characteristics of the communi-
cation channel in order to delay the signals received by
certain nodes (e.g., sensor, actuator, or controller) [90]–
[92]. However, in both categories to deliver the attack the
adversary needs to change the timing behavior of the critical
messages received by the critical application. A trivial
detection mechanism can protect highly critical control
applications from these attacks. This is very different from
the Butterfly attack where the adversary interferes the
lower criticality messages/tasks in order to affect the high
criticality application.

X. CONCLUSION

In this paper, we introduce the Butterfly attack, a new
attack scenario for cyber-physical systems. The Butterfly
attack highlights the importance of the implementation as-
pects of cyber-physical systems on the underlying execution

platforms and the temporal sensitivity of control appli-
cations implemented on shared platforms. Such resource
sharing may lead to complex timing behaviors and, in
turn, counter-intuitive timing anomalies that can then be
exploited by an adversary to render a critical control system
unstable, which may have major irreversible consequences.
We demonstrate the possibility of such attacks in two case-
studies from the automotive and avionic domains.
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