
Fine-Grained Control-Flow Integrity through
Binary Hardening

Mathias Payer1, Antonio Barresi2, and Thomas R. Gross2

1 Purdue University
2 ETH Zurich

Abstract. Applications written in low-level languages without type or
memory safety are prone to memory corruption. Attackers gain code
execution capabilities through memory corruption despite all currently
deployed defenses. Control-Flow Integrity (CFI) is a promising security
property that restricts indirect control-flow transfers to a static set of
well-known locations.
We present Lockdown, a modular, fine-grained CFI policy that pro-
tects binary-only applications and libraries without requiring source-
code. Lockdown adaptively discovers the control-flow graph of a running
process based on the executed code. The sandbox component of Lock-
down restricts interactions between different shared objects to imported
and exported functions by enforcing fine-grained CFI checks using infor-
mation from a trusted dynamic loader. A shadow stack enforces precise
integrity for function returns. Our prototype implementation shows that
Lockdown results in low performance overhead and a security analysis
discusses any remaining gadgets.

1 Introduction

Memory corruption vulnerabilities are still one of the most critical types of bugs
found in modern software systems. The majority of code running on current
systems is written in C or C++. It is simply impossible to rewrite all these ap-
plications in a memory safe language due to the large amount of existing code.
In addition, the problem of memory corruption is not restricted to low-level lan-
guages as safe languages are often implemented using low-level languages (e.g.,
the HotSpot Java virtual machine is implemented in C++, the CPython Python
runtime is implemented in C, and Perl is implemented in C) or use native run-
time libraries. Since 2006, a number of defense mechanisms like Address Space
Layout Randomization (ASLR) [35], Non-Executable Memory (W⊕X)/Data Ex-
ecution Prevention (DEP) [46], stack canaries [18], and safe exception handlers
have been deployed in practice to limit the power of attacker-controlled memory
corruption. Unfortunately, all commonly deployed defense mechanisms can be
circumvented as shown by current control-flow hijack attacks.

Control-Flow Integrity (CFI) [1,4,12,16,27,33,34,38,45,47,49–52] is a security
property that restricts the set of targets that can be reached by any control-flow
transfer to a statically determined control-flow graph. Current implementations
share one or more drawbacks: (i) binary-only approaches [50–52] are restricted

in their precision due to an over-approximation of the target sets where too
many targets are allowed (these coarse-grained CFI policies can be exploited by
attackers [8,14,17]), (ii) the need to recompile applications [4,16,34,38,45,47,49],
(iii) no support (or protection) for shared libraries [1,4,16,33,38,47], or (iv) no
stack integrity protection [12,34,45,48,51,52]. Modular CFI (MCFI) [34] recently
added support for shared libraries but a recompilation of the application and all
libraries is required. Furthermore, MCFI might require source code changes in
the application, comes with its own libc implementation, which makes it less
flexible, and does not support C++ code. COOP [40] presents an attack against
CFI mechanisms that are unaware of C++ semantics for virtual function calls.
Both MCFI and COOP were developed concurrently with Lockdown.

This paper presents Lockdown, a modular fine-grained CFI policy that sup-
ports any legacy binary. All indirect control-flow transfers are instrumented with
security checks through dynamic binary translation. The target-sets for fine-
grained CFI are approximated based on import and export definitions used in
applications and libraries and a dynamic on-the-fly binary analysis for addresses
of function pointers that are taken during the execution of the application. Using
this approach, Lockdown adjusts the control-flow graph at runtime as code is be-
ing executed, growing the CFG when new code is executed, shrinking the CFG
when libraries are unloaded. To protect against all forms of Return-Oriented
Programming (ROP), Lockdown employs a shadow stack that enforces precise
integrity of return instruction pointers. A shadow stack is stricter than a CFI
check as the CFI check would allow the return instruction to target any possible
call site of the current function while the shadow stack only allows the return to
target the actual caller (by keeping state through the call/return relationship).
A prototype implementation of our fine-grained CFI policy results in 19% aver-
age performance overhead for SPEC CPU2006 (which is on the same order as
fine-grained source-level CFI implementations) and the performance overhead
for Apache 2.2 is between 1.83% and 7.87% (depending on the configuration).
This paper makes the following contributions:

1. Demonstration that CFI handles dynamic loading without recompilation;
Lockdown is the first binary-only, modular, fine-grained CFI solution that
supports dynamic loading and prevents real-life control-flow hijack attacks.

2. A performance evaluation of Lockdown. Lockdown results in low perfor-
mance overhead of 19.09% on average for SPEC CPU2006 and between
1.83% and 7.86% on average for different Apache 2.2 configurations.

3. A CFI effectiveness and security evaluation of our fine-grained CFI approach
going beyond the traditional quantitative methods. Our qualitative security
evaluation method can be used to evaluate future CFI implementations.

2 Attack Model

Lockdown protects applications against control-flow hijack attacks under a pow-
erful attack model: an attacker has read and write capabilities of the program’s
data regions and read capabilities of the program’s code regions. This attack
model reflects common efforts to circumvent deployed defenses on modern sys-

2

tems. The attacker uses memory corruption vulnerabilities present in the ap-
plication or any of the loaded libraries to modify the program’s data, thereby
affecting the control-flow and execution of the program.

The attacker can neither modify the code region of the program nor inject
additional code into the program. This assumption is fulfilled by current systems
that enforce a W⊕X [46] strategy, where any memory area is either writable or
executable (and never both at the same time). Also, the attacker cannot force-
fully load attacker-controlled libraries. To achieve code execution capabilities
the attacker must therefore reuse existing code sequences available in some code
region of the program or its libraries [3,5,6,9,31,39,43]. As with any other CFI
defense mechanism, non-control data attacks [10] are out of scope.

Using these given (practical) capabilities an attacker will try to (i) overwrite
a code pointer, (ii) prepare a set of invocation frames for a code-reuse attack, and
(iii) force the program to dereference and follow the compromised code pointer
to achieve code execution.

3 Background and Related Work

A variety of defense mechanisms exist that protect against control-flow hijack
attacks (see [44] for a systematization of attacks and defense mechanisms). Exist-
ing defense mechanisms stop control-flow hijack attacks at different stages by: (i)
retrofitting type/memory safety onto existing languages [20, 30], (ii) protecting
the integrity of code pointers (i.e., allowing only valid code locations to change
the memory area of a code pointer) [2, 22, 28, 29], (iii) randomizing the location
of code regions or code blocks (ASLR or code diversification are examples of
probabilistic protections) [11,18,23,35], or (iv) verifying the correctness of code
pointers when they are used, e.g., Control-Flow Integrity (CFI) [1]. CFI does not
prevent memory corruption but detects corrupted values when they are used in
indirect control-flow transfers. Unfortunately, CFI has not yet seen widespread
use as existing implementations either affect the software development process
(for source-based, fine-grained policies) or were shown to be insecure.

3.1 Control-Flow Integrity

Control-Flow Integrity (CFI) [1] and its extension XFI [16] restrict the control-
flow of an application to a statically computed control-flow graph. Each indirect
control-flow transfer (an indirect call, indirect jump, or function return) is al-
lowed to transfer control at runtime only to the set of statically determined
targets of this code location.

CFI relies on code integrity (i.e., an attacker cannot change the executed
code of the application). Under this assumption, an attacker can only achieve
code execution by controlling code pointers. CFI checks the integrity of code
pointers at the location where they are used in the code. Using memory cor-
ruption vulnerabilities, an attacker may change the values of code pointers (or
any other data). The attack is detected (and stopped) when the program tries
to follow a compromised code pointer that refers to a location that is not in the
set of allowed targets for a specific control-flow transfer instruction.

3

The effectiveness of CFI relies on two components: (i) the (static) precision
of the control-flow graph that determines the upper bound of precision, and (ii)
the (dynamic) precision of the individual runtime checks. First, CFI can only be
as precise as the control-flow graph that is enforced. If the control-flow graph is
too permissive, it may allow illegal control transfers. All existing CFI approaches
rely on two phases: an explicit static analysis phase and an enforcement phase
that executes additional checks. Most compiler-based implementations of CFI [1,
2,4,16,33,38,47,49] rely on a points-to analysis for code pointers at locations in
the code that execute indirect control-flow transfers. A severe limitation of these
approaches is that all the protected code must be present during compilation
as they do not support modularity or shared libraries. Implementations based
on static binary analysis [13, 27, 48, 50, 51] either rely on relocation information
(e.g., in the Windows PE executable format) or reconstruct that information
using static analysis [27, 52]. MCFI [34] is a recent compiler-based CFI tool
that stores type information and dynamically merges points-to sets when new
libraries are loaded (but does not support library unloading). Second, the initial
upper bound for precision is possibly limited through the implementation of the
control-flow checks (see [17] for common limitations in CFI implementations).
Coarse-grained policies maintain few global sets of possible targets instead of one
set per control-flow transfer: one target set each for indirect jumps, indirect calls,
and function returns. The control-flow checks restrict the transfers to addresses
in each set. This policy is an improvement compared to unchecked control-flow
transfers but overly permissive as an attacker can hijack control-flow to any entry
in the set. As demonstrated in recent work [8, 14, 17] these coarse-grained CFI
implementations still allow attackers to successfully mount code-reuse attacks
by making the exploits CFI aware, i.e., hardening them to just use gadgets still
allowed in the limited set of valid targets. COOP [40], developed concurrently
with our work, presents such an attack, leveraging virtual calls in C++ programs
to circumvent CFI mechanisms that do not restrict call targets for virtual calls
based on a type-based analysis. Recovering such precise information is hard (and
often infeasible) for a binary analysis. The precision of the Lockdown CFI policy
relies on the shared libraries that are used. If the same amount of code is broken
into smaller libraries then the precision of Lockdown increases, limiting attacks
like COOP to call targets that are imported in the current object.

Lockdown is a dynamic fine-grained CFI approach for unmodified binary-only
applications (i.e., no source access is needed) that enforces a stricter, dynamically
constructed modular control-flow graph using CFI checks and stack integrity
using a shadow stack, than obtained in earlier approaches. Lockdown ensures
code integrity, adds a shadow stack that protects against ROP attacks, and
enforces dynamic control-flow checks for all indirect control-flow transfers.

3.2 Dynamic Binary Translation

Software-based Fault Isolation (SFI) protects the integrity of the system and/or
data by executing additional guards that are not part of the original code. Dy-
namic Binary Translation (DBT) allows the implementation of SFI guards on
applications without prior compiler involvement by translating code on the fly.

4

The DBT system can dynamically enforce security policies by collecting runtime
information and restricting capabilities of the executed code [21].

Several DBT systems exist with different performance characteristics. Val-
grind [32] and PIN [25] offer a high-level runtime interface resulting in higher
performance costs while DynamoRIO [7] and libdetox [36] support a more direct
translation mechanism with low overhead, translating application code on the
granularity of basic blocks. Lockdown builds on libdetox, which has already been
used to implement several security policies.

A security policy can only be enforced if the translation system itself is secure.
Libdetox splits the user-space address space into two domains: the untrusted ap-
plication domain and the trusted and protected binary translator domain. This
design protects the binary translation system against memory corruption at-
tacks. Libdetox uses a separate translator stack and separate memory regions
from the running application. Libdetox protects the trusted domain by ran-
domizing address locations3 and enforces the following properties: (i) all code is
translated before execution; (ii) translated code can only access the application
domain; (iii) no pointer to the trusted domain is ever stored in the applica-
tion domain, protecting the trusted domain against information leakage. The
application traps into the trusted domain when (i) it executes a system call, (ii)
reaches untranslated code, or (iii) a full (non-inlined) security check is triggered.
Libdetox relies on a trusted loader [37], protecting the DBT system from attacks
against the loader when loading or unloading shared libraries.

Lockdown gives the following security guarantees: a shadow stack protects the
integrity of return instruction pointers on the stack at all times; the trusted loader
protects the data structures that are used to execute functions in other loaded
libraries at runtime; and the integrity of the security mechanism is guaranteed by
the binary translation system. The shadow stack is implemented by translating
call and return instructions [36]. Translated call instructions push the return
instruction pointer on both the application stack and the shadow stack in the
trusted domain. Translated return instructions check the equivalence between
the return instruction pointer on the application stack and the shadow stack;
if the pointers are equivalent then control is transferred to the translated code
block identified by the code pointer on the shadow stack. The existing version
of libdetox supports the full x86 instruction set (including SSE extensions).

4 Lockdown Design

Lockdown enforces a fine-grained, dynamic, modular CFI policy at the gran-
ularity of individual Dynamic Shared Objects (DSO) (a DSO is an individual
ELF file like the program or any used shared library) and symbols (applica-
tions or libraries for calls, symbol definitions for jumps). Lockdown restricts (i)
inter-module indirect calls to functions that are exported from one object and

3 The trusted domain is small both regarding code and data. An alternative implemen-
tation uses SFI and mask operations (added by the binary translator to any read-
/write in the application domain) to protect against information side channels [42],
resulting in higher overhead.

5

imported in the other object, (ii) intra-module indirect calls to valid functions,
(iii) indirect jump instructions to valid instructions in the same function and
valid call targets for tail calls, and (iv) return instructions to the precise return
address (with a special handler for exceptions). Figure 1 and Figure 2 show ex-
amples for call and jump restrictions. The per-object target sets are adapted
dynamically whenever libraries are loaded or unloaded. The integrity of return
instructions is enforced at all times using a shadow stack. Indirect call instruc-
tions and indirect jump instructions execute a runtime check that validates the
current target according to the current location and the object’s sets.

The ELF format [15,41] specifies the on-disk layout of applications, libraries,
and compiled objects. ELF files contain symbol information with different level
of detail. The ELF section dynsym provides the required symbol information for
inter-module calls and the optional symtab ELF section contains information
about all symbols. Lockdown uses both symbol tables to construct the per-
object target sets (and to infer function boundaries to restrict jumps). If only
the coarse-grained dynsym table is available, e.g., because the library is stripped,

importedexported

.text

puts
scanf
funcA
...

/bin/<exec>

importedexported

.text

_dl*
...

/lib/libc.so.6

puts
scanf
mprotect
...

importedexported

.text

ifunc*
...

/lib/lib*

funcA
funcB
...

call puts
...
lea fptr, %eax
...
call *%eax
...

puts:
...
mprotect:
...

funcA:
...
funcB:
...

symbol table of ELF DSO

.text section of DSO

allowed Control Flow transfer

illegal Control Flow transfer

Fig. 1. Call restrictions for an executable and two libraries. DSOs are only allowed to
call imported function symbols. Local function calls may only transfer to local function
symbols.

.text

/lib/libA.so

<symbol_1>
...
jmp <symbol_1+0xab>
...
lea ptr, %eax
...
jmp *%eax
...

<symbol_2>
...
add $0x1, %ebx

.text section of DSO allowed Control Flow transfer

illegal Control Flow transfer

.text

/lib/libB.so (stripped)

<func_1>
...
lea ptr, %eax
...
jmp *%eax
...

<func_2>
push %ebx
...

Fig. 2. Restrictions for jump instructions within two different libraries. Jumps may only
target locations within the same symbol. Inter-DSO jumps are not allowed in general.
If stripped, jumps have to stay within the bounds of the nearest symbol definitions.

6

then Lockdown falls back to a coarser-grained protection for intra-object calls
and jumps. The policies for inter-object transfers and return targets are not
affected. On current Ubuntu systems (and other popular Linux distributions)
the full symtab information is available and easily installable for user-space
applications and all common libraries.

In contrast to other binary CFI solutions where only one global static set
of valid targets per indirect control-flow type exists (e.g., one global set for all
return instructions), Lockdown provides a finer-grained approach where the set
of valid targets is dynamic and specific to the instruction type, its object (for
calls and jumps), its symbol within the object (for jumps), and the currently
active stack frames at the time of the control-flow transfer (for returns). This
setup results in a fine-grained CFI policy compared to other coarse-grained ap-
proaches that solely use (few) global sets for all valid targets. The precision of
the Lockdown CFI mechanism depends on the modularity of the application. If
the same amount of code is split across more libraries (e.g., one library is split
into multiple libraries) then the precision of our CFI mechanism increases and
becomes finer-grained. Modern applications are often implemented in a highly
modular way with, e.g., LibreOffice using 297 libraries, Chromium-browser using
194 libraries, or Firefox using 29 libraries.

4.1 Rules for Control Transfers

Three different forms of indirect control transfers exist, call, jump, and return
instructions. The rules for different control transfers are as follows:

1. Call instructions must always target valid functions. The set of valid func-
tions is specific for each object. Only functions that are defined or imported
in the current object are allowed as targets;

2. The target of a jump instruction must (i) target a valid instruction inside the
current function (according to a linear disassembly from function beginning)
or (ii) target a valid function target (due to tail call optimizations);

3. Return instructions must always transfer control back to the caller (or to
one of the previous callers in exceptional cases). The DBT system transpar-
ently keeps a shadow stack data structure in the trusted domain (not visible
to the application) to verify return addresses on the stack before they are
dereferenced. Therefore, Lockdown always enforces the precise return target.

Additionally, Lockdown implements a set of special handlers for control-flow
particularities in low-level libraries (e.g., libc) as discussed in Section 5.2.

4.2 Control Transfer Guards

Generally, the target of an indirect control-flow transfer is not known in advance.
Therefore, a runtime check is needed and the binary translator emits a guard
that executes these dynamic checks when an indirect control-flow transfer exe-
cutes. Conceptually, each indirect control-flow transfer traps into the Lockdown
domain and verifies that the current target is allowed according to the current
location and the rules defined in Section 4.1. To avoid unnecessary resolutions,
different optimizations are implemented. For each DSO a lookup table is used

7

System Call InterfaceSystem Call InterfaceKernel

User

Lockdown
Domain

App.
Domain

ELF
Files

Loads
ELF
files

/bin/<exe>

Loader

libc.so.6

lib*

Code Cache

read only readable + executable

main() printf()

func*()

main'
func1()
func2()
...

func2'
printf'

LockdownLockdown

Binary Translator

translate()

CFT Verifier

Run-time
ICT
validation.

Fig. 3. Overview of the Lockdown approach. (CFT: Control-Flow Transfer, ICT: In-
direct Control-Flow Transfer, ELF: Executable and Linkable Format)

to cache already verified transitions that can be used in the fast path. Further
optimizations are described in Section 5.1.

Return instructions are translated to check the shadow stack. The added
guard verifies that the current return address on the application stack is the same
as the address that was pushed by the last call instruction. The shadow stack
in the Lockdown domain keeps track of valid return targets. To allow different
exceptional cases (e.g., tail calls, or C++ exception handling) the shadow stack
can be resynchronized with the application stack by unwinding shadow stack
frames until the frames match again. Shadow stack frames can only be removed
by exceptions (never added), resulting in sound behavior.

4.3 Handling Stripped Binaries

For many systems, full symbol information is available (e.g., the symbol tables of
all common libraries for Ubuntu 12.04 are available as separate packages). Yet,
some binaries are only available in stripped form. Even if binaries are stripped,
imported and exported symbols are always available and Lockdown enforces a
policy that is fine-grained even without full symbol tables. The same strong
CFI policy is enforced for all inter-module transfers as all required information
remains available. For intra-module transfers we currently rely on heuristics (see
Section 5.3) that detect valid transfers. A more detailed (static or dynamic)
binary analysis could recover function prologues more precisely, increasing the
intra-module protection to the level where full symbol information is available.

5 Prototype Implementation

The prototype implementation (Figure 3) builds on libdetox and secuLoader [36,
37]. The DBT embeds the control-flow checks during the translation of individual
basic blocks. All static control-flow transfers are verified during translation and
indirect (dynamic) control-flow transfers are instrumented to execute an inlined
dynamic guard depending on the control-flow transfer type.

For all DBT systems, one of the biggest performance overheads is the transla-
tion of indirect control-flow transfers. Such transfers cannot be translated ahead
of time and always incur a runtime lookup to consult the mapping between the
original code and the translated code blocks before transferring control-flow to
the translated code. Lockdown executes dynamic CFI checks right before the

8

runtime lookup. To reduce the overhead of these indirect control-flow transfers
Lockdown implements a set of optimizations that cache data at different levels
(e.g., a cache for each indirect control-flow transfer location, a cache for lookup
values in the mapping table, and a cache for frequently used symbols).

The prototype is released as open-source and is implemented in less than 24k
loc (C code mixed with a small amount of inline assembly): 2k loc for Lockdown,
15k loc for the binary translator and 7k loc for the trusted loader.

5.1 Runtime Optimizations

Achieving low overhead when running binary-only applications is a challenging
problem: to support dynamic CFI policies, Lockdown needs to run the binary
analysis alongside the executing application. We have implemented a set of op-
timizations to achieve low overhead without loss of precision or security. The
libdetox DBT engine already implements a set of optimizations like local in-
line caches for indirect control-flow transfers. We extend these lookups by a
control-flow transfer check. The validation uses a lookup table for already veri-
fied {source, destination} pairs and recovers if this fast check fails (e.g.,
on a hash miss in the lookup table).

Furthermore, Lockdown uses inlined optimizations for different guards to
avoid the validation path whenever possible. To understand indirect control-flow
behavior we measured a large set of applications. Out of all indirect control-
flow transfers, 51.04% are intra-DSO calls, 19.88% are inter-DSO calls, 28.99%
are intra-DSO jumps with only 0.09% inter-DSO jumps. Inlined CFI checks for
indirect jumps (i) check if the target stays inside the same symbol, (ii) execute a
fast, direct lookup for intra-DSO targets, or (iii) redirect to a slow path. Inlined
CFI checks for indirect calls (i) consult a local cache if the current target equals
the last target, or (ii) redirect to the slow path that executes a full validation and
updates the local cache as a side effect. Lockdown calculates symbol boundaries
at translation time. Correctness of inlined checks follows due to immutability
of symbol definitions and code (given by W⊕X). These optimizations effectively
avoid the slow path (and full table lookup) and therefore reduce the performance
overhead introduced by the control-flow transfer checks significantly.

5.2 Control-Flow Particularities

Control-flow transfers in off-the-shelf binaries do not always adhere to the rules
listed in Section 4.1 and Lockdown catches this behavior and recovers using a
set of handlers. ELF implements calls to other libraries as a call to the PLT
section of the current module and an indirect jump to the real function [15]. As
Lockdown can only rely on binaries (a source code approach could implement
this differently) it replaces such calls with a direct call to the loaded function,
removing the indirect jump and needed CFI guard. Some special cases are specific
to low-level libraries like the libc runtime support functions, e.g., inter-module
calls to symbols that were not imported, intra-module cross function jumptables,
inter-module callback functions, or even inter-module calls targeting PLT entries
which would bypass our PLT inlining if not handled correctly. Lockdown also
allows indirect jumps as tail calls to the beginning of other functions in the set

9

of currently allowed call targets. Although a variety of these special cases exist,
our experience shows that they can all be handled by a small set of handlers
without compromising the CFI security properties.

High-level application code (i.e., all code that is not the libc or other low-
level functionality like the loader) adheres to the rules listed in Section 4.1 and
therefore does not require special handling, except callback functions (function
pointers), which are discussed in the next section.

5.3 Implementation Heuristics

Binaries have little information about the types that are used at runtime and
it is not always possible to recover information precisely. To support callback
functions (i.e., a function in a library returns a function pointer that is later
called from a different library; if this function is not exported/imported then
the CFI guard would fail), Lockdown implements a dynamic scanning technique
that is similar in design to the static analysis of Zhang and Sekar proposed
in [52].

Lockdown uses the following patterns to detect pointers to callback func-
tions on the fly (i) push imm32, where a function pointer is pushed onto the
stack, (ii) movl imm32, rel(%esp), where rel references a local variable on
the stack, and (iii) leal imm32(%ebx), %e*x, where a function pointer is
moved from memory into a general purpose register relative to GOT.PLT [15],
or (iv) relocations that are used to define pointers for many callbacks (e.g.,
R 386 RELATIVE). In addition, Lockdown scans data sections (.data and
.rodata) to detect static code pointers. Lockdown’s dynamic analysis allows
us to use the actual values and hard-code references in our guards. Each code
pointer is verified to target a valid code location. These heuristics detect code
pointers at the source where they are either encoded in instructions or stored in
read-only data. Such heuristics will miss pointers that are modified using pointer
arithmetic or taken from attacker-controlled, writable memory. We verified that
these heuristics are sufficient to protect a large set of common Unix applications.
To prevent attacker-controlled manipulation of our pointer detection heuristics
we ensure that code pointers detected by heuristics can only come from read-only
data or the trusted loader (e.g., through the GOT.PLT section). Our heuristics
purposely only detect few targets that can be called from any module. Note
that using heuristics to find all possible targets would degenerate to a weak CFI
policy that is open to existing attacks. A finer-grained attribution of targets to
modules through a data-flow analysis remains an interesting research question.

5.4 Binary Compatibility

Binary compatibility is a challenge for approaches like Lockdown, and using
heuristics leads to a formally unsound approach. We successfully tested our im-
plementation with a large set of applications, compilers, and optimization levels
without problems. Our experience shows that low-level particularities (e.g., of the
libc) can be handled in an automated and efficient way. As a dynamic approach,
there are few limits to implement special handling and therefore Lockdown can
easily be extended to account for possibly remaining special cases where binary

10

compatibility is broken. An example concern might be that ret instructions are
implemented as pop;jmp*; sequences. We did not experience this potential
issue in any of our tests, but such sequences can be handled by simulating a
ret instruction. Furthermore, all recently proposed CFI approaches [34, 50–52]
come with either a binary or source code compatibility risk and none of them
can guarantee full compatibility. Even MCFI [34] cannot guarantee full C source
code compatibility and requires source code changes within the SPEC CPU2006
benchmark suite. Under Lockdown, no binary compatibility issues where encoun-
tered for tested applications (including SPEC CPU2006), and no source-code
changes were necessary.

The current prototype supports arbitrary user-space x86 code, shared li-
braries, signals, setjmp/longjmp, and multi-threaded applications. Self-modifying
code or dynamic code generation is not supported. This is not a general limita-
tion as a dynamic approach like Lockdown can detect runtime code generation
and translate this new code alongside regular application code. A challenge for
the binary translator is to detect if the dynamic code was generated by the
benign application or by the attacker.

6 Evaluation

We evaluate Lockdown in the following areas: (i) performance using the SPEC
CPU2006 benchmarks, (ii) real-world performance using Apache 2.2, (iii) a dis-
cussion of the security guarantees according to the implemented security policy,
and (iv) remaining attack surface.

We run the experiments on an Intel Core i7 CPU 920@2.67GHz with 12GiB
memory on Ubuntu Linux 12.04.4 LTS (on 32-bit x86). Lockdown and the SPEC
CPU2006 benchmarks are compiled with GCC version 4.6.3 and -O2 optimiza-
tion level. The full set of security features of Ubuntu Linux 12.04.4 LTS is enabled
(ASLR, W⊕X, stack canaries, and safe exception frames).

6.1 Performance

We use the SPEC CPU2006 benchmarks to measure CPU performance and to
evaluate the performance impact of (i) Lockdown and (ii) binary translation
only, both compared to native execution, in Figure 4. Due to issues with the
trusted loader [37] combined with new versions of the libc we were unable to run
omnetpp and dealII. The binary translation column includes the overhead from
the trusted loader. The additional average overhead introduced by Lockdown
for CFI enforcement (compared to binary translation) is 4.45%, and the average
overhead for Lockdown in total is 19.09%. Only five benchmarks have a total
overhead of more than 45% if run under Lockdown. The majority of benchmarks
face a reasonable performance overhead of less than 10%.

An average overhead of 19.09% may seem high, but we point out that Lock-
down enforces a purely dynamic binary-only fine-grained CFI policy that runs
the binary analysis alongside the executed application whilst supporting dynamic
library loading. Other fine-grained compiler-based CFI policies report compara-
ble overhead of 20% overhead for SPEC CPU2006 [49] . MCFI, a compiler-based
solution, recently reduced this overhead to 5-6% for a subset of SPEC CPU2006

11

0

20

40

60

80

100

120

140

160
SPEC CPU2006 Benchmarks

BT Lockdown

P
e

rf
o

rm
a

n
ce

 o
ve

rh
e

a
d

Fig. 4. SPEC CPU2006 overhead for binary translation only and Lockdown (full CFI
protection including shadow stack).

benchmarks [34] without enforcing stack pointer integrity (which is essential to
protect against ROP attacks).

A dynamic, binary-only, fine-grained CFI policy faces several challenges: (i)
type information must be recovered using binary analysis and (ii) the analysis
must be low-overhead and carried out alongside the executed application. The
overhead of Lockdown currently includes 14.64% for the shadow stack, trusted
loader, and binary translation as well as 4.45% for the CFI target analysis and
dynamic checks. A combination of static and dynamic binary rewriting may
reduce the performance impact further.

6.2 Apache case study

We evaluate the performance of a full Apache 2.2 setup running under Lockdown.
Apache is set up in the default configuration. To test the performance of the web
server we use an HTML file (56 KB) and a jpg image (1054 KB). The file sizes
correspond to average HTML and image sizes [19]. We used ab (Apache bench-
mark tool) to send 15,000,000 requests for each file in 3 configurations (single
threaded, 10 concurrent connections, 10 concurrent connections with keep-alive)
and measured the overall time required to respond to these requests.

Table 1 shows the overhead of running Apache 2.2 under the Lockdown CFI
policy. The overhead for smaller files is generally higher due to the additional
context switches between translator domain and application domain for file and
network operations. Apache sends files using as few I/O operations as possi-
ble and with small files there is not enough computation that is executed to
recover from the performance hit of the context switch. In the single-threaded
configuration the overhead is high compared to the concurrent configurations
due to additional translation and lookup overhead as threads are not reused as
many times as for the concurrent configuration. This case-study shows that the
overhead for Lockdown is small in real-world contexts.

Configuration Small file Image Combined

Single threaded 30.41% 1.94% 7.87%

Concurrent 6.27% 1.09% 1.83%

Concurrent with keep-alive 15.80% 3.00% 4.36%
Table 1. Apache 2.2 benchmark results.

12

6.3 Security and CFI Effectiveness Case-Study

Evaluating the effectiveness of a CFI implementation in terms of security is non-
trivial. Running a vulnerable program with a CFI mechanism and preventing
exploitation using one specific vulnerability does not guarantee that the vulnera-
bility is not exploitable under other circumstances (hijacking a different indirect
branch instruction, overwriting other control-flow sensitive data, or just using
different gadgets in a code-reuse attack).

We make the following observations: (i) in our attack model a successful
attacker needs to hijack the control-flow to already executable code within the
process, (ii) the probability of success for an attacker depends on the ability to
find a sequence of reusable code (gadgets) that (executed in the right order)
accomplishes the intended malicious behavior (e.g., spawning a shell).

The effectiveness of a CFI implementation therefore depends on how effec-
tively an attacker is restrained in the ability to find and reuse already avail-
able code. This directly translates to the quantity and quality of the remaining
indirect-control flow targets of the enforced CFG.

CFI effectiveness with AIR Zhang and Sekar [52] propose a metric for mea-
suring CFI strength called Average Indirect target Reduction (AIR). AIR exclu-
sively focuses on the quantity of remaining gadgets ignoring quality and therefore
fails to capture the effectiveness of CFI policies regarding security. This limita-
tion is underlined in recent work [8,14,17] where coarse-grained CFI implemen-
tations proved to be ineffective while having very high AIR values (>99%).

For a program like LibreOffice, which maps at least 56,417,4294 bytes of
executable memory, for a CFI solution with AIR of 99% the remaining 1% of
valid targets still consist of 564,174 potential targets. An attacker needs to find
only a handful of gadgets within this set of valid targets to successfully exploit
a vulnerability. Hence, there is no AIR threshold that indicates if a CFI policy
is secure or not; we present AIR numbers only to allow comparison with related
work. Lockdown enforces a dynamic policy which extends and shrinks target
sets depending on the executed code, we therefore report numbers at the end
of execution. Lockdown achieves an AIR value of 99.88% for SPEC CPU2006
(99.84% with stripped libraries) and 99.55% for an application set of LibreOffice,
Apache, Vim, and xterm. In comparison, static CFI implementations have AIR
values for SPEC CPU2006 of 99.13% (CFI reloc) or 98.86% (CFI bin) [52].

CFI Security Effectiveness Case Study We provide an in-depth analy-
sis of the effectiveness of Lockdown by looking at CVE 2013-2028, a memory
corruption vulnerability for nginx. Modern attacks exploiting memory corrup-
tion vulnerabilities rely on code-reuse techniques. The widespread deployment
of W⊕X does not allow to execute memory areas like the stack or the heap.
A code-reuse attack [3, 5, 6, 9, 31, 39, 43] combines already executable code snip-
pets (gadgets) found in the executable area of a program or libraries to realise
attacker desired behavior. Return-Oriented Programming (ROP) uses gadgets

4 We looked at LibreOffice 3.5 on Ubuntu Linux 12.04.4 LTS and added all the initial
executable ELF segments, i.e., of the soffice.bin and all its library dependencies.

13

value (to write)value (to write)G1G1
pop %edx;
ret;

G2G2
pop %eax;
pop %ebx;
ret;

G3G3
mov %edx, (%eax);
mov $0x0, %eax;
ret;

address of G2address of G2

address (to write to)address (to write to)

(not relevant)(not relevant)

address of G3address of G3

addr. of next gadgetaddr. of next gadget

stack (attacker controlled)

top

bottom

*address = value;

system() offsetsystem() offsetG4G4
pop %edi;
ret; G5G5

pop %eax;
pop %ebx;
ret; G6G6push %eax;

add (%eax), %edi;
pop %ebx;
ret;

address of G5address of G5

addr. GOT.PLT entryaddr. GOT.PLT entry

(not relevant)(not relevant)

address of G6address of G6

address of G7address of G7

stack (attacker controlled)

top

bottom

return to system()

G7G7
xchg %eax, %edi;
ret; G8G8

push %eax;
ret;

address of G8address of G8

address of system()address of system()

Fig. 5. Gadgets in our nginx 1.4.0.0 exploit (on Ubuntu Linux 12.04.4 LTS). G1-G3
implement a write primitive and G4-G8 transfer control to an arbitrary libc function.

ending with a return instruction while Jump-Oriented Programming (JOP) and
Call-Oriented Programming (COP) use gadgets ending with indirect jumps and
indirect calls. Most real-life code-reuse attacks rely on return gadgets.

CVE 2013-2028 reports a signedness bug in nginx before 1.4.0.0. The vulnera-
bility can be exploited by overflowing the stack [26] or corrupting heap data [24].
ASLR and stack canaries are bypassed by server-side heap spraying and brute-
forcing. The gadgets in Figure 5 can be used to exploit the vulnerability and
to execute a remote bind shell. Gadgets 1-3 (G1-G3) are used to implement a
”write value to address” primitive and gadgets 4-8 (G4-G8) are used to load a
GOT.PLT entry into a register, add an offset to it, push it onto the stack and
transfer control it. The ”write value to address” primitive is used several times to
copy a sequence of 4 byte values to a writeable memory area (somewhere within
the .data section) and then gadget sequence 4-8 is used to perform an arbitrary
function call. More specifically the copied data will be used as the function argu-
ment to libc’s system() function. This technique allows an attacker to execute
arbitrary commands (e.g., a remote shell).

An attacker needs only a small number of gadgets that, when chained to-
gether, allows the implementation of the desired behavior. To assess the security
effectiveness of a CFI implementation a detailed application specific analysis
is required. We implemented a gadget finder tool that identifies potential gad-
gets within the set of valid target locations for a particular indirect control-flow
transfer, returning all potential gadgets (according to additional filter criteria).

A filter criterion for gadgets is the type of indirect branch instruction at the
end of the gadget: return (ret), indirect jump (jmp), or indirect call (call). We
consider gadgets up to a length of 30 instructions. In practice, gadgets are short
(up to 5 instructions). Longer gadgets might be used to bypass ROP heuris-
tics [14, 17] but are harder to control due to unwanted side effects. We allow
conditional and unconditional jumps within gadgets. Jumps to (i) locations out-
side of the gadget, (ii) illegal instructions, or (iii) instructions not allowed in user
mode are not allowed in a gadget. We further introduce a system gadget (sys)
type that ends with a system call (i.e. int 0x80 or sysenter). These gadgets
are used to construct syscall primitives.

To reliably perform JOP or COP attacks [5, 9] certain types of gadgets are
needed. We follow the terminology from [5]. Gadgets are either initialization, dis-
patcher, or functional gadgets: An initialization gadget (init) contains a popa

14

instruction or allows to pop or move at least three values from the stack into
registers. Such gadgets allow the initialization of registers. Initialization gadgets
in our evaluation can be return, jump, or call gadgets. Dispatcher gadgets (disp)
are jump or call gadgets that change the target used for the indirect jump or
call at the end of the gadget. Not all gadgets that fulfil this criterion are feasible
dispatcher gadgets, providing an over-approximation of available gadgets. Func-
tional gadgets (func) are the opposite of dispatcher gadgets, they do not change
the content of the register later used for addressing of the indirect jump or call.
The idea is to have a register holding the address of the dispatcher gadget so at
the end of a functional gadget we can jump or call the dispatcher gadget to load
and dispatch the next gadget. We refer to related work [5, 9] for details on gad-
get chain construction. Attacks that rely exclusively on JOP and COP (i.e., no
return gadgets are used) need at least one initialization gadget (that initializes
a set of registers from attacker supplied memory), one dispatcher gadget (that
implements the ’load and branch’ sequence to dispatch execution to the next
gadget), and a set of functional gadgets (e.g., to move a value to a register).

We analyse remaining gadgets in nginx for (i) Lockdown and (ii) a coarse-
grained CFI policy using the filtering described above. The coarse-grained CFI
policy follows a conservative and strict static CFI policy where returns and jumps
can target call sites (call preceded locations) and where calls are allowed to target
only symbol addresses (beginning of functions). The coarse-grained CFI policy is
stricter than the combined static CFI policy described in [14,17]. Such an overly-
strict CFI policy results in a lower bound of total targets that must be allowed
by any coarse-grained CFI policy. Real policies must over-approximate this set
of targets due to imprecisions in the analysis, therefore this policy is strictly
stronger than any coarse-grained policy. We show that an attacker can achieve
arbitrary computation for this overly strict policy that under-approximates the
valid targets and thereby over-approximates the protection capabilities of all
coarse-grained CFI policies, therefore all coarse-grained CFI policies are broken,
generalizing prior attacks against coarse-grained CFI [8, 14,17].

We provide a precise analysis of the remaining gadgets (which we inspected
manually) for Lockdown and we show that no usable gadgets remain. Filtering
the valid targets of the vulnerable ’ret’ and ’call’ instruction in nginx 1.4.0.0
under Lockdown (Lret, Lcall) and under the coarse-grained CFI policy (Sret,
Scall), results in the number of gadgets presented in Table 2. These are the only
gadgets available for exploit construction.

Lockdown greatly reduces the available attack surface. For the vulnerable
return instruction only 3 gadgets with a maximum size of 5 instructions are
available (7 gadgets if longer sequences are considered). The set of valid targets
only contains return gadgets, prohibiting a transition to JOP or COP. A further
restriction is that the 7 gadgets can only be executed in a certain order, namely
from top of the shadow stack down. Therefore, every gadget can only be executed
once. Manual analysis of the specific instructions within the available gadgets
shows limited computational abilities, making successful exploitation highly un-
likely. We therefore conclude that Lockdown effectively prevents attacks target-

15

ing the vulnerable return instruction (for this vulnerability). The second possible
exploitation vector of CVE 2013-2028 uses an indirect call instruction. Manual
analysis of the gadgets available for the specific vulnerable indirect call instruc-
tion again shows limited computational abilities, making successful exploitation
highly unlikely as well. First, only JOP-only or COP-only attacks are possible.
Using return gadgets is no longer possible due to the strictness of Lockdown’s
policy for return instructions (the number of reachable return gadgets is shown
in parentheses). For long gadgets we get few initialization or dispatcher gad-
gets but no functional gadgets. Longer gadgets come with an increasing risk of
unwanted (and unrecoverable) side effects and/or loss of control-flow from the
attacker’s perspective. Even if one of the call gadgets could (hypothetically) be
used as an arbitrary call, Lockdown always enforces a least-privileges policy for
inter-DSO calls (if a symbol is not explicitly imported, the call is not allowed).
Therefore even in the most extreme case where the redirection over a call gad-
get to a specific function would be sufficient, the called function must also be
imported (for nginx, e.g., system or mprotect are not imported).

Looking at the results for the coarse-grained CFI policy shows that, despite
the high AIR value, thousands of gadgets remain readily available. Most gadgets
are return gadgets, allowing flexible ROP chains. In fact, we easily find a set of
gadgets that implements the same primitives needed for successful exploitation
even if the coarse-grained CFI policy is enforced. For the indirect call exploitation
vector we simply fall back to ROP by using a stack pivot and one of the available
return gadgets. Falling back to ROP is not possible for Lockdown because the
shadow stack enforces stack integrity.

We conclude that Lockdown indeed prevents exploitation of CVE 2013-2028
for both exploitation vectors (while coarse-grained CFI fails to protect both ex-
ploitation vectors). Lockdown’s strength originates from the combination of a
precise policy for return instructions and a fine-grained policy for call/jump in-
structions. In contrast, our analysis for a representative coarse-grained CFI pol-

length total ret jmp call sys init disp func protected?

Lret 5 3 3 0 0 0 0 0 0 X
10 6 6 0 0 0 1 0 0 X
15 7 7 0 0 0 1 0 0 X
30 7 7 0 0 0 1 0 0 X

Lcall 5 20 (97) 0 (77) 0 17 3 0 13 0 X
10 53 (270) 0 (217) 0 50 3 9 45 0 X
15 65 (392) 0 (327) 1 61 3 31 56 0 X
30 99 (586) 0 (487) 2 94 3 125 85 0 X

Sret 5 2037 1295 440 294 8 2 216 50 ×
10 3741 2662 536 533 10 261 326 69 ×
15 4622 3330 583 698 11 516 375 97 ×
30 6209 4450 763 980 16 1072 558 117 ×

Scall 5 99 97 0 0 2 4 0 0 ×
10 401 391 0 4 6 9 4 0 ×
15 635 617 0 12 6 68 12 0 ×
30 954 922 0 24 8 268 24 0 ×

Table 2. Gadgets found at valid return and call locations when protecting the vulner-
able return and indirect call instruction in nginx 1.4.0.0 for Lockdown (Lret and Lcall)
and the strict static CFI policy (Sret and Scall).

16

icy shows that despite high AIR values such policies are unable to effectively pre-
vent code-reuse attacks, further questioning the effectiveness of existing coarse-
grained CFI techniques. In fact, current binary-only CFI implementations are
even more permissive than the strict coarse-grained CFI policy discussed here.
A common problem is the missing (strong) protection against ROP attacks.

Table 3 shows remaining gadgets under Lockdown for the vulnerable call
instruction if nginx and all libraries are stripped. Due to the limited symbol
information, more targets are reachable for the vulnerable call instruction com-
pared to the unstripped binary. This leaves the attacker with several gadgets
to choose from. As the shadow stack does not rely on symbol information, the
precision for the stack remains the same as in Table 2 and the attacker must
exclusively rely on COP or JOP. The majority of the available gadgets are intra-
DSO targets as the information needed for inter-DSO control transfers is always
available. While the attacker can construct Turing-complete computation inside
one DSO, executing arbitrary system calls is only possible if the desired libc
functions are imported into the DSO or an exploitable call or jump instruction
inside libc is found. Therefore, even if binaries are stripped the Lockdown policy
offers protection for transfers between objects and against ROP attacks. Here,
an attacker is restricted to the few functions imported in the vulnerable object
(therefore the protection is partial), e.g., in the case of libc as the destination
DSO the list of allowed functions from a source DSO to libc is generally limited.
If a security sensitive function (like system()) is still within the allowed targets
then data validation guards could be emitted to detect attacks.

Our analysis shows that the combination of a strong policy for returns and a
fine-grained CFI policy for indirect jumps and calls is key in preventing attacks.
Missing only one of these fine-grained policies for either of the indirect branch
instructions would already open up the attack surface for successful exploitation.

6.4 Security Guarantees

Lockdown enforces a strict, modular, fine-grained CFI policy for executed code
combined with a precise shadow stack, resulting in the following guarantees: (i)
the DBT always maintains control of the control-flow, (ii) only valid, legitimate
instructions are executed, (iii) function returns cannot be redirected, mitigating
ROP attacks, (iv) jump instructions can target only valid instructions in the
same function or symbols in the same module (DSO), (v) call instructions can
target only valid functions in the same module (DSO) or imported functions,
(vi) all signals are caught by the DBT system, protecting from signal oriented
programming, (vii) all system calls go through a system call policy check. Due
to the modular implementation, individual guarantees build on each other: the

length total ret jmp call sys init disp func prot.?

Lcall 5 4016 (20388) 0 (16372) 804 3203 9 2 563 403 (X)

10 6129 (34885) 0 (28756) 906 5206 17 1446 1323 565 (X)

15 6961 (45209) 0 (38248) 947 5990 24 3880 1707 618 (X)

30 10109 (64695) 0 (54586) 1017 9062 30 10932 3294 760 (X)

Table 3. Gadgets found at valid call locations when protecting the vulnerable indirect
call instruction in nginx 1.4.0.0 for Lockdown (Lcall) without debug symbol information.

17

binary translator ensures the SFI properties that only valid instructions can be
targeted, the shadow stack protects return instructions at all times, the trusted
loader provides information about valid targets for call and jmp instructions,
and the dynamic control-flow transfer checks enforce dynamic CFI.

7 Conclusion

This paper presents Lockdown, a fine-grained, modular, dynamic control-flow in-
tegrity policy for binaries. Using the symbol tables available in shared libraries
and executables we build a control-flow graph on the granularity of shared
objects. A dynamic binary translation based system enforces the integrity of
control-flow transfers at all times according to this model. To counter recent
attacks on coarse-grained CFI implementations, we use a shadow stack that
protects from all ROP attacks.

Our prototype implementation shows low performance overhead of 19.09%
on average for SPEC CPU2006. In addition, we reason about CFI effectiveness
and the strength of Lockdown’s dynamic CFI approach, which is more precise
than other CFI solutions that rely on static binary rewriting. Our security eval-
uation goes beyond AIR metrics and we provide an in-depth analysis of our
implementation’s security effectiveness using real exploits that demonstrates a
strong policy for returns must be combined with a fine-grained CFI policy for
indirect jumps and calls if we want to prevent attacks.

Lockdown enforces strong security guarantees for current systems in a practi-
cal environment that allows dynamic code loading (of shared libraries), supports
threads, and results in low overhead.

8 Acknowledgements

We thank Andreas Follner, Volodymyr Kuznetsov, Per Larsen, Kaveh Razavi,
our shepherd Cristiano Giuffrida, and the anonymous reviewers for feedback and
discussions. This research was supported, in part, by a grant from NSF.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS’05
(2005)

2. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing memory
error exploits with WIT. In: SP’08 (2008)

3. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: SP’14 (2014)

4. Bletsch, T., Jiang, X., Freeh, V.: Mitigating code-reuse attacks with control-flow
locking. In: ACSAC’11 (2011)

5. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: ASIACCS’11 (2011)

6. Bosman, E., Bos, H.: Framing signals - a return to portable shellcode. In: SP’14
(2014)

7. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. In: CGO ’03 (2003)

8. Carlini, N., Wagner, D.: ROP is Still Dangerous: Breaking Modern Defenses. In:
SSYM’14 (2014)

18

9. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: CCS’10 (2010)

10. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: SSYM’05 (2005)

11. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.R., Brun-
thaler, S., Franz, M.: Readactor: Practical code randomization resilient to memory
disclosure. In: SP’15 (2015)

12. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: Complete Control-Flow Integrity
for Commodity Operating System Kernels. In: SP’14 (2014)

13. Davi, L., Dmitrienko, R., Egele, M., Fischer, T., Holz, T., Hund, R., Nuernberger,
S., Sadeghi, A.: MoCFI: A framework to mitigate control-flow attacks on smart-
phones. In: NDSS’12 (2012)

14. Davi, L., Sadeghi, A.R., Lehmann, D., Monrose, F.: Stitching the gadgets: On
the ineffectiveness of coarse-grained control-flow integrity protection. In: SSYM’14
(2014)

15. Drepper, U.: How to write shared libraries. http://www.akkadia.org/
drepper/dsohowto.pdf (Dec 2010)

16. Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Software
guards for system address spaces. In: OSDI’06 (2006)

17. Göktaş, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: Over-
coming control-flow integrity. In: SP’14 (2014)

18. Hiroaki, E., Kunikazu, Y.: ProPolice: Improved stack-smashing attack detection.
IPSJ SIG Notes pp. 181–188 (2001)

19. HTTP Archive: Http archive - interesting stats - average sizes of web sites and ob-
jects (2014), http://httparchive.org/interesting.php?a=All&l=Mar%
201%202014

20. Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J., Wang, Y.: Cy-
clone: A Safe Dialect of C. In: ATC’02 (2002)

21. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: SSYM’02 (2002)

22. Kuzentsov, V., Payer, M., Szekeres, L., Candea, G., Song, D., Sekar, R.: Code
pointer integrity. In: OSDI (2014)

23. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: Automated Software
Diversity. In: SP’14 (2014)

24. Le, L.: Exploiting nginx chunked overflow bug, the undisclosed attack vector (CVE-
2013-2028) (2013)

25. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: PLDI’05 (2005)

26. MacManus, G., Hal, Saelo: Metasploit module nginx chunked size for CVE-
2013-2028. http://www.rapid7.com/db/modules/exploit/linux/http/
nginx_chunked_size (2013)

27. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque Control-
Flow Integrity. In: NDSS’15 (2015)

28. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: Highly Com-
patible and Complete Spatial Memory Safety for C. In: PLDI’09 (2009)

29. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: Compiler Enforced
Temporal Safety for C. In: ISMM’10 (2010)

30. Necula, G., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems (TOPLAS) 27(3), 477–526 (2005)

19

http://www.akkadia.org/drepper/dsohowto.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://httparchive.org/interesting.php?a=All&l=Mar%201%202014
http://httparchive.org/interesting.php?a=All&l=Mar%201%202014
http://www.rapid7.com/db/modules/exploit/linux/http/nginx_chunked_size
http://www.rapid7.com/db/modules/exploit/linux/http/nginx_chunked_size

31. Nergal: The advanced return-into-lib(c) exploits. Phrack 11(58), http://
phrack.com/issues.html?issue=67&id=8 (Nov 2007)

32. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI’07 (2007)

33. Niu, B., Tan, G.: Monitor integrity protection with space efficiency and separate
compilation. In: CCS’13 (2013)

34. Niu, B., Tan, G.: Modular control-flow integrity. In: PLDI’14 (2014)
35. PaX-Team: PaX ASLR (Address Space Layout Randomization). http://pax.

grsecurity.net/docs/aslr.txt (2003)
36. Payer, M., Gross, T.R.: Fine-grained user-space security through virtualization.

In: VEE’11 (2011)
37. Payer, M., Hartmann, T., Gross, T.R.: Safe loading - a foundation for secure exe-

cution of untrusted programs. In: SP’12 (2012)
38. Philippaerts, P., Younan, Y., Muylle, S., Piessens, F., Lachmund, S., Walter, T.:

Code pointer masking: Hardening applications against code injection attacks. In:
DIMVA’11 (2011)

39. Pincus, J., Baker, B.: Beyond stack smashing: Recent advances in exploiting buffer
overruns. IEEE Security and Privacy 2, 20–27 (2004)

40. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Coun-
terfeit Object-oriented Programming. In: SP’15 (2015)

41. SCO: System V Application Binary Interface, Intel386 Architecture Processor
Supplement. http://www.sco.com/developers/devspecs/abi386-4.pdf
(1996)

42. Seibert, J., Okhravi, H., Soederstroem, E.: Information leaks without memory dis-
closures: Remote side channel attacks on diversified code. In: CCS (2014)

43. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: CCS’07 (2007)

44. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: SP’13
(2013)

45. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L.,
Pike, G.: Enforcing forward-edge control-flow integrity in gcc & llvm. In: SSYM’14
(2014)

46. van de Ven, A., Molnar, I.: Exec shield. https://www.redhat.com/f/pdf/
rhel/WHP0006US_Execshield.pdf (2004)

47. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hyper-
visor control-flow integrity. In: SP’10 (2010)

48. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: Detecting Violation of Control Flow
Integrity Using Performance Counters. In: DSN’12 (2012)

49. Zeng, B., Tan, G., Erlingsson, U.: Strato: A retargetable framework for low-level
inlined-reference monitors. In: SSYM’13 (2013)

50. Zhang, C., Wei, T., Chen, Z., Duan, L., McCamant, S., Szekeres, L.: Protecting
function pointers in binary. In: ASIACCS’13 (2013)

51. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
SP’13 (2013)

52. Zhang, M., Sekar, R.: Control Flow Integrity for COTS Binaries. In: SSYM’13
(2013)

20

http://phrack.com/issues.html?issue=67&id=8
http://phrack.com/issues.html?issue=67&id=8
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://www.sco.com/developers/devspecs/abi386-4.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

	Fine-Grained Control-Flow Integrity through Binary Hardening

