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1 Introduction

This white paper describes Cross-VM Address Space Layout INtrospection (CAIN),
an attack vector against page based same content memory deduplication in
Virtual Machine Monitors (VMM).

Overall CAIN demonstrates that if a VMM uses page based same content memory
deduplication (like e.g. found in KVM, VirtualBox, VMware) then it is feasible for an
attacker to silently infer the base addresses of code locations (mapped
executables and libraries) of co-located VMs.

The issue is tracked under CVE-2015-2877 and there is a vulnerability note from
cert.org under VU#935424 (https://www.kb.cert.org/vuls/id/935424).

Please refer also to the WOOT’15 paper (CAIN: Silently Breaking ASLR in the Cloud
2015) describing the issue in more detail. This white paper focuses on the practical
aspects and implications of the attack.

2 Background

2.1 Threat Landscape in Public Clouds

In public clouds, systems are not only subject to attacks from the outside but also
from malicious neighbors running on the same physical hardware. VMs of different
organizations and companies are deployed right next to VMs of potentially
untrusted parties. Weak and vulnerable systems running on the same physical
hardware pose a security risk for all their co-located neighbors, since they can be a

starting point for attackers. o
Attacker VM Victim VM

The attack described in this white paper
assumes the threat model depicted in
Figure 1. We assume an attacker with
user-privileges on an attacker VM to
attack a victim VM running on the same Virtual Machine Monitor
physical hardware.
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Figure 1: VMs can be threatened by co-located VMs.

2.2 Memory Deduplication

Virtualizing at machine boundary in a public cloud provides isolation between
different tenants, and gives them the ability to run an entirely customized operating
system for their unique needs.

While VMs are highly desired, they are also quite wasteful. Running multiple
instances of the same OS, often with the same software stack, leads to multiple
copies of the same data on memory and disk. To avoid this wasteful duplication,
techniques have been deployed to “deduplicate’” the VMs data, in memory by
sharing physical memory pages, and on disk by sharing file system blocks.
Deduplication directly results in a better profit margin for the providers, since now
they can pack even more VMs on the same physical host.



While deduplication sounds like a good idea, there is a security pitfall: As previously
shown (Memory Deduplication As a Threat to the Guest OS 2011) memory
deduplication introduces a side-channel that can be exploited by co-located VMs.
The side-channel makes it possible to detect pages that exist in co-located VMs
which allows attackers to infer certain information based on the existence of pages
in co-located VMs.

VM A ~ VMB Physical memory When pages in two different
me;j ke VMs are deduplicated the

| Feop¥y™ physical page gets marked as

read-only. As soon as one VM

writes to it a copy-on-write will
be performed before the writing
VM can effectively modify the
page. Figure 2 illustrates the

Virtual Machine Monitor copy-on-write behavior of two

£ 5 o bohavi " shared pages (yellow pages)
gure Z: copy-on-write benavior wnen memaory
deduplication is used. between VM A and VM B.

This copy-on-write behavior introduces a side-channel that can be exploited by a
malicious VM. As the copy-on-write takes significantly more time than a write to a
non-shared page an attacker can measure the write time and thus deduce if the
page is shared between his VM and a co-located VM.

Figure 3 illustrates the side-channel: an attacker can construct a page (guess) and
waits. As soon as the page is deduplicated a write will reveal if the page exists in a
co-located VM or not.
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Figure 3: the attacker can observe write time and deduce that the page exists in the Victim VM.
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There are different types of deduplication. The issue described in this white paper
assumes page based same content memory deduplication like implemented in
Kernel Same-page merging (KSM) used in KVM.



2.3 Address-Space Layout Randomization

Together with DEP (Data Execution Prevention), ASLR (Address Space Layout
Randomization) is considered one of the main software and system hardening
techniques that has found widespread adoption in modern systems over the last
decade.

When exploiting memory corruption vulnerabilities, attackers ideally try to
construct a write primitive operation. This operation allows the attacker to write
arbitrary values to arbitrary memory locations within the victim process virtual
address space. This is then leveraged to a control-flow hijack attack by using the
write primitive to overwrite control-flow sensitive data (like function pointers,
virtual table entries, return addresses on the stack, etc.).

To do so, attackers usually have to know the exact memory location of the values
they want to overwrite. The purpose of ASLR is to make it probabilistically infeasible
for attackers to guess the exact memory location of the target memory. ASLR
introduces randomness for memory addresses during process creation and memory
mapping operations that ensures different memory layouts for different processes
and systems. The effectiveness of ASLR depends on the number of its entropy bits
that are hidden from an attacker and on the ability to not disclose any information
about the current layout during run-time.

The ASLR implementation for code, stacks and heaps usually differs on the same
system. While stacks and heaps can usually be randomized in a more fine-grained
way (e.g., with random padding), code images (executables and libraries) are
usually required to be mapped from the file-system to some page aligned base
address. Although the base-address can be randomized, the content is much more
static and predictable than stack or heap pages.

The main goal of CAIN is leaking randomized base addresses of code images; under
certain circumstances it might also be possible to infer randomized addresses of
stack or heap regions, but we did not investigate this further.



3 Breaking ASLR with CAIN

3.1 Attack Overview Attacker VM Victim VM
The goal of the attacker is
illustrated in Figure 4. The attacker ‘ﬂ‘ Attacker has Process
wants to infer the base address of a L user privileges
code image (e.g. a DLL) mapped ox7f9ffaa00oe
into the memory of a process
running on a co-located VM. Infer randomized base
address of libraries or
The concept of the attack is to take executable
advantage of specific memory

pages, these pages are known to
exist in the Victim VM, mostly static
so they can be reconstructed, page Hardware
aligned and they have to contain
the randomized base address of Figure 4: the attacker’s goal is to infer the base address
the code image of interest (e.g. the of a code image of a co-located VM.

base address of ntdll.dll). We will then use the memory deduplication side-channel
to detect if such a page exists which will allow us to infer the randomized base
address. We use these suitable pages to guess a randomized base address one
guess per page. Thus, to infer the unknown base address we simply brute-force the
randomized base address by creating many of these guesses concurrently.

Virtual Machine Monitor

There are two main challenges. First, we need to find and construct pages that are
suitable for the attack. Second, the attack must be automated and reliable, which
requires handling the noise that is present within the memory deduplication side-
channel (i.e., higher write times not caused by the Copy-on-Write.).

3.2 Finding suitable pages
Depending on the targeted system, a page with specific properties has to exist for
the attack to work. The page must fulfill at least the following properties:

> The data is page aligned (no random padding)

> The content is mostly static and known to the attacker

> The page contains the value we want to infer (i.e,, the randomized base
address). Or values derived from it, basically we should be able to exactly
reconstruct the content of the page given the value to be inferred (i.e.,, the
entropy of the page is the entropy of the value to be inferred)

> The page is more or less always in main memory (in the victim’s VM)

At first, it might seem that finding such a page is difficult. But these pages exist.
Despite application specific pages that might adhere to the properties above, code
pages with base relocations e.g., fulfill the criteria.



3.2.1 Suitable pages in Windows
On Windows systems for instance the very first page of every Portable Executable
(PE) image fulfills the properties described above.

PE File Format on Disk PE File Format in Memory
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Figure 5: the very first page of @ PE image on disk and in memory.

When looking at the first page of memory mapped from a PE image on disk we
notice that the page is easy to predict (assuming a certain .exe or .dll image) except
for the ImageBase field in the Optional Header. This field contains a static value on
disk but in memory the value is modified to contain the run-time randomized base
address of that specific PE image.

We can therefore use this page to guess the randomized base address in co-located
Windows based VMs. Let’s assume we know the base address, constructing this
page and detecting its existence will confirm that the specific executable PE image
mapped in memory has the specific base address we put into ImageBase in one of
the co-located VMs. Of course we don’t know the base address but detecting the
existence allows us to infer the base address. At this point the only thing we know
is that the base address is within a certain range of values (e.g., 2"° for Windows
x86_64 systems).

Other pages might be used as well, e.g.,, code pages that just contain base
relocations. In this case constructing a guess requires a bit more effort but leads to
the same effect.

3.2.2 Suitable pages in Linux

Linux seems to have pages that fulfill the described properties. Although almost all
ELF images contain Position-Independent Code we found, e.g., read-only pages
mapped from the libc binary image to the process’ memory that contained base
relocations. We verified this on an Ubuntu 14.04 x86_64 system. Although only
some of these pages existed, the attack actually just requires one of these pages to
work.

Because of the higher ASLR entropy for ELF shared libraries and the fact that every
process has its own layout, attacking a Linux system requires generally more time
and yields less reliable results than targeting a Windows system.



3.3 Automated exploitation and handling of noise

Given the existence of suitable pages to attack a certain VM we now need to
automatically and reliably brute-force the Random Base Address (RBA) through the
memory deduplication side-channel.

CAIN operates in these subsequent three phases in order to find the RBAs:

1. Adaptive sleep time detection
2. Filtering (1 to many rounds)
3. Verification (1to many rounds)

To automate the attack, the wait time for the underlying memory deduplication
implementation to merge pages has to be estimated. This wait time depends on the
memory deduplication implementation and its configuration. We implemented a
way to test the required “time to wait” by creating a lot of pages that are pairwise
equal. This generates a lot of sharing opportunities. Then, after waiting a certain
amount of time, writing to these pages and detecting if they were effectively
merged will indicate if the tested wait time was sufficient or not. If the tested time
was to short, repeating this while increasing the wait time adaptively until the
detection rate is high enough, will finally reveal a suitable time window for the
attacker to wait. This is then used as the sleep time in between attack rounds.

Next, the actual brute-force attack can be initiated. We use the suitable page to
create a large buffer of pages each containing the same content except for the base
address value to be brute-forced. At the beginning we eliminate as many guesses
with as little memory as possible by trying to detect which page is actually shared
after waiting for the previously probed sleep time. Bruteforcing the entire ASLR
entropy space requires a lot of memory. As we need one page per guess, this step
would at least require the creation of 2'° * 4096 KB (pagesize) = 2 GB to attack a
64bit Windows or 2?8 * 4096 KB (pagesize) = 1024 GB to attack a 64bit Linux
system. Depending on the available memory, filtering can be done in one round or
multiple rounds by splitting up the search space.

After having performed one or many rounds of filtering the potential number of
candidates will be significantly reduced. There are still false positives that need to
be filtered out by performing subsequent verification rounds. A verification round
is the same as a filtering round with the difference that now in-between guesses we
place random content pages. As we know that the random content pages are not
shared we can thus better detect potentially shared pages. The reason why we use
filtering rounds (no random pages in-between) at the beginning is simply a matter
of available memory. 2 (Windows 64bit) or 228 (Linux 64bit) guesses just require
too much memory in the beginning.

To actually detect if a page is shared or not we write to the first byte of that page
(after having waited for some time) and we compare its write time in cycles
(measured with the read time stamp counter instruction, rdtsc) with the write time
of the adjacent pages.
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Figure 6: detection of merged pages is done using heuristics to compare write times of adjacent
pages with the potentially merged page in-between.

We can assume that the adjacent pages are not shared as the probability that two
adjacent guesses correspond to the randomized base addresses of the very same
image in two different co-located victim VMs is rather unlikely (during filtering).
During verification rounds the adjacent pages contain random content as we placed
these pages in-between.

We use different heuristics to detect if a page is merged. For instance, we check if
to is greater than two times the average of t; and tz (which is t; + tz). Based on
observations we made we implemented some additional heuristics in our Proof-of-
Concept that helped us handle noise. These heuristics might depend on the
hardware configuration and the underlying VMM but we were able to use the same
heuristics on different hardware configurations. A more determined attacker could
also optimize detection of a merged page by using better heuristics.

Please refer to the WOOT’15 paper (CAIN: Silently Breaking ASLR in the Cloud 2015)
for more details on the heuristics used and the different attack phases.



3.4 Evaluation
We have implemented a Proof-of-Concept exploit and evaluated it on the following
system:

> A dual CPU blade server with two AMD Opteron 6272 CPUs (16 cores each)
and 32GB of RAM.

> The system runs on Ubuntu Server 14.04.2 LTS x86_64 (Linux Kernel 3.16.0),
using the standard KVM in its default configuration as VMM.

> Except for the sleep_millisecs (/sys/kernel/mm/ksm/sleep millisecs)
parameter that tells KSM how many milliseconds it must sleep in-between
scan cycles, we kept all the parameters at their default values.

> All the VMs are configured with 4 virtual CPUs and 4GB of memory. We run
one attacker VM with Ubuntu Linux 14.04, and up to 7 VMs with Windows
Server 2012 Datacenter (6.2.9200).

Figure 7 shows the attack times for different sleep_millisecs configurations. We
used the attacker VM to attack one victim VM. The sleep_millisecs configuration
tells KSM how long it has to wait in-between scan cycles. The lower the value the
faster KSM is. The default value of sleep millisecs on our system (Ubuntu Linux
14.04) was 200.

The dotted lines in Figure 7 denote estimates the straight lines are attacks we
effectively performed. As expected the memory deduplication speed has a direct
influence on the attack time required. The individual points denote the end of a
filtering (the first one) or verification round. Every attack starts at time O and with
the initial entropy of 19 (as we attack a 64bit Windows system). After the first round
entropy is already reduced by almost 7 bits (in average) i.e. from the initial 2
(524°288) potential base addresses to several thousand remaining candidates (2%? =
4096). This is independent of the sleep_millisecs configuration. The only influence
sleep millisecs has is on the required sleep time. As the sleep time between
rounds is longer the overall attack time will increase as well. The attacker has to wait
longer till he can safely assume that all the potential sharing opportunities were
deduplicated.

For the default configuration the attack took less than 5 hours.
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16 80 sleep_millisecs

s 120 sleep_millisecs
il 160 sleep_millisecs
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Figure 7: attacking one single Windows victim VM, overall attack time to infer the ntdll.dll base
address. (sleep_millisecs = 200 is default)



Next we wanted to see how the overall attack time behaves when attacking multiple
victim VMs. All victims run the same Windows operating system. We used
sleep_millisecs = 20 to reduce overall attack time for our experiments. As Figure
8 shows the attack takes longer the more victims run on the same physical
hardware. As the total amount of memory used by all the VMs increases the memory
deduplication scheme needs more time to find all the sharing opportunities. This is
why the sleep time estimates increase as well which directly influences the overall
attack time. For more than 1 victim there is also an additional verification round at
the end. This is required because we need to verify if the final set does not change.
In case of a single victim we can optimize the attack as we can assume that the last
single base address is the right one. This of course assumes that the attacker knows
that there is one victim VM running. Interestingly the attack against 6 victims took
less time than attacking 5 victims. This is due to the sleep time estimate which
happened to be higher. As many factors might influence the estimated sleep time
required this might look different in subsequent rounds. We think there is also a lot
of improvement potential in how we estimate the required sleep time such that the
overall attack time can be further reduced by a more determined attacker.
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Figure 8: attacking several Windows victim VMs, overall attack time to infer the ntdil.dll base
addresses. sleep_millisecs = 20

3.5 Attacking Weak ASLR Implementations

Our evaluation focused on modern strong ASLR implementations and assumes no
weaknesses. Implementations in older systems, and especially on the 32 bit x86
architecture, usually offer significantly less entropy. Windows 7 (32 and 64 bit) and
32 bit Windows 8 have only eight bits of entropy for executables and DLLs. mmap()
on a 32 bit Linux offers only eight bits of entropy as well. Naturally, 32 bit
architectures with smaller virtual address spaces cannot offer high entropy as the
virtual address space is limited. Even conceptually higher entropy ASLR is prone to
implementation weaknesses as recently shown (AMD bulldozer linux ASLR
weakness: Reducing entropy by 87.5% 2015). In cases where entropy is reduced, our
attack’s feasibility and time requirements improve from an attacker’s perspective.
Our evaluation shows that the memory deduplication configuration and the number
of victim VMs have a direct effect on the required attack time. The number of



entropy bits, however, has a more significant role on the total attack time as they
increase the number of filtering rounds. We therefore want to emphasize that weak
ASLR implementations amplify the issue and the severity of our attack.

3.6 Post-CAIN exploitation

After having performed the CAIN attack the attacker will know the base addresses
of the DLLs of interest (e.g., ntdll.dll). From here, the attacker can construct a code-
reuse attack to target the specific vulnerable application running on the co-located
VM. Depending on the victim VM system and the number of same systems running
on the other VMs the attacker either gets one exact base address (one single
Windows victim) or several base addresses (many Windows victims or a Linux
victim where every process has its own address-space layout).

If the exact base address was inferred the attacker just uses that base address. If
the attack results in many base addresses the attacker can either try out all of them
in the hope that the address-space layout is not re-randomized (Windows targets
or Linux where an attack attempt crashes only a thread and not the entire process)
or he will have to further map the base addresses to the specific vulnerable process.
This can potentially be done by finding pages that are specific to the vulnerable
process and which have references to the now de-randomized executable image.
These pages can be reconstructed with the different base addresses obtained and
the same attack will then reveal the right base address for a specific vulnerable
process. This of course assumes the existence of such pages that we did not further
investigate.

Another possibility would be to just attack executable images (e.g., DLLs) that are
known to only exist in the specific vulnerable process. If the gadgets found in that
image are enough to perform a code-reuse attack the mapping becomes obsolete.



3.7 Affected VMMs

We verified the issue on KVM (Ubuntu Server 14.04.2 with Linux Kernel 3.16.1). But
most probably other VMMs are also affected. Table 1 provides an overview of
vendors with notes on the memory deduplication implementation along with the
information if the vendor’s product is potentially affected (cert.org assessment and
our assessment). It's also important to note that some VMMs have same content
page based memory deduplication but it is not enabled by default (VMware and
Oracle VirtualBox).

Vendor Memdedup | cert.org' We think Enabled by
default

Linux KVM Affected
Ubuntu (KVM) KSM = Yes Yes
Red Hat (KVM) KSM Affected Yes Yes
Parallels = Affected Not sure =
Microsoft Hyper-V None Not Affected Not Affected n.a.

Xen None (yet?) Not Affected Not Affected n.a.

Oracle VirtualBox PageFusion Unknown Probably No

VMware RS Unknown Probably No

Table 1. vendors affected by the issue.

3.8 Affected Operating Systems

We verified the attack targeting a Windows Sever 2012 Datacenter (6.2.9200 Build
9200) system. We also verified the existence of a suitable page to attack Ubuntu
Linux 14.04 x86_64 (pages found within 1ibc).

We assume that most Windows systems (32bit and 64bit) are attackable as the
page we use in our PoC most probably also exists in other Windows versions. We
also assume that Linux based systems are attackable although the attack requires
much more time and the gain for the attacker is not as promising as when attacking
a Windows system (every process has its own randomized address-space). Other
operating systems using PE or ELF based executable images might be affected as
well but this needs further investigation.

Thttps://www.kb.cert.org/vuls/id/935424



4 Mitigations

As the problem cannot be attributed to one specific vulnerability in the VMM or
system the issue cannot just “be fixed”. The described issue is the result of a VMM
feature (memory deduplication), the implementation of a system hardening
technique (ASLR) and the particularities of process creation and loading. Therefore,
mitigations can be implemented at all these layers. We see the following mitigations:

VMM layer: Deactivation of memory deduplication

Deactivating memory deduplication will effectively mitigate all attack vectors
including attacks that just try to leak confidential data without breaking ASLR. This
measure unfortunately eliminates all the highly appreciated benefits of memory
deduplication.

VMM layer: Attack detection

Instead of preventing the attack directly, the VMM can observe the guest VM and
detect an ongoing attack based on memory creation and page fault behavior. We
do not propose any specific heuristic but we suggest the concept of detecting the
attack instead of preventing it.

ASLR layer: Increase ASLR entropy

One of the factors making the attack feasible is the limited ASLR entropy of code
regions. We suggest to further increase ASLR entropy to not only mitigate the
attack described here, but to continue making ASLR more effective.

Process layer: More entropy in sensitive memory pages

The pages we use in the attack are good candidates because their entropy consists
solely of the ASLR entropy i.e.,, we can reliably construct the page once a base
address is known or guessed. Increasing entropy in these pages or making sure that
no such pages exist can mitigate the issue (e.g., increase entropy by writing some
random values into the first PE image page).



5 Conclusion

We described CAIN, Cross-VM Address-Space Layout INtrospection an attack
vector against memory deduplication in Virtual Machine Monitors. The issue is made
possible as a result of different circumstances, notably, the memory deduplication
side-channel, the existence of certain pages to guess ASLR base addresses and the
limited entropy found in modern ASLR implementations for code images. Although
the attack focuses on leaking ASLR base addresses of code locations other sensitive
information might be leaked and brute-forced as well.

There is currently no real mitigation to this issue except for disabling memory
deduplication in deployments that are sensitive to the threat scenario described in
this white paper. We also think that there is a lot of potential to further improve the
attack and to cross-VM brute-force other sensitive information.
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